13
Aalborg Universitet A new air-fuel WSGGM for better utility boiler simulation, design and optimization Yin, Chungen Publication date: 2013 Document Version Early version, also known as pre-print Link to publication from Aalborg University Citation for published version (APA): Yin, C. (2013). A new air-fuel WSGGM for better utility boiler simulation, design and optimization. Paper presented at International Conference on Power Engineering 2013, Wuhan, China. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: August 05, 2021

Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

Aalborg Universitet

A new air-fuel WSGGM for better utility boiler simulation, design and optimization

Yin, Chungen

Publication date:2013

Document VersionEarly version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):Yin, C. (2013). A new air-fuel WSGGM for better utility boiler simulation, design and optimization. Paperpresented at International Conference on Power Engineering 2013, Wuhan, China.

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright ownersand it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policyIf you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access tothe work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 05, 2021

Page 2: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

1

A new air‐fuel WSGGM(weighted sum of gray gas model) for better utility 

boiler simulation, design & optimization

Chungen Yin, Ph.D.

Associate Prof, Aalborg University, Denmark

(+45) 9940 9279; [email protected]

Oct 24, 2013

International Conference on Power Engineering, Oct 23‐27, 2013, Wuhan, China

2

Outline

∙ Intro: Why is WSGGM important

∙ Why need a new model

∙ The new air‐fuel WSGGM

∙ Demo: Implementation & impacts

∙ Conclusions

Page 3: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

3

Intro: Why is WSGGM important

)()()()(

DPM ,react ,rad , hhheff SSSTkdivhudivt

h

• WSGGM:

N

i

LPkgi

ieTa0

, 1)(

J

j

jgjii TbTa

1

1,,, )(

A multiple gray gas model – Good compromise between the most comprehensive approach (fully addressing wavelength‐dependency by dividing the entire spectrum into high‐resolution intervals) and the simplest gray assumption (constant properties over the entire spectrum); computationally effective; applicable to CFD.

• Energy eq.

)ˆ,(')ˆ'ˆ()'ˆ,(

4

1)()ˆ,()()(

)ˆ,(4

srIdsssrIrsrIrIrds

srdIsb

)),ˆ,((1rad , gh TsrIfS

),,,()( 2 iXLTPfr

4

• The Smith et al. (1982) WSGGM – most widely used

• 5 tables for 5 partial pressures of CO2 and H2O vapor:(1) Pc0 atm;

(2) Pw/Pc=1 (Pc=0.1 atm); 

(3) Pw/Pc=2 (Pc=0.1 atm);

(4) Pw0 atm;

(5) Pw=1 atm;

• used for Tg up to 2400K; supplemented by the Coppalle and Vervisch (1983) WSGGM for higher temperatures till 3000K.

Why need new model (1/6): the existing

Page 4: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

5

• To account for variations in CO2 and H2O vapor concentrations in a flame

Why need new model (2/6): the existing

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 1500 2000 2500 3000

Em

issi

vity

[-]

Gas temperature [K]

Pc0

Pw/Pc=2

Pw/Pc=1

L=20 m

• Inaccurate. Relatively large error comparing the validated reference model, Exponential Wide Band Model (EWBM) – f(Tg, P, L, Xi) – accurate but computationally prohibitive for CFD; 

• Incomplete. (1) In representative conditions, e.g., when (Pw=0.499 Pc)  (Pw=0.501 Pc) which corresponds to a negligible change in composition, but the table to calculate the emissivity switched from Pc0 to Pw/Pc=1 (a big change in ε); (2) incomplete in parameter ranges

Why need new model (3/6): problems

Page 5: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

500 1000 1500 2000 2500 3000

Em

issi

vity

[-]

Gas temperature [K]

Pw0

Pw=1atm

L=20m

Why need new model (4/6): problems

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

Em

issi

vity

[-]

Beam length [m]

Pc0

Pw/Pc=2

Pw/Pc=1

Tg=1750K

Why need new model (5/6): problems

Page 6: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

Em

issi

vity

[-]

Beam length [m]

Pw0

Pw=1atm

Tg=1750K

Why need new model (6/6): problems

10

The new WSGGM (1/7): How to derive

• Determine 7 representative air‐fuel conditions in terms of Pc, Pw – to effectively smoothen the effects of in‐flame gas composition variations on the calculated gaseous radiative properties.

• For each condition: use the validated EWBM to generate emissivity database, spanning a larger Tg‐range (Tg=500‐3000K, with a smaller interval of 25K) and also a larger P∙L range (P∙L=0.001‐60 atm∙m). Large emissivity database matrix: 146 discrete values for P∙L times 101 data points for Tg.

• For each condition: use data‐fitting optimization technique to derive new coefficients for a 4‐gray gas plus 1‐clear gas WSGGM from the emissivity database. Tref=1200 [K] used to simplify the optimization and improve the data‐fitting accuracy.

Page 7: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

11

The new WSGGM (2/7): Formulation

12

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 1500

Em

issi

vity

Gas tem

EWBM new WSGGM

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 1500 2000 2500 3000

Em

issi

vity

EWBM new WSGGM Smith et al. (1982) WSGGM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 1500 2000 2500 3000

Em

issi

vity

[-]

Gas temperature [K]

Pc0

L=20m

The new WSGGM (3/7): Comparison

Page 8: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

13

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 1500

Em

issi

vity

Gas temp

EWBM new WSGGM

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 1500 2000 2500 3000

Em

issi

vity

EWBM new WSGGM Smith et al. (1982) WSGGM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

500 1000 1500 2000 2500 3000

Em

issi

vity

[-]

Gas temperature [K]

Pw0

L=20m

The new WSGGM (4/7): Comparison

14

0.6

0.7

0.8

mis

sivi

ty

EWBM new WSGGM

0.6

0.7

0.8

vity

EWBM new WSGGM Smith et al. (1982) WSGGM

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

Em

issi

vity

[-]

Beam length [m]

Pc0

Tg=1750K

The new WSGGM (5/7): Comparison

Page 9: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

15

0.6

0.7

0.8

ssiv

ity

EWBM new WSGGM

0 6

0.7

0.8

ty

EWBM new WSGGM Smith et al. (1982) WSGGM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

Em

issi

vity

[-]

Beam length [m]

Pw0

Pw=1atm

Tg=1750K

The new WSGGM (6/7): Comparison

16

The new WSGGM (7/7): How to use

Page 10: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

17

Demo (1/5): Problem description

18

Mesh of the boiler Structured mesh: 3,191,580 high-quality hexahedral cellsGaseous radiative property Smith et al. (1982) air-fuel WSGGM vs. the new air-fuel WSGGMCoal and feeding rate Real coal fed into the furnace (with 8.5% moisture) used and

moisture release appropriately addressedCoal particle trajectories 432,000 coal particle streams trackedFurnace wall: Tw & εw The same wall emissivity (εw=0.7) used. The same rule for wall

temperature estimation used. (the purpose is to check if the twoWSGGMs make big difference in CFD results)

Other sub-models RNG k-ε; 2-step global mechanism for gas-phase combustion, Eddydissipation for turbulence-chemistry interaction; Kinetics/diffusion-limited char oxidation (into CO); DO for radiation; ………

Demo (2/5): Cases & sub‐models 

Gaseous Radiative Prop. Part-Rad. Inter. Purpose

case-1 Smith et al. (1982) WSGGM Not included case-1 vs. A: to conclude effects of therefined WSGGM on gas combustion;

case-2 vs. B: to conclude effects of therefined WSGGM on solid fuel combust.

case-2 Smith et al. (1982) WSGGM Included

case-A Refined WSGGM (via UDF) Not included

case-B Refined WSGGM (via UDF) Included

Page 11: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

19

222

220.0320.09440.34943.6992

N 2047.0SO 203.0)(OH 2.3353CO

O 1282.1 OH 0.4857SNOCH

g

Demo (3/5): Novel for BW release

▫ Wet combustion model (e.g., drying in FLUENT)

▫ Complicated particle model using FVM*

▫ NOVEL compromise for BW release

• Bound water (BW) in fuel released with volatiles

• Modified “lumped” volatiles to include BW content, with modified formulation enthalpy

• Modified latent heat of devolatilization to include evaporation heat

*: e.g., C. Yin, et al. (2010). “Co‐firing straw with coal in a swirl‐stabilized dual‐feed burner: modeling and experimental validation”. Bioresource Technology 2010; 101(11): 4169‐4178.

201, 2: Smith et al. WSGGM

A, B: the new WSGGM

Demo (4/5): Results

Particle‐radiation: NO Particle‐radiation: YES

Page 12: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

21

case00 case01 case10 case111500

1530

1560

1590

1620

1650

1

T gat

furn

ace

exit [

K]

Tg

at f

urna

ce e

xit [

K]

case-1 case-2 case-A case-B

1602.8

1550.4

1631.4

1550.6

case00 case01 case10 case11500

530

560

590

620

650

1

Hea

t flux

in f

urn

ace

[MW

]H

eat t

rans

fer

in f

urna

ce [

MW

]

case-1 case-2 case-A case-B

582.7

641.2

556.6

640.7

Smith et al. (1982) Refined WSGGM

Demo (5/5): Results

0

0.01

0.02

0.03

0.04

0.05

0.06

6 12 18 24 30 36 42 48

Mas

s fr

action o

f O

2,

Y O2

[-]

Height along the furnace, Z [m]

case-1 case-Acase-2 case-B

1100

1200

1300

1400

1500

1600

1700

1800

1900

6 12 18 24 30 36 42 48

Gas

tem

per

ature

, T g

[K]

Height along the furnace, Z [m]

case-1 case-A

case-2 case-B

22

Conclusions

• The new air‐fuel WSGGM is much more accurate & complete; can be used alone; applicable to both non‐gray and gray calculations.

• The new WSGGM makes distinct difference with the existing WSGGMs for gaseous fuel comb. processes.

• Such impacts are greatly compromised under solid‐fuel combustion scenario because of the important role of particle‐radiation interaction.

• The new air‐fuel WSGGM is expected to replace all the existing for better CFD in future !

Page 13: Aalborg Universitet A new air-fuel WSGGM for better utility ......1 A new air‐fuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation, design & optimization

23

Key references

C. Yin. “Refined weighted sum of gray gases model for air‐fuel combustion and its impacts”. Energy & Fuels 2013; 27(10): 6287‐94 (a)

C. Yin. “Nongragy‐gas effects in modeling of large‐scale oxy‐fuel combustion processes”. Energy & Fuels 2012; 26(6): 3349‐56.

C. Yin, L.C.R. Johansen, L. Rosendahl, S.K. Kær. “A new weighted sum of gray gases model applicable to CFD modeling of oxy‐fuel combustion: Derivation, validation and implementation”. Energy & Fuels 2010; 24(12): 6275‐82.

(a): an extended version of the ICOPE conference paper

24