Aaic Adc Casestudy Note

Embed Size (px)

Citation preview

  • 8/3/2019 Aaic Adc Casestudy Note

    1/37

    1Tai-Cheng Lee

    Spring 2006

    Analog-to-Digital ConverterCase Study

    2Tai-Cheng Lee

    Spring 2006

    Folding ADC Case Study

    1. An 80-MHz, 80-mW, 8-b CMOS Folding A/D Converter withDistributed Track-and-Hold Preprocessing

    A. G. W. Venes and R. J van de PlasschePage(s): 1846-1853, JSSC 1996 Dec

    2. An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    M-J Choe, B-S Song and K BacraniaPage(s): 184-194, JSSC 2001 Feb

    3. An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mmK. Bult and A BuchwaldPage(s): 1887-1895, JSSC 1997 Dec

  • 8/3/2019 Aaic Adc Casestudy Note

    2/37

  • 8/3/2019 Aaic Adc Casestudy Note

    3/37

    5Tai-Cheng Lee

    Spring 2006

    A Folding A/D with Distributed Track-and-Hold Preprocessing

    The design spec for each block:

    Multiple clock switchesSingle clock switchClock distribution

    No additional power

    dissipation apart of inputgain stages

    High power dissipation in

    buffer amplifier to ensurelow distortion

    Overall power dissipation

    8-bit accuracy divided by

    the gain in the input gain

    stages

    8-bit accuracyDynamic accuracy

    Settling

    Hold mode feedthrough

    Clock switch charge

    injection

    Linearity in 1/16 of theinput range of the A/D

    converter

    Linearity in entire inputrange (1.6Vpp) of A/D

    converter

    Linear region

    Distributed track-and-

    hold operation

    Single track-and-hold

    amplifier

    6Tai-Cheng Lee

    Spring 2006

    A Folding A/D with Distributed Track-and-Hold Preprocessing

    Reference ladder feedthrough:

    Equivalent circuit model to calculate the maximum allowableresistor

  • 8/3/2019 Aaic Adc Casestudy Note

    4/37

  • 8/3/2019 Aaic Adc Casestudy Note

    5/37

    9Tai-Cheng Lee

    Spring 2006

    A Folding A/D with Distributed Track-and-Hold Preprocessing

    Implementation of a folder signal:

    Active interpolation circuit:

    10Tai-Cheng Lee

    Spring 2006

    A Folding A/D with Distributed Track-and-Hold Preprocessing

    Differentialinterpolation circuit:

    Comparator:

  • 8/3/2019 Aaic Adc Casestudy Note

    6/37

    11Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    The concept of the two-stage and folding ADC:

    12Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Flash ADC:

  • 8/3/2019 Aaic Adc Casestudy Note

    7/37

    13Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Folding ADC:

    14Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Folding amplifier:

  • 8/3/2019 Aaic Adc Casestudy Note

    8/37

    15Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Conventionalfolding ADC:

    16Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Folder design: k=4and k=3

  • 8/3/2019 Aaic Adc Casestudy Note

    9/37

    17Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Pipeline folding ADC

    Timing

    18Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Top level block diagram

  • 8/3/2019 Aaic Adc Casestudy Note

    10/37

    19Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Second stage folder

    20Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    INL due to gain mismatch

  • 8/3/2019 Aaic Adc Casestudy Note

    11/37

    21Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    Effect of tail current sourcemismatch

    22Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    comparator design

  • 8/3/2019 Aaic Adc Casestudy Note

    12/37

    23Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    conventional digital error correction

    24Tai-Cheng Lee

    Spring 2006

    An 8-b 100-MSample/s CMOS Pipelined Folding ADC

    generic digital error correction

  • 8/3/2019 Aaic Adc Casestudy Note

    13/37

    25Tai-Cheng Lee

    Spring 2006

    An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2

    Conventional preamplifier and resistor-averaging preamplifier

    26Tai-Cheng Lee

    Spring 2006

    An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2

    First resistor averaging in:K.Kattmann and J.Barrow,A technique for reducing differentialnonlinearity errors in ash A/D converters, in ISSCC Dig. Tech. Papers,San Francisco, CA, Feb. 1991, pp. 170171.

    Effect of resistor averaging:

  • 8/3/2019 Aaic Adc Casestudy Note

    14/37

    27Tai-Cheng Lee

    Spring 2006

    An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2

    Improved resistor averaging:

    Transconductor stage:

    28Tai-Cheng Lee

    Spring 2006

    An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2

    Analysis of the effect of resistor averaging:

    Correlation between neighboring signal after averaging:

  • 8/3/2019 Aaic Adc Casestudy Note

    15/37

    29Tai-Cheng Lee

    Spring 2006

    An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2

    Simulated DNL and INL after resistor averaging:

    Example of 3X folding signal:

    30Tai-Cheng Lee

    Spring 2006

    An Embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2

    Understanding the pipeline folding signal:

    ADC floor plan

  • 8/3/2019 Aaic Adc Casestudy Note

    16/37

    31Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC

    1. A 15-b 1-Msample/s digitally self-calibrated pipeline ADCKaranicolas, A.N.; Hae-Seung Lee; Barcrania, K.L.Page(s): 1207-1215, JSSC 1993 Dec

    2. A single-ended 12-bit 20 Msample/s self-calibrating pipelineA/D converterOpris, I.E.; Lewicki, L.D.; Wong, B.C.Page(s): 1898-1903, JSSC 1998 Dec

    32Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- I

    Ideal pipeline ADC:

    Transfer characteristics:

  • 8/3/2019 Aaic Adc Casestudy Note

    17/37

    33Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- I

    nonideality of transfer curve:

    Gain is less than 2 per stage

    34Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- I

    Top level diagram of backward calibration:

    Residue plot for gain

  • 8/3/2019 Aaic Adc Casestudy Note

    18/37

    35Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- I

    Actual implementation of non-radix-2 ADC:

    36Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- II

    Over-range implementation:

    Residue plot:

  • 8/3/2019 Aaic Adc Casestudy Note

    19/37

    37Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- II

    12-bit ADC with 3 over-range stage:

    Code combine and requirement of over-range stage

    38Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- II

    Principle of digital error correction ADC and its implementation:

  • 8/3/2019 Aaic Adc Casestudy Note

    20/37

    39Tai-Cheng Lee

    Spring 2006

    Digitally Calibrated Pipeline ADC -- II

    Differential-to-single ended converter

    40Tai-Cheng Lee

    Spring 2006

    kT/C noise (I)

    RMS voltage for kT/C noise:

  • 8/3/2019 Aaic Adc Casestudy Note

    21/37

    41Tai-Cheng Lee

    Spring 2006

    kT/C noise (II)

    The bottom line for a switched-cap circuit for different capacitance

    42Tai-Cheng Lee

    Spring 2006

    kT/C Noise in Switched-Cap Circuit kT/C noise in SC circuit

  • 8/3/2019 Aaic Adc Casestudy Note

    22/37

    43Tai-Cheng Lee

    Spring 2006

    Noise in OP amp (I) Single-stage op amp

    44Tai-Cheng Lee

    Spring 2006

    Noise in OP amp (II) Two-stage op amp

  • 8/3/2019 Aaic Adc Casestudy Note

    23/37

    45Tai-Cheng Lee

    Spring 2006

    OP amp based SHA (I)

    Different OP amp SHA

    46Tai-Cheng Lee

    Spring 2006

    OP amp based SHA (II)

    How to pick the optimal sampling capacitor

  • 8/3/2019 Aaic Adc Casestudy Note

    24/37

    47Tai-Cheng Lee

    Spring 2006

    OP amp based SHA (III)

    An optimal samplingcapacitor can be obtained.

    48Tai-Cheng Lee

    Spring 2006

    OP amp based SHA (V)

    Other design considerations:(1) Gain error

    Does it matter?

    (2) Slew rate:

  • 8/3/2019 Aaic Adc Casestudy Note

    25/37

    49Tai-Cheng Lee

    Spring 2006

    OP amp based SHA (IV)

    Other design considerations:(3) switch on resistance:

    50Tai-Cheng Lee

    Spring 2006

    Multi-stage Offset Cancellation What is the offset voltage after cancellation?

  • 8/3/2019 Aaic Adc Casestudy Note

    26/37

    51Tai-Cheng Lee

    Spring 2006

    Auto-Zero Comparator Charge injection due to S1:

    52Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    ADC top level diagram:

  • 8/3/2019 Aaic Adc Casestudy Note

    27/37

    53Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    feedback factor and load capacitance for different resolution

    54Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    digital correction

  • 8/3/2019 Aaic Adc Casestudy Note

    28/37

    55Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    subtractor implementation: R-DAC and C-DAC

    56Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    The requirement of stage accuracy

  • 8/3/2019 Aaic Adc Casestudy Note

    29/37

    57Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    The requirement of stage accuracy

    58Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    The design algorithm of pipelined ADC:

  • 8/3/2019 Aaic Adc Casestudy Note

    30/37

    59Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    The power dissipation vs. sampling frequency for variousresolution ADCs:

    60Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    Different resolutions for each stage:

  • 8/3/2019 Aaic Adc Casestudy Note

    31/37

    61Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    Scaling for each stage:

    62Tai-Cheng Lee

    Spring 2006

    High-Speed Pipelined ADC

    Total power for scaling and non-scaling ADC:

  • 8/3/2019 Aaic Adc Casestudy Note

    32/37

    63Tai-Cheng Lee

    Spring 2006

    Low-Power Low-Voltage Pipelined ADC

    1.5 bits per stage:

    64Tai-Cheng Lee

    Spring 2006

    Low-Power Low-Voltage Pipelined ADC

    Digital error correction:

  • 8/3/2019 Aaic Adc Casestudy Note

    33/37

    65Tai-Cheng Lee

    Spring 2006

    Low-Power Low-Voltage Pipelined ADC

    First-stage SHA:

    66Tai-Cheng Lee

    Spring 2006

    Low-Power Low-Voltage Pipelined ADC

    Timing for pipeline ADC

  • 8/3/2019 Aaic Adc Casestudy Note

    34/37

    67Tai-Cheng Lee

    Spring 2006

    Dynamic Comparator

    A dynamic comparator with built-in threshold generator:

    68Tai-Cheng Lee

    Spring 2006

    Low-voltage OP

    A 3.3-Volt OP amp

  • 8/3/2019 Aaic Adc Casestudy Note

    35/37

    69Tai-Cheng Lee

    Spring 2006

    Low-voltage OP

    Output CMFB circuit

    70Tai-Cheng Lee

    Spring 2006

    Low Voltage Operation of SC Circuits

    CMOS switch

  • 8/3/2019 Aaic Adc Casestudy Note

    36/37

    71Tai-Cheng Lee

    Spring 2006

    Low Voltage Operation of SC Circuits

    Boosted circuit:

    72Tai-Cheng Lee

    Spring 2006

    Low Voltage Operation of SC Circuits

    Floating well to prevent latch up:

  • 8/3/2019 Aaic Adc Casestudy Note

    37/37

    73Tai-Cheng Lee

    Spring 2006

    Bias Circuits for OP amp

    The bias of cascode op:

    Clock Generator

    Clock generator and line up the edge: