52
A SURFACE MAGNETIC SURVEY of COSHOCTON COUNTY, OHIO A Thesis Presented in Partial Fulfillment of the Requirements for the Degree, Bachelor of Science by Rodney A. Sheets Jr The Department of Geology and Minerology Ohio State University Approved by Hallan C. Noltimier, Advisor Department of Geology and Mineralogy

A SURFACE MAGNETIC SURVEY - Ohio State University

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A SURFACE MAGNETIC SURVEY - Ohio State University

A SURFACE MAGNETIC SURVEY

of

COSHOCTON COUNTY, OHIO

A Thesis

Presented in Partial Fulfillment of the

Requirements for the Degree, Bachelor of Science

by

Rodney A. Sheets Jr •

The Department of Geology and Minerology

Ohio State University

Approved by

Hallan C. Noltimier, Advisor Department of Geology and Mineralogy

dittoe.1
Rectangle
dittoe.1
Text Box
HONORABLE MENTION 1984
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 2: A SURFACE MAGNETIC SURVEY - Ohio State University

ABSTRACT

A total field magnetometer survey of nine quadrangles in Coshocton County is presented. The survey area is bounded by 40.125 and 40.500 degrees latitude and -81.617 and -82.000 de­grees longitude. The anomaly field is derived from the total field values that are corrected for the IGRF and the diurnal fields. Corrected residual values are machine gridded at one half mile spacings, corresponding to 52 rows (latitude) and 43 columns (longitude). The grid node values were then machine contoured to produce anomaly maps of the area.

en; Two qualitative interpretations of the anomalies are giv-

1.) Observed variations are due to basement faulting, or 2.) Observed variations are due to susceptibility and remanence variations across lithologic·units •

ii

dittoe.1
Rectangle
Page 3: A SURFACE MAGNETIC SURVEY - Ohio State University

ACKNOWLEDGEMENTS

I wish to thank Dr. Hallan Noltimier, my advisor, for suggesting this project, and for his support and assistance throughout this project.

Very special thanks go to Eric Cherry, With his kind help, this project got underway, progressed, and concluded.

Financial support for field work was provided by a grant from the Friends of Orton Hall •

iii

d

i

k

dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
Page 4: A SURFACE MAGNETIC SURVEY - Ohio State University

TABLE OF CONTENTS

Abstract

Acknowledgements

List of Figures

List of Tables

1.0 INTRODUCTION

2.0 THEORETICAL BACKGROUND

2.1 Elements of the Main Field

2.2 Magnetic,Field---Variations

2.3 Rock Magnetism

3.0 GEOLOGICAL AND GEOPHYSICAL STUDIES

3.1 Surface Geology

3.2 Precambrian Geology

3.3·Geophysical,Studies

~4~-0 SURVEY PROCEDURE

4.1 Field Operations

4.1.1 Survey Technique

4.1.2 The Magnetometer

4.2 Reduction-of-Data

4.2.1 Diurnal Corrections

4.2.2 Total Field Corrections

iv

Page

ii

iii

vi

1

2

3

3

4

6

6

9

10

12

12

12

13

13

13

14

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Oval
dittoe.1
Oval
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Oval
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 5: A SURFACE MAGNETIC SURVEY - Ohio State University

Page

• 4.2.3 Grid System 14

5.0 RESULTS AND INTERPRETATION 20

5.1 Effects of Remanence on Interpretation 21

• 5.2 Interpretation 1-- Faulting 21

5.3 Interpretation 2-- Lateral Susceptibility and Remanence Variations 25

• 6.0 CONCLUSIONS AND RECOMMENDATIONS 25

REFERENCES 27

APPENDICES 29

• Appendix 1- Magnetometer Specifications 30

Appendix ll- Program Geomag 32

Appendix 111- Data Tables 38

• v

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 6: A SURFACE MAGNETIC SURVEY - Ohio State University

1.

2.

LIST OF FIGURES

Elements of the Main Field

Vector Representation of the Total Magnetization

3. Postulated Basement Fault Trend and

Page

5

5

Lithologic Boundary on State of Ohio Map 7

4. Precambrian Structure of Southeastern Ohio 9

5.

6.

7.

8.

9.

Diurnal Variation Curves for August 24, 1983

Field Station Location Map

Contour Map of Original Field Values

Contour Map of IGRF Values

Contour Map of Residual Values

10. Proposed Grenville Apparent Polar Wander Curve

11. Fault Interpretation for Anomalies

12. Total Field Profile of Horizontally Polarized Fault Block

15

16

17

18

19

22

23

22

13. Lateral Lithology Variation Interpretation 23

1.

2.

LIST OF TABLES

Well Logs to the Precambrian in Coshocton

Typical Susceptibilities and Polarizations for Sedimentary, Igneous, and Metamorphip

11

rocks 11

vi

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 7: A SURFACE MAGNETIC SURVEY - Ohio State University

1.0 INTRODUCTION

In eastern Ohio, little is known about local structure

and lithology of the Precambrian basement complex. The only

existing data are from sparse well control and recently com­

pleted aeromagnetic surveys. This surface magnetometer sur­

vey of Coshocton County, Ohio was undertaken for the purpose

of learning more about the local structure and lithology of

the basement.

This survey covered approximately 350 square miles, com­

pletely contained in Coshocton County, in east-central Ohio .

A rectangular region bounded by 40.125 and 40.500 degrees lat­

itude and -81.617 and -82.000 degrees longitude, was chosen

to accomodate the 320 survey points and to serve as a basis

for the gridding system used.

A grid spacing of one half mile was used. Previous aero­

magnetic surveys are gridded at one mile. Higher resolution

of the data is to be expected, due to the closer grid spacing

and the lower elevation.

After corrections for the diurnal variations were per­

formed, the total magnetic field at grid nodes was calculated.

The International Geomagnetic Reference Field (IGRF) was then

calculated at each survey point, and gridded at similiar spac­

ing, and the values were subtracted from the total field values.

The resulting residual values were interpreted qualitatively,

because of the complexity of the data. Most magnetic modelling

is variable and nonunique because it relies on many unknown

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 8: A SURFACE MAGNETIC SURVEY - Ohio State University

2

variables .

Two interpretations are presented:

1.) / Observed variations are due to basement fault­

ing, or

2.) Observed variations are due to susceptibility

and remanence contrasts between lithologic units.

2.0 THEORETICAL BACKGROUND

To better understand the concepts and definitions of mag­

netics and the magnetic field, a brief review is apprnpriate.

The nature of the Earth's magnetic field has been estab­

lished on the basis of world-wide measuements. The fie~d is

considered to be comprised of three components: (Nettleton,

1976)

1.) The main field comprises the largest proportion of

the magnetic field observed at the surface of the Earth.

This field arises due to convection currents in the liq­

uid iron core of the Earth and follows a slow, but pre­

dictable secular change. (i.e. 'the westward drift')

2.) The smaller diurnal field behaves more erratically

with time, but approximately follows a daily cycle. This

field is due to electromagnetic currents in the upper

atmospere and can be affected by magnetic storms, related

to sunspots.

3.) The anomaly field is coused by magnetic inhomogen­

eities in the crust •

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 9: A SURFACE MAGNETIC SURVEY - Ohio State University

3

To evaluate the anomaly field with respect to lithologic

changes in the crust, it must be separated from the effects

of the main and diurnal fields.

2.1 Elements of the Main Field

The main field of the Earth can be separated into sev­

eral components, each one defin~ng a specific part of the

field. F signifies the total intensity of the field, and

H, the horizontal component of the field, along the magnet­

ic meridian. The inclination or,magnetic dip, I, is the

angle between F and H, and the declination, D, is defined

as the angle between H and geographic North. F, D, and I

completely define the field at any point on the Earth's

surface. (Jacob, 1963) These elements are shown vector­

ally by Figure 1.

2.2 Magnetic Field Variations

As stated above, variations in the field due to sec­

ular changes are slow. Isolation of anomalies, though,

depend upon knowing what this field looks and acts like at

the time of the survey. For this purpose, an International

Geomagnetic Reference Field (IGRF) was adopted in 1965, to

establish a uniformity to the field. This reference field

is calculated assuming the Earth is a perfect sphere of mag­

netized material, which varies secularly and by locality.

Every five years, a new IGRF is published, which contains

coefficients for calculating the field's strength at any

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 10: A SURFACE MAGNETIC SURVEY - Ohio State University

4

place or time in the subsequent five years. The main mag­

netic field strength at the present time varies from 24,000

ganunas at some places along the equator, to 68,000 ganunas

at the poles. In my survey area, the field strength ave­

raged approximately 56,200 ganunas.

If the Earth's field were measured continuously over

a fixed point, it's intensity would change over time due

to solar and lunar effects on the ionosphere. Tne solar

effect is the larger of the two, and is seen when the sur­

vey is performed during the day. Determination of this

variation is essential to define the nature of the field

during a day's survey. Solar variations can reach up to

30 ganunas, whereas lunar variations are usually 2 to 3

ganunas.

Secular and diurnal variations are equally important

when determining the nature of local anomalies •

2.3 ,Rock Magnetism

The magnetic moment· of a rock body consists of two

principal components, the remanant moment (MR) and the in­

duced moment (MI) • The remanant moment is the primary

magnetization and is acquired by igneous and metamorphic

rocks during cooling. The induced moment is the magnet­

ization of the rocks in the present magnetic field.

The remanant moment is carried by the ferrimagnetic

minerals, magnetite and hematite, which may comprise one

to ten percent of the rock body. It's magnitude depends

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 11: A SURFACE MAGNETIC SURVEY - Ohio State University

Figure 1: Elements of the ·Main Field +Z

Figure 2:

Do•n

Vector Representa.tion Total Magnetizati~

of the M

I

North +)(

MR

5

East

M

GeCITlCqletlc Field

Total

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 12: A SURFACE MAGNETIC SURVEY - Ohio State University

6

on the relative amounts and grain size of the magnetic

phases. Remanence is acquired as the body cools through

the Curie temperature of the minerals (580 C-680 C) and

reflects the geomagnetic field at the time of cooling •

The induced moment reflects the magnetization of the

rock body in the present geomagnetic field. This moment

is directly related to the bulk magnetic susceptibility

(k) of the rock, and the geomagnetic field strength, H,

as given by the equation:

Mr = k*H

where k is the susceptibility in go.uss/oerstead and H is

the magnetic field strength in oerstead.

The susceptibility, k, is related to the amount of

iron in the rock, including both the ferrimagnetic oxides

and the ferromagnesium minerals.

Thus, the total magnetization, ~otal' is the vector

sum of the remanant moment (MR) and the induced moment,

(Mr), as shown by Figure 2.

3.0 GEOLOGICAL AND GEOPHYSICAL STUDIES

3.1 Surface Geology

The Tuscararus and Walhoding Rivers empty into the

Muskingum River valley, draining the survey area. Being

just South of the glacial advance in Ohio, Illinoian gla­

cial outwash fills the river basins and provides a ground­

water reservoir, used extensively by the growing industrial

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 13: A SURFACE MAGNETIC SURVEY - Ohio State University

• Figure 3:

7

-r I I I I I I. I I I I I I I I I I I .,

·I I I I I I I I ----------'T· _. .. _

! I t~ a

Lithologic Boundary (Lidiak, 1966)

_, - ..__,Postulated basement fault (Zeitz, 1966) .-------,

I eRegion structurally contoured : I (Figure 4) I 1 --------·

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 14: A SURFACE MAGNETIC SURVEY - Ohio State University

• 40°

8

PRECAMBRIAN STRUCTURE: SOUTHEASTERN OHIO

e1·

+1413 I -4463 • r

• I • I ,

J82f!J -49181

- -~°'!"'- ..... • - . --I

0 5 10 15 20

KEY

PRE£ WELL- 1100 -PERMIT NUM8ER ~8411-SUB-SEA PRE-e

- lf••tl

--- - - Area of Magnetic Survey

Scale In Miles

CONTOUR INTERVAL

---500ft.

---2500ft.

Figure 4: Modified after Rowan (1984)

40-

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 15: A SURFACE MAGNETIC SURVEY - Ohio State University

9

cities of Coshocton and West Lafayette .

Pennsylavanian rocks, of the Allegheny and Pottsville

groups, are predominately the surface rocks in the area,

with varying lithologies. Sandstones persist, with shales

and some limestones occurring, also. Just off the western

edge of the survey area, iron-rich sandstones occur (Lamborn,

1954) that could affect a magnetometer survey. No such

rocks are known to occur within the survey area. Coals

are strip-mined extensively in the South-cental and South­

eastern parts of the map area. Entrance into the mined

area was possible, but measurements were restricted to

proven map locations. Active mining areas were strictly

forbidden, and as a ~esult, gaps do exist in some parts

of the maps.

3.2 Precambrian Geology

e The precambrian rocks of Ohio are known only from sub-

surface well data. From this data, a petrologic boundary

is known to exist between older rhyolites and trachytes of

western Ohio, and younger granites, granite gneisses, and

monzonites of eastern Ohio. (Lidiak, et •. al. 1966) (See

Figure 3) East of this boundary, which is coincidental

with the Findlay Arch, a basement structural high, the pre­

cambrian surface dips to the east. Due to limited drill­

ing data, only a general structure map can be produced,

{See Figure 4) though several hundred feet of relief may

exist in the form of erosional remnants. (Janssens, 1966)

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 16: A SURFACE MAGNETIC SURVEY - Ohio State University

10

In my survey area, the depth to the basement is ap­

proximated at 6000 feet on the western boundary, and 7000

feet in the East, by three wells recently drilled into

the precambrian, Lithologies from these wells are shown

in Table 1.

3~3 Geophysical Studies

Few geophysical studies have been attempted in east­

ern Ohio. Regional and statewide aeromagnetometer surveys

have been done and a single gravimeter survey was done that

covered parts of my survey area •

The most significant study related to my work was a

regional aeromagnetometer survey, by Zeitz (1966), cover­

ing a continental strip between 38 and 41 degrees latitude,

which included my survey area. In his report, he mention­

ed the possibility of a basement fault through central

Coshocton County. The approximate trend of this proposed

fault is shown in Figure 3.

A state aeromagnetic anomaly map, soon to be published,

{von Frese, personal communication 1984) shows relatively

quiet anomalies in the county, but a significantly low an­

omaly field, just to the west of the county.

Rowan {personal communication 1984) recently completed

a gravimeter survey that included most of my map area. In

it, he found North-east, South-west trending lineations,

suspected to be of basement origin. Also, a gravity high

was seen in the northwest corner of the map area, that may

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 17: A SURFACE MAGNETIC SURVEY - Ohio State University

County

Coshocton

Permit ~ Number

2053

3462

4118

TABLE 1

Depth to Precambrian

(in feet below~. ·sea level)

-5900

-6680

-64;\.6

11

· Litholo~y

Quartz Monzonite

Pegmatite*, gneiss, hornblende gneiss

* Pegmatite believed to be derived from basal arkose

Polarization Mechanism

Sedimentary rocks:

DRM & PDRM, CRM

Igneous rocks;

TRM, CRM

Metamorphic rocks:

, TABLE 2*

Typical Polarization

Typical · Susceptibility _Anistropy

5%

(For sedimentary iron cores, these values may be increased by an order of magnitude or more)

lo-2 - lo-4 emu/cc

l0~3 - 10-4 emu/cc

* Taken from (Noltimier, 1984)

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 18: A SURFACE MAGNETIC SURVEY - Ohio State University

12

also be controlled by the basement •

No other significant geophysical studies were com­

pleted in the survey area, though several other studies

were completed in eastern Ohio, and not in the map area •

4.0 SURVEY PROCEDURE

This section takes up first, the general field procedures

performed during my survey. The measurements necessarily in­

clude unwanted magnetic effects (the secular and diurnal field

disturbances) and methods for their determination and removal

are covered in the second part of this section •

4.1 Field Operations

4.1.1 Survey Technique

A major concern in the actual surface magnetic sur­

vey is the effect of diurnal variations. To better un­

derstand the nature of these variations, I used a 'loop­

ing' technique that required returning to a base station,

or to a field station designated as a base, at regular

time intervals. On the average, each loop consisted of

between 8 and 10 field stations, which were in close

proximity to the base station. At the end of each day,

a diurnal variation curve was plotted, with field strength

of the base and time as they and x axes, respectively.

Most field station locations were subject to change,

due to magnetic constraints. The stations were chosen

beforehand, by road intersections and benchmarks, but

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 19: A SURFACE MAGNETIC SURVEY - Ohio State University

13

iron objects and electric wires, which affect the nor­

mal field, were often associated with these locations.

Often, an offset of up to 200 yards was needed to eli­

minate their effects. Because of this, no measurements

were made in the two major towns of Coshocton and West

Lafayette.

4.1.2 The Magnetometer

For this surface magnetic survey, a Barringer Re­

search Proton Precession Magnetometer was used, to meas­

ure the Earth's total field. (See Appendix l) This mag­

netometer operates on the principal that protons will

align themselves either parallel or perpindicular to any

external magnetic field. When the external field is re­

moved, the protons will return to their original direc­

tion (the Earth's field), by precessing around that field

at a discrete angular velocity. To determine the total

field, the frequency of the induced voltage, produced by

this precession, is measured by counting the number of

e cycles of the precessional voltage and timing these cyc­

les. (Dobrin, 1976)

4.2.1 Diurnal Corrections

As stated above, a primary concern in magnetic sur­

veys is the effect of diurnal variations. The nature of

this diurnal field was established through the 'looping'

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 20: A SURFACE MAGNETIC SURVEY - Ohio State University

14

method, as explained above, and for each day, a diurnal

variation curve was plotted. (See Figure 5) Every day's

'Values were added (or subtracted) to a normal value of

56,200 gammas, the average low value of the diurnal

curves. This reduced the survey readings to a common

reference point and corrected for the diurnal variation.

4.2.2 Total Field Correction

For this survey, a computer algorithm was obtained

to calculate the Internat~onal Geomagnetic Reference

Field (IGRF) for each station location. (See Appendix 2

for program listing) The algorithm uses the 1980 IGRF

coefficients and calculates the reference field at each

station location, defined by latitude and longitude. A

slight modification in the program yields the original

field value, as corrected for diurnal variation, the IGRF

value that corresponds to it, and residual value obtained

by subtraction of the IGRF from the original value. Dec­

linations and inclinations of each location are also com­

puted •

4.2.3 Grid System

A rectangular grid, bounded by 40.125 and 40.500

degrees latitude and ~al.617 and ~a2.ooo degrees long­

itude, was placed over the original field values, the

IGRF values, and the residual values. Fifty-two rows

(latitude) and forty-three columns (longitude) resulted

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 21: A SURFACE MAGNETIC SURVEY - Ohio State University

• 15

FI ELD STRENGTH

• ( ~ 0-W\w.o.S)

~ ~ .cf t3ASE(+) ~ ..,, "' !'I : !'.\ ~ !'l ~ ~ ~ :;- '1' ~ .J ~ c:6 N

- ~ "' 0 \It : .p... -,---~ __ _,__ _____ _..___ ______ ....__ __ _.,_. ' 0

• ~ \

\

• \ \ '\,

• F; 9ure S: D1 tir-1\0J ~ \

Va-v-1a..+10Y\ Cu.rv~s

for- A~u.s+ 24, l'!S3 \

+-• j!J s:>

• c "" ~ "' ~ ~ ~ .t;

~ .... ... .,

.,J ,,a Uo\ "" w

""' C> 0 ..,,. ~ ~ "" 0 "' 0 "' ~ "' 0

I OF BENC '-\ MAt.\<. 74 b (~) ( I I ! ! I I

vt '/:! ~ ~ ~ ~ "" ,... ... - - ~ ~ ~ a di ~ ~ ~ ~ e 0 •

() i::- INTER SE.CT IDN eo3 (A)

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 22: A SURFACE MAGNETIC SURVEY - Ohio State University

• 40 .425 ...

40.350 ...

• 40 .275 ...

• 40 .200 ....

+ ....

+

+ t +

+ ......

+ + +

+ ·+ + + ..

+ ~ ...

+• ++ +

+

+

• + +

... + +

+ +

+ + + +

+

+

+

+

+

+ + +

+ +

+ +

+ + + + • +

+ + + + + + ....

+ ++ + +

•+ + • ••

+ •• •• + +

++ •• : • + +

+

+

• +

+ + + + + +

+ +

•• + +

+ ... + ... + +

+ + ' +•. :· •••• +

+

+

+ + + +

+ + +

+ • ...

•• +

+

+ •+ + • +

+ • :b+ I + ...

++ +

+ + ... ... ....... ... +

+

+

+ +

+

++

+ + + + •++

+ +

+

+

•• +

+

+

... +

+ +

+

+

t

16

• + +

+ •++

+

+

+ ++

+ ...

•• +

+ ...

+

+

•+ +

+ + +

+ + . + + + • + ... + .... .. · . ... +

+ + +

'

+

...

+ + •

+

+

......

+ ...

+ + + . -81 .800

.... +

++ + ..

+ + +

+

+ + ... .

+ ++

-81 .700 '

.

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 23: A SURFACE MAGNETIC SURVEY - Ohio State University

40.425

40 .350

40.275

40 .200

40 .125 -82.000 -81 .900 -81 .800 -s-1. 700

Figure 7: Contour Map of Original Field Values (CI= 20 gammas)

17

0 00

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 24: A SURFACE MAGNETIC SURVEY - Ohio State University

40. 425

40. 350

40.275

4C: .2'.~::: -

-81 .900 -81 .800

Figure 8: Contour Map of IGRF values (CI= 20 garrnnas)

18

-81 • 700

0 200

0 000 00

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Rectangle
Page 25: A SURFACE MAGNETIC SURVEY - Ohio State University

40.425

40 . .350

40.275

40 .200

40 ·~~~.ooo -B1 .900 -81 .800 -81 . 700

Figure 9: Contour Map of Residual Values (CI= 20 gammas)

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 26: A SURFACE MAGNETIC SURVEY - Ohio State University

20

in a grid spacing of one half mile. The grid nodes

were calculated using a nearest eight neighbor approx­

imation, with one over the distance to the points, as

the weighting parameter. (Surface II Graphics, 1976)

The grid points were machine contoured with Bessel

function smoothing.

The original survey point locations are shown in

Figure 6, with the contour maps of the original total

field values, the IGRF field values, and the residual

values shown in Figures 7,8, and 9, respectively.

Block diagrams of each set of values are shown in plates

1,2, 'and 3, respectively.

5.0 RESULTS AND INTERPRETATION

Residual values were obtained by subtracting the IGRF

values from the corrected field values. These residuals are

shown in Appendix 3. The values were gridded and contoured

(as above) to obtain the anomaly map in Figure 9.

Potential field data (gravity and magnetics) is affected

by many variables whose parameters are not always known. In

magnetic interpretation, one interprets a situation as if it

were geologically simple, to control variables that are un­

known. Many times, a situation can be resolved using differ­

ent interpretations. Because of this nonnniqueness of inter­

preting anomalies, a complex area, such as this one, can be

interpreted in many ways, which may be equally correct.

Before interpretation of the anomalies, a background of

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 27: A SURFACE MAGNETIC SURVEY - Ohio State University

21

remanence effects is given, to serve as a basis for the in­

terpretation. Because of the magnetic complexity of the reg­

ion, two qualitative interpretations are presented:

1.) Observed variations are due to basement faulting, or

2.) Observed variations are due to susceptibility and

remanence contrasts between lithologic units.

5.1 Effects of Remanence on Interpretation

The thick sedimentary cover in eastern Ohio is trans­

parent in magnetics, due to susceptibility and remanence

differences between the sediments and the igneous or meta­

morphic basement rocks. The total magnetic field is whole­

ly controlled by structural events in the basement, or by

the basement rocks themselves. Typical polarizations and

susceptibilities, shown in Table 2, indicate that sediments

are virtually nonexistent, magnetically speaking.

The precarnbrian rocks of eastern Ohio are known to be

of the Grenville Province, whose apparent polar wander curve

(APW) indicates that it was at, or close to, the equator. at

the time of its formation, one billion years ago. (See Fig­

ure 10) This information suggests that the remanant polar­

ization of the basement in my survey area is approximately

East-West. This polarization will accentuate anomalies

associated with thin slabs (faults) in the basement, and

with changes. of .. lithology, across the basement.

5.2 Interpretation 1-- Faulting

Upon inspection of the anomaly map (Figure 9), a pair

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 28: A SURFACE MAGNETIC SURVEY - Ohio State University

22

Figure 10: Proposed Grenville Apparent Polar Wander Curve (Berger, et. al. 1976)

W E

,. :~ )"

~

> "

)I. .. "' .It

Figure 12: Total Field Profile of Horizontally --polarized Fault Block

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 29: A SURFACE MAGNETIC SURVEY - Ohio State University

'! - -0

Low

1

--..... "

' ' j)

IJ \

.. \p .·· ;/ CJ

0 -~g Low

tD

+ (Gneiss)

I

I

+ (? Gra..t\·,te)

23

Figure 11: Fault,Inter-. pr eta ti on for Anomalies

(Solid lines represent lineations interp. by faults--dashed refer to anomaly· changes that may be due to faults)

Figure 13~ Lateral Lith­. ology--..Vari~tion -...Interpretation

(Solid lines represent lineations interp. by lithological boundaries­Arrows point to lithology of lower susceptibility)

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Line
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Oval
dittoe.1
Oval
dittoe.1
Rectangle
dittoe.1
Oval
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Rectangle
Page 30: A SURFACE MAGNETIC SURVEY - Ohio State University

24

of lineations is seen; one that trends northeast-south­

west (NE-SW) and a second that trends northwest-south-

east (NW-SE) • (See Figure 11) Associated with the first,

and most prominent, lineation are small negative and pos­

itive anomalies of up to 2 mile in diameter. As they are

controlled by 3 or more data points, it is unlikely they

are spurious anomalies. Their position along the lineation

leads me to believe that they could be a result of fault­

ing and subsequent remineralization or alteration of mag­

netic minerals. In a paper by Henkel and Guzman (1977),

the oxidation of magnetite to hematite along fracture

zones was associated with local magnetic minima. This is

possibly applicable to this situation.

Upon observation of the NE-SW lineation, one sees a

general decrease in anomaly values from East to West, of

about 100 gammas. The NW-SE lineation exhibits a decrease

of a similiar amount, from West to East. A horizontally

polarized fault block exhibits anomalies that could be

assimilated to this situation. (See Figure 12) A high

anomaly field is associated with,the negative pole, or

the eastern edge of the block. A low anomaly field is

coincident with the positive pole, or the western edge of

the block. Figure 11 shows the general structure that

could produce the anomalies seen in my survey area. The

faults are drawn essentially vertical to produce sufficient

relief.

Page 31: A SURFACE MAGNETIC SURVEY - Ohio State University

25

5. 3 Interpretation 2-- Lateral Susceptib:ili:ty,and, Remanence

Variations

Changes in lithology which give rise to lateral con­

trasts in susceptibility show up in the magnetic contours

more readily than topographic features on the basement.

(Dobrin, 1976)

In this survey area, the magnetic contours produced

can be interpreted as lateral variation of lithology; herice,

susceptibility. The three well logs in the area indicate

that a noticeable change of lithology occurs. (See Table 1)

In the western part 1 of the survey area, a quartz monzonite

basement exists, and in the northeast a gneissic one. These

two different lithologies may indicate a significant change

in susceptibility, which will cause a change in the charact­

er of anomalies produced.

The lineations described above, may just as well be in­

terpreted as a contact between basement rocks of differing

lithologies and susceptibilities. In Figure 13, possible

lithologic regions are shown that may account for the anom­

aly lineations and the change in appearance of the anomaly

fields.

6. 0 CONCLUSIONS AND· RECOMMENDAT·IONS

The magnetic anomaly map of Coshocton County, Ohio is com­

plicated. Two qualitative interpretations of the area are:

1.) Observed variations are due to basement faulting, or

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
Page 32: A SURFACE MAGNETIC SURVEY - Ohio State University

26

2.) Observed variations are due to susceptibility and

remanence contrasts between lithologic units.

Further studies could better determine the nature of the

body producing the anomalies. Three further analyses of the

data that could increase the amount of processable information

are:

1.) Reduction to the Pole

2.) Frequency Filtering

3.) Upward Continuation

Reduction to the pole procedures makes it possible to

determine, from the observed total field, the position and

depth of the pole that has a magnetic effect equivalent to

that of an extended source with inclined magnetization.

(Dobrin, 1976) This technique involves separating the field

into its symmetric and antisymmetric parts and can be imple­

mented through the use of algorithms written just for this

purpose.

Frequency filtering and upward continuation both re9ult in

smoothing of the resulti.ng magnetic contours. Upward contin­

uation is sometimes used to simplify the appearance of magnetic

maps, by suppressing local features. Frequency filtering re­

moves undesired signals (noise) from the area, leaving primary

frequencies, which are important in interpreting. These are

also easily implemented by computer programs.

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 33: A SURFACE MAGNETIC SURVEY - Ohio State University

27

REFERENCES

Barringer Research Limited, Operation Manual, Ground Magnet­ometer Model GM-122, Toronto, Canada, 10 pp.

Berger, G. w., York, D. and Dunlop, D. J., 1979, Calibration of Grenvillian paleopoles by 4UA/39Ar dating. Nature 277, pp. 46-48.

Dobrin, M., 1976, Geophysical Prospecting, New York, McGraw­Hill, pp. 509-512.

Henkel, H., Guzman, M., Magnetic features of fracture zones. Geoexploration 15, 1977, pp. 173-181.

Jacob, J. A., "The Earth's Core and Geomagnetism", The Mac­millan Company, pp. 45-48, 1963.

Janssens, A., 1973, Stratigraphy of the Cambrian and lower Ordovician rocks of Ohio. Ohio Geel. Surv. Bull. 64, pp. 197.

Landorn, R. A., Geology of Coshocton County. Geel. Soc. of Amer. Bull., 1954, pp. 10-12.

Lidiak, E.G., Marvin, R. F., Thomas, H. H., and Bass, M. N., 1966, Geochronology of the Midcontinent Region, United States: No. 4 eastern area. Jour. of Geophy. Res., v. 71, no. 12, pp. 1427-1448.

Nettleton, L. L., "Geophysical Prospecting for Oil", McGraw­Hill. New York, 1976.

Noltimier, H. C., Paleomagnetism Seminar notes: G&M 820, The Ohio State University, 1984.

Rowan, D. J., Personal Communication- Gravity Survey of Cosh­octon County, The Ohio State University, 1984.

Surface II Graphics, Manual, Kansas State Geological Survey, 1976, 250 pp.

von Frese, R. R. B., Personal Communication-Future publication of Ohio aeromagnetic maps by O.G.s and u.s.G.s., The Ohio State University, 1984

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 34: A SURFACE MAGNETIC SURVEY - Ohio State University

28

Zeitz, I., King, E. R., Geddes, w., and Lidiak, E.G., 1966, Crustal Study of a continental strip from the Atlantic Ocean to the Rocky Mountains. Geol. Soc. Amer. Bull., v. 77, no. 12, pp. 1045-1048.

dittoe.1
Rectangle
dittoe.1
Rectangle
Page 35: A SURFACE MAGNETIC SURVEY - Ohio State University

29

APPENDICES

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 36: A SURFACE MAGNETIC SURVEY - Ohio State University

30

APPENDIX 1: MAGNETOMETER SPECIFICATIONS

dittoe.1
Rectangle
Page 37: A SURFACE MAGNETIC SURVEY - Ohio State University

SPEC I Ff CATIONS

Range:

Accuracy:

Sensitivity:

Gradient Tolerance:

P<Mer:

P<.Mer Consumption:

Polarizing Power:

Number of Readings with 1 Battery Set:

Frequency of Readings-:

Controls:

• Output:

Indicators:

31

20,000 to 99,999 in 12 ranges

± 1 y through operating temperature range

1 y

600 y/ft.

12 "O" ce 1 Js

< 50 Joules (Wsec) per reading

0.8 ~@ 13.5 V for 1.5 sec. (3 second cycle}

0.8 A @ 13.5 V for 3 sec. (6 second cycle}

2,000 - 10,000 depending on type of batteries

1 every 3 seconds 1 every 6 seconds

Pushbutton switch Range Selection switch - Slide switch for 3 and 6 sec. located on P/C Board

5 digit incandescent filament readout

LED point Lock Indicator - last three digits of the display blanked off when phaselock not achieved Segment Function Indicator - all segments light up to permit visual inspection of the display function

..

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 38: A SURFACE MAGNETIC SURVEY - Ohio State University

APPENDIX ~: PROGRAM GEOMAG

with

1980 IGRF coefficients

32

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 39: A SURFACE MAGNETIC SURVEY - Ohio State University

1. 2. 3. 4. 5. 6. 7. 8. 9.

10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59.

// JOB /*JOBPARM LINES=2000 // EXEC PLOTV //GO.SOURCE DD * c

33

c c c c c c c

THIS PROGRAM CALCULATES THE IGRF FIELD AT ANY POINT, USING THE MOST RECENT IGRF COEFFICIENTS (1980>. IT ALSO CALCULATES THE DIFFERENCE BETWEEN THE MEASURED FIELD AND THE IGRF <DIFF> AND THE DECLINATION CDEC> AND INCLINATION CINC> OF THE FIELD AT THE POINT.

c c

IMPLICIT REAL*BCA-H,O-Z> REAL*8 INCC50>,DECC50) ELV=0 LL= 1 CALL FIELDG C0.,0.,0.,0.,18,LL,Ql,Q2,Q.3,Q4) DO 10 I= 1 , 322 READ (5,90> YEAR,APHl,ATHETA,Ft CALL FIELDG <ATHETA,APHI,ELV,YEAR,50,LL,X,Y,Z,FF> H=DSQRTCX**2+Y**2> INCCJ>=DATAN<Z,H> DECCJ>=DATANCY,X> PI=4.00*ATAN<t.00)/180.00 INC< J) =INC< J) /PI DECCJ>=DECCJ)/PI DIFF=Ft-FF WRITE <6,91) YEAR,APHI,ATHETA,Fl,FF,DIFF,INC<J>,DEC<J>

10 CONTINUE 90 FORMAT <2X,F7.2,1X,F8.4,2X,F7.4,2X,F7.1) 91 FORMAT <2X,F7.2,1X,F8.4,2X,F7.4,3C2X,F7.1),2(5X,F7.4>>

STOP END

SUBROUTINE FIELDG <DLAT,DLONG,ALT,TM,NMX,L,X,Y,Z,F>

c *************************************************************** C FOR DOCUMENTATION OF THIS SUBROUTINE AND SUBROUTINE FIELD SEE C NATIONAL SPACE SCIENCE DATA CENTER*S PUBLICATION C **COMPUTATION OF THE MAIN GEOMAGNETIC FIELD C FROM SPHERICAL HARMONIC EXPANSIONS** C DATA USERS' NOTE, NSSDC 68-11, MAY 1968 C GODDARD SPACE FLIGHT CENTER, GREENBELT, MD. c *************************************************************** c C DLAT ** LATITUDE IN DEGREES POSITIVE NORTH C DLONG ** LONGITUDE IN DEGREES POSITIVE EAST C ALT ** ELEVATION IN KM <POSITIVE ABOVE, NEGATIVE BELOW C EARTH'S SURFACE> C TM ** EPOCH IN YEARS C NMX ** SET TO INTEGER GREATER THAN DEGREE OF EXPANSION C L ** SET TO 1 ON INITIAL DUMMY CALL, SET TO 0 ON SUBSEQUENT C CALLS c C SUBROUTINE RETURNS GEOMAGNETIC FIELD DIRECTIONS <X,Y,Z>, POSI-C TIVE NORTH, EAST AND DOWN, RESPECTIVELY, AND MAGNITUDE OF TOTAL C FIELD, F---ALL VALUES ARE IN GAMMAS c c

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 40: A SURFACE MAGNETIC SURVEY - Ohio State University

60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99.

100. UH. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119.

c c

c

EQUIVALENCE <SHMITC1,1>,TGC1,1>> COMMON /NASA/ TG< 18, 18) COMMON /FLDCOM/ ST,CT,SPH,CPH,R,NMAX,BT,BP,BR,B

34

DIMENSION GC18,18), GTC18,18), SHMITC18,18), AIDC11), GTTC18,18) DATA A/0./

TLAST=0.0

IFCA.EQ.6378.16) IF<L> 210,100,110

A=6378. 16 FLAT=l.-1./298.25 A2=A**2 A4=A**4 B2=<A*FLAT>**2 A2B2=A2*<1.-FLA1'**2> A4B4=A4*Cl.-FLAT**4> IF CL> 160,160,110

100 IF <TM-TLAST> 190,210,190 110 READ <3,260) J,K,TZERO,CAIDCI>,I=l,11)

L=0 WRITE (6,270) J,K,TZERO,<AID<I>,I=l,11) MAXN=0 TE.MP=0.

120 READ <3,280> N,M,GNM,HNM,GTNM,HTNM,GTTNM,HTTNM IF <N.LE.0> GO TO 130 MAXN=<MAX0<N,MAXN>> GCN,M>=GNM GTCN,M>=GTNM GTTCN,M>=GTTNM TE.MP=AMAXl<TE.MP,ABSCGTNM>> IF CM.EQ.l) GO TO 120 GC M- 1 , N> = HNM GT< M-1, N> =HTNM GTT<M-1,N>=HTTNM GO TO 120

130 WRITE <6,290> DO 150 N=2,MAXN DO 150 M=l,N

MI=M-1 IF <M.EQ.l) GO TO 140 WRITE < 6, 300) N,M, G< N, M> ,GCMI, N>, GTC N ,M> ,GTC111 ,1'0, GTTCN ,M> ,GTTC

1 Ml ,N> GO TO 150

140 WRITE C6,310) N,M,GCN,M>,GTCN,M>,GTT<N,M> 150 CONTINUE

WRITE C6,320> IF <TE.MP.EQ.0.) L=-1

160 IF CK.NE.0> GO TO 190 SHMIT< 1, 1) =-1. DO 170 N=2,MAXN

SHMIT<N,1>=SHMITCN-1,l)*FLOATC2*N-3)/FLOATCN-1> SHMIT< 1,N> =0. JJ=2

DO 170 M=2,N SHMIT<N,M>=SHMITCN,M-l>*SQRT<FLOATCCN-M+l)*JJ)/FLOATCN+M-2>> SHMIT<M-1,N>=SHMITCN,M>

170 JJ=l DO 180 N=2,MAXN DO 180 M=l,N

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 41: A SURFACE MAGNETIC SURVEY - Ohio State University

35

120. G< N, l'I> =G< N, n> *SHPIIT< N, n> 121. GT<N,M>=GT<N,l'l>*SllMITCN,n> 122. GTTCN,M>=GTT<N,M>*SllMITCN,n> 123. IF CM.EQ.1) GO TO 180 124. G(M-1,N>=G<M-1,N>*SllMIT<M-1,N> 125. GT<M-1,N>=GT<M-1,N>*SllMIT<M-1,N) 126. GTT<M-1,N>=GTT<M-1,N>*SllMIT<M-1,N> 127. 180 CONTINUE 128. 190 T=TM-TZERO 129. DO 200 N=l,MAXN 130. DO 200 M= 1,N 131. TG<N,M>=G<N,M>+T*CGT<N,n>+GTTCN,M>*T> 132. IF <M.EQ.1) GO TO 200 133. TG<M-1,N>=G<M-1,N>+T*<GT<M-1,N>+GTT<M-1,N)*T> 134. 200 CONTINUE 135. TLAST=TM 136. 210 DLATR=DLAT/57.2957795 137. SINLA=SIN<DLATR> 138. RLONG=DLONG/57.2957795 139. CPH=COS<RLONG> 140. SPH=SIN<RLONG> 141. IF (J.EQ.0) GO TO 220 142. R=ALT+6371.0 143. CT=SINLA 144. GO TO 230 145. 220 SINLA2=SINLA**2 146. COSLA2=1.-SINLA2 147. DEN2=A2-A2B2*SINLA2 148. DEN=SQRTCDEN2> 149. FAC=C<<ALT*DEN>+A2)/(CALT*DEN>+B2>>**2 150. CT=SINLA/SQRTCFAC*COSLA2+SINLA2> 151. R=SQRTCALT*<ALT+2.*DEN>+<A4-A4B4*SINLA2)/DEN2> 152. 230 ST=SQRT(l.-CT**2> 153. NMAX=MIN0CNMX,MAXN> 154. c 155. CALL FIELD 156. c 157. Y=BP 158. F=B 159. IF (J) 240,250,240 160. 240 X=-BT 161. Z=-BR 162. RETURN 163. c 164. C TRANSFORMS FIELD TO GEODETIC DIRECTIONS 165. c 166. 250 SIND=SINLA*ST-SQRT<COSLA2>*CT 167. COSD=SQRT(l.0-SIND**2> 168. X=-BT*COSD-BR*SIND 169. Z=BT*SIND-BR*COSD 170. RETURN 171. c 172. 260 FORMAT <2Il,1X,F6.l,10A6,A3> 173. 270 FORMAT <213,5X,6HEPOCH ,F7.l,5Xl0A6,A3> 174. 280 FORMAT C213,6Fll.4) 175. 290 FORMAT C6H0 N M,6X,1HG,10X,1HH,9X,2HGT,9X,2HHT,8X,3HGTT8X,3HHTT// 176. l> 177. 300 FORMAT C213,6Fll.4> 178. 310 FORMAT C213,Fll.4, 11X,Fll.4, 11XF11.4> 179. 320 FORMAT (///)

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 42: A SURFACE MAGNETIC SURVEY - Ohio State University

36

180. c 181. END 182. SUBROUTINE FIELD 183. COMMON /NASA/ GC 18. 18) 184. COMMON /FLDCOM/ ST.CT.SPH,CPH,R,NMAX,BT,BP,BR,B 185. DIMENSION P<18,18>. DP<18,18), CONST<lB.18>, SP<l8>, CP<18), FN<l8 186. 1) , FM< 18) 187. DATA P<l,1)/0,/ 188. IF <P<l,l).EQ.1.0) GO TO 120 189. PC 1, 1) = 1. 190. DP<l,1)=0. 19 1 . SP C 1) = 0. 192. CPCl)=l. 193. DO 110 N=2,18 194. FN<N>=N 195. DO 110 M= 1 , N 196. FM< M> =M-1 197. 110 CONSTCN,M>=FLOAT<<N-2)**2-<M-1)**2)/FLOAT<<2*N-3)*<2*N-5)) 198. 120 SPC2)=SPH 199. CP<2>=CPH 200. DO 130 M=3,NMAX 201. SP<M>=SP<2>*CP<M-l>+CP<2>*SP<M-l) 202. 130 CP<M>=CP<2>*CP<M-1>-SP<2>*SP<M-l) 203. AOR=6371.0/R 204. AR=AOR**2 205. BT=0. 206. BP=0. 207. BR=0. 208. DO 190 N=2,NMAX 209. AR=AOR*AR 210. DO 190 M=l,N 211. IF CN-M> 150.140,150 212. 140 PCN,N>=ST*PCN-1,N-l> 213. DPCN,N>=ST*DP<N-1,N-l>+CT*P<N-1.N-1> 214. GO TO 160 215. 150 PCN,M>=CT*PCN-1,M>-CONSTCN,M>*P<N-2,M> 216. DPCN,M>=CT*DPCN-l,M>-ST*P<N-l,M>-CONST<N.M>*DP<N-2,M> 217. 160 PAR=PCN,M>*AR 218. IF <M.EQ.l) GO TO 170 219. TEI1P=GCN,M>*CP<M>+G<M-l,N>*SP<M> 220. BP=BP-< GC N, M> *SP< M>-G< M-1, N> *CP< M> >*FMC M) *PAR 221. GO TO 180 222. 170 TEI1P=G< N, M> *CP< M> 223. BP=BP-CGCN,M>*SPCM>>*FM<M>*PAR 224. 180 BT=BT+TEMP*DPCN,M>*AR 225. 190 BR=BR-TEMP*FN<N>*PAR 226. BP=BP/ST 227. B=SQRTCBT*BT+BP*BP+BR*BR> 228. RETURN 229. c 230. END

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 43: A SURFACE MAGNETIC SURVEY - Ohio State University

' 8 8 N M

EPOCH 1980. 0 G H

2 1-29988.0000 2 2 -1957.0~00· 5606.0000 3 1 - 1997·. 0000 3 2 3028.0000 -2129.0000 3 3 1662.0000 -199.0000 4 l 1279.0.000 4 2 -2181 • 0000 -335.80G0 4 3 1251.0000 271.0000 4 4 833.0000 -252.0G00 .. 5 1 938.0000 5 2 783.0009 212.8000 .5 3 398.0000 -257.0000 5 4 . -419.0000 53.0000 5 5 199.G000 -298.0000 6 1 -219.0000 6 2 357.0000 46.0000 6 3 261.0000 149.0000 6 4 -74.0000 -150.00®0 6 5 -162.0000 -78.0000 6 6 -~8.00®0 92.0000 7 1 49.0000 7 2 65.0000 -15.0000 7 3 42.0000 93.0000 7 4 -192.0000 71.0®00 7 5 4.0G00 -43.()000 7 6 14.0®00 -2.0®®0 7 7 -1€>3.0000 17.0000 8 1 70.0®00 8 2 -59.0009 -83.0000 8 3 2.0000 -28.0000 8 4 20.0000 -5.0000 8 5 -13.00®0 16.0000 8 .. ,6 1.0000 18.0000 a· 7 11.0000 -23.0@00 8 8 -2.00®0 -10.0000 9 1 20.0000 9 2 7.GGGG 7.GG00 9 3 1.0000 -18.0000 9 4 -11.0®®0 4.0000 9 5 -7.0000 -22.00®@ 9 6 4.GG00 9.0000 9 7 3.G0~0 16.0®®0 9 8 7.0000 -13.0000 9 9 -1.0000 -15.0000

10 1 6.0000 10 2 11.0000 -21.0000 10 3 2.0000 16.0000 10 4 -12.0@00 9.0000 10 5 9.0009 -5.0©00 rn 6 -3.0G®0 -7.0000 rn 7 -1.0®®0 9.0GG0 10 8 7.0000 rn.0000 10 9 1.000~ -6.0009 10 rn -5.0000 2.0000 11 1 -3.0000 11 2 -4.00®9 1.0000 11 3 2.0()00 1.0000 11 4 -5.0000 2.0000 11 5 -2.0000 5.0~@0 11 6 5.0000 -4.GGGO 11 7 3.G©00 -1.0090 11 8 1. 0000 -2.0@00 11 9 2.®G0® 4.0000 11 lG 3.0~00 -1.0000 11 11 -5.0000 -6.0000

GT

22.4008 11.3008

-18.3000 3.2800 7.0000 0.0

-6.5000 -8.7000

1.0000 : ·. -1.4000

-1.4000 -8.2000 -1.8000 -5.0000 1.50~0 0.4000

-0.8000 -3.3080

1.3000 1.4000 0.4800 0.0 3.-4000 0.8000 8.8060 8.3000

-8. 1000 -1.0000 -0.8000

0.4e00 0.5000 1.6000 e. 1000 8. 1000 0.0 0.8000

-0.2000 -0.3000 0.3000

-0.8000 -0.2000

0.7000 -0.3000

1.2000 e.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19 BT

-15.9008

-12.7808 -25.2000

8.2008 2.7000

-7.9000

4.6808 1.6000 2.9008 8.4000

1.8008 -8.4800 8.0 1.4000 2. 1000

-8.5000 -l.4000 e.e

-1.6000 8.5008 0.0

-0.4000 0.4000 0.2000 l.4000

-0.5000 -0.1000

l.1800

-0.1000 -0.7000 e.0

-8.8000 8.2000 0.2000

-1.1000 9.8000

8.0 0.8 8.0 8.0 e.0 0.e 8.0 0.0 8.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0

37 IGR COEF CIEB

GTl' KIT

••• 0.0 0.0 8. 0 8.0 e.e 8.8 e.e e.0 e.e 8.8 8.8 8.0 8.0 8.0 8.0 8.8 8.8 e.e 8.0 ••• 8.8 8.8 ••• 8.8 8.8 8.8 8.8 8.8 ••• 8.0 8.0 8.0 8.8 e.0 0.8 8.0 e.e 8.0 0.0 e. 8 e.e ••• 0.e 8.0 8.0 e.0 8.e e.8 e.e ••• 8.0 e.8 e.e 0.e 8.0 8.e 8.8 8.8 8.0 e.0 e.e 0.e 8.0 t>.0 e.e e.0 8.8 8.8 8.0 8.0 8.0 0.0 e.0 8.0 0.0 8.0 8.0 8.0 e.0 0.0 0.0 0.e 0.0 8.0

••• 8.0 8.8 0.e e.0 0.8 0.0 0.0 0.0 8.0 8.0 0.0 0.0 0.0 0.0 8.0 8.0 0.0 0.0 8.0 0.0 8.0 6.0 e.8 8.0 8.0 8.0 8.0 0.0 8.o 8.0 8.0 8.0 f).0 0.0

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 44: A SURFACE MAGNETIC SURVEY - Ohio State University

38

APPENDIX 3: DATA TABLES

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 45: A SURFACE MAGNETIC SURVEY - Ohio State University

DA

TE

TIM

E l..O

NOIT

UDE

LATI

TUD

E FI

ELD

IC

RF

RF.S

IDU

AL

INC

DEC

AU

GU

ST

21

1

8.8

3

-81

.80

46

4

9.1

98

7

56

26

8.9

5

62

24

. l

SS

.9

69

.82

08

-5

~526

2 A

UG

UST

2

1

19

.99

-8

1. 8

16

5

49

.23

96

5

61

86

.2

56

24

3.9

-5

7.7

6

9. 8

51

5

-5.5

30

2

AU

GU

ST

21

1

9.0

8

-81

.81

53

4

0.2

38

9

56

20

8.2

5

62

47

.4

-39

.2

69

.85

72

-5

.53

41

A

UG

UST

2

1

19

.23

-8

1.8

03

1

40

.23

39

5

62

12

.4

56

24

4.2

. -

31

.8

69

.85

36

-5

.54

35

A

UG

UST

2

1

19

.42

-8

1.7

99

3

40

.23

96

5

62

84

.5

56

24

6.7

3

7.8

6

9.8

58

3

-5.5

49

0

AU

GU

ST

21

1

9.4

8

-81

.80

71

4

0.2

41

3

56

24

6.3

5

62

48

.2

-1.9

6

9.8

59

5

-5.5

42

6

AU

GU

ST

21

1

9.6

2

-81

.81

59

4

0.2

46

3

56

24

1.5

5

62

51

.3

-9.8

6

9.8

63

6

-5.5

37

4

AU

GU

ST

21

1

9.7

5

-81

.81

69

4

0.2

51

3

56

19

7.l

5

62

53

.8

.-5

6. 7

6

9.8

67

6

-5.5

37

5

AU

GU

ST

21

2

0.0

0

-81

.82

99

4

0.2

43

5

56

20

6.7

5

62

51

.2

-44

.5

69

.86

18

-5

.52

30

AU

GU

ST

22

1

4.5

0

-81

.78

55

4

0.1

71

3

56

19

1.4

5

62

13

.3

-21

.9

69

.80

44

.::

0. 5g6~-·

AU

GU

ST

22

1

4.5

7

-81

.78

85

4

0.

16

89

3

62

16

.4

56

21

1. 4

5

.0

69

.80

19

-5

.53

38

A

UG

UST

2

2

1-4

.83

-8

1. 7

98

0

40

. 1

54

7

56

15

7.3

5

62

05

.5

-48

.2

69

.79

10

-5

.52

01

A

UG

UST

2

2

11

5.0

0

-81

.83

91

4

0.1

87

6

56

19

4.4

5

62

24

.7

-30

.3

69

.81

78

-5

.49

54

A

UG

UST

2

2

15

. 1

2

-81

.84

38

4

9.

19

43

5

62

29

.9

66

22

8.1

l.

8

69

.82

32

-5

.49

43

A

UG

UST

2

2

15

.40

-8

1.8

44

1

40

. 1

99

7

56

14

6.8

6

62

30

.9

-84

.1

69

.82

74

-5

.49

54

A

UG

UST

2

2

16

.50

-8

1.8

43

0

40

.20

38

5

61

98

.2

56

23

2.7

-3

4.5

6

9.8

30

5

-5.4

97

8

AU

GU

ST

22

1

5.6

2

-81

.83

10

4

0.2

09

9

56

23

9.7

5

62

34

.4

25

.3

69

.83

50

-5

.51

09

A

UG

UST

2

2

16

.00

-8

1.8

03

6

40

.20

47

5

62

40

.2

56

22

9.6

1

0.6

6

9.8

30

2

-5.5

33

5

AU

GU

ST

22

1

6.3

2

-81

.78

39

4

8.

19

98

5

62

43

.3

56

22

5.2

1

8.

1 6

9.8

25

1

-5.5

49

0

AU

GU

ST

22

1

6.5

0

-81

. 78

55

4

8.2

08

8

56

26

8.3

5

62

29

.9

38

.4

69

.83

28

-5

.55

12

A

UG

UST

2

2

16

.58

-8

1.7

96

7

40

.20

90

5

63

30

.0

56

23

1.0

1

07

.0

69

.83

33

-5

.54

13

A

UG

UST

2

2

16

.67

-8

1. 7

92

8

40

.21

85

5

61

95

.9

56

23

5.2

-4

0.2

6

9.8

40

6

-5.5

48

3

/i

dittoe.1
Line
dittoe.1
Oval
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 46: A SURFACE MAGNETIC SURVEY - Ohio State University

-"

' D

AT

E

T!~

r...o~c ~ T

t'YJF

.: LA

TITU

DE

FIL

.;,.a

lCn.-.~

RE

SID

UA

L

INC

DEC

.'

AU

GU

ST

23

1

4.0

8

-81

.80

64

4

0.1

36

8

56

22

4.3

3

61

97

.4

26

.9

--·-··

69

.77

67

-5

.-5

05

7

AU

GU

ST 2

3

14

. 17

-8

1.8

01

5

40

. 14

01

56

28

1.3

56

198.

C)

82

.4

69

.77

98

-5

.51

16

A

UG

UST

23

1

4.2

3

-81

.78

91

4

0.

1376

5

61

53

.7

56

19

6.6

-4

2.9

6

9.7

77

5

-5.5

21

8

AU

GU

ST 2

3

14

.33

-8

1. 7

69

5

40

. 1

37

2

56

18

0.0

5

61

94

.7

'"'.1

4. 7

6

9.7

76

6

-5.5

39

2

AU

GU

ST 2

3

14

.57

-8

1. 7

71

3

40

.15

02

5

61

66

.0

56

20

1.l

-3

5.1

6

9.7

86

8

-5.5

42

4

AU

GU

ST 2

3

14

.75

-8

1. 7

63

6

40

. 16

45

56

16

2. 0

5

62

07

.2

-55

.2

69

.79

77

-5

.55

45

A

UG

UST

23

1

4.9

2

-81

.77

16

4

0.1

65

9

56

19

7.3

5

62

08

.5

-11

.2

69

.79

90

-5

.54

·78

-;

-A

UG

UST

23

1

4.9

8

-81

. 78

60

4

0.

1556

5

61

72

.0

56

20

4.9

-3

2.9

6

9.7

91

5

-5.5

31

1

AU

GU

ST 2

3

15

. 17

-01

. 76

50

4

0.

17

28

5

61

80

.8

56

21

1.2

-3

1.2

69

.804

12

-5.5

56

3

AU

GU

ST 2

3

16

.33

-8

1.7

51

2

40

. 17

71

56

22

9.0

5

62

11

.9

17

. 1

69

.80

71

-5

.57

02

A

UG

UST

23

1

5.5

0

-81

. 74

68

4

0.1

80

5

56

22

4.8

5

62

13

. 1

10

.9

69

.80

97

-5

.57

54

A

UG

UST

2

3

15

.65

-8

1. 7

36

4

40

.18

89

5

62

35

.8

56

21

6.2

1

8.8

6

9.8

15

9

-5.5

87

9

AU

GU

ST 2

3

15

.83

-8

1.7

66

2

40

. 19

08

56

24

1.8

5

62

19

.4

21

.6

69

.81

76

-5

.56

16

A

t;GU

ST 2

3

16

.00

-8

1.7

52

9

40

.20

25

5

62

51

.3

56

22

4.

1 2

7.2

6

9.8

26

9

-5.5

78

1

AU

GU

ST 2

3

16

. 12

-8

1.7

83

8

40

.20

34

5

62

64

.9

56

22

7.2

3

6.8

6

9.8

28

6

-5.5

50

8

AU

GU

ST 2

3

16

.25

-8

1.7

75

4

40

. 19

62

56

25

9.3

5

62

23

.2

36

. 1

69

.82

28

-5

.55

57

A

UG

UST

23

1

6.3

2

-81

. 76

65

4

0.

19

74

5

62

59

.9

56

22

3.0

3

6.0

6

9.8

23

4

-5.5

64

0

-AU

GU

ST 2

3

16

.42

-8

1. 7

66

5

40

.20

34

5

62

24

.3

56

22

5.7

-1

.4

69

.82

80

-5

.56

62

A

UG

UST

23

1

6.9

2

-81

.70

42

4

0.

1876

5

62

41

.0

56

21

2.7

2

8.3

6

9.8

13

9

-5.6

16

2

AU

GU

ST 2

3

17

.08

-8

1.6

92

5

40

. 18

41

56

23

4.0

5

62

10

, 1

23

.9

69

.81

®8

-5

.62

54

A

UG

UST

23

1

7.2

5

-81

.68

75

4

0.

1796

5

62

36

.0

56

20

7.4

2

8.6

6

9.8

07

2

-5.6

28

2

AU

GU

ST 2

3

17

.32

-8

1.6

95

4

40

. 17

11

56

22

8.3

5

62

04

. 1

24

.2

69

.80

G8

-5

.61

80

A

UG

UST

23

1

7.5

0

-81

.68

78

4

0.

16

58

5

62

34

.9

56

20

1.0

3

3.0

6

9.7

96

5

-5.6

22

8

AU

GU

ST 2

3

17

.58

-8

1.6

86

8

49

. U

l96

56

21

8.3

5

61

97

.9

20

.4

69

.79

16

-5

.62

14

A

UG

UST

23

1

7.6

5

-81

.69

45

4

0.

1575

5

62

49

.3

56

19

7.6

5

1.7

6

9.7

90

2

-5.6

13

7

AU

GU

ST 2

3

17'..

80

-81

.70

04

4

0.

1480

5

62

49

.7

56

19

3.6

5

6.

1 6

9.7

83

0

-5.6

05

0

AU

GU

ST 2

3

1-1.

92

-81

. 71

69

4

0.1

46

7

56

24

0.9

5

61

93

.9

46

. 1

69

.78

23

-5

.59

51

-A

UG

UST

23

,1

8.0

0

-81

. 71

08

4

0.

1406

5

62

32

.0

56

19

1.

1 4

0.9

6

9.7

77

6

-5.5

92

9

AU

GU

ST 2

3

18

.15

-8

1. 7

19

6

40

. 12

65

56

28

4.7

5

61

85

.2

99

.5

69

.76

68

-5

.57

99

A

UG

UST

23

1

8.2

5

-81

. 72

78

4

0.

13

43

5

62

49

.7

56

18

9.7

6

0.0

6

9.7

73

1

-5.5

75

4

AU

GU

ST 2

3

18

.33

-8

1.7

38

8

40

. 13

45

56

24

6.7

5

61

90

.8

55

.9

69

.77

36

-5

.56

56

A

UG

UST

23

1

8.4

'8

-81

.73

26

4

0.

1490

5

62

35

,0

56

19

6.9

3

8.1

6

9.7

84

7 -

-5.5

76

5

AU

GU

ST 2

3

18

.58

-8

1.7

25

3

40

. 15

72

56

24

3.7

5

62

09

.2

43

.5

69

.79

09

... 6.~%1

AU

GU

ST 2

3

18

.75

-8

1.7

28

5

40

. 17

42

56

28

3.0

5

62

08

.5

74

.5

69

.80

42

-5

.58

95

A

UG

UST

23

1

8.8

3

-81

. 72

62

<t

-0.

1809

5

62

60

.9

56

21

1.4

4

8.6

6

9.8

09

4

-5.5

94

.·0

A

UG

UST

23

1

8.9

2

-81

. 72

16

4•

9. 1

924

56

27

9.0

5

62

16

.5

62

.5

69

.81

82

-5

. 602

4.·

AU

GU

ST 2

3

19

.00

-8

1.7

10

2

40

. 19

12

56

26

1.3

5

62

14

.9

46

.4

69

.81

69

-5

.61

22

LA

FIELD

IGRF

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Oval
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Text Box
TIME LONGITUDE
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Pencil
dittoe.1
Rectangle
Page 47: A SURFACE MAGNETIC SURVEY - Ohio State University

(~)

l>A

TE

TIM

E LO

NCt

11JD

E LA

Tt11

JDE

FIE

LD

tc

RF

RE

SID

UA

L

lNC

DE

C

jl~~ ~·~

AUGU

ST 2

4

14

.50

-8

1.0

50

3

40

. 1

77

0

G6

29

9.7

5

62

20

.6

79

. 1

69

.80

99

-5

.4·0

10

A

UG

UST

2

4

14

.83

-8

1. 0

49

8

40

. 1

57

6

G6

Ul3

. 2

{)6

21

1.4

-2

lJ.2

6

9.7

94

8

-5.4

·74·

0

AU

GU

ST

24

1

5.0

7

-81

.85

15

4,

0.

14

35

6

62

54

.8

66

20

4.9

4

9.9

6

9.7

03

9

-5.4

68

1

.AU

GU

ST

24

1

5.2

5

-81

. 8

69

8

40

.15

12

5

62

46

.2

56

21

0.2

3

6.0

6

9.'

l9®

4

-5.4

·54

6 .·.-

AU

GU

ST

24

1

5.5

0

-81

. 8

79

0

40

. 1

39

7

56

23

6.8

5

62

05

.6

31

.2

69

.78

17

-5

.44

21

A

UG

UST

2

4

15

.67

-8

1. 8

82

4

40

. 1

35

2

56

30

2.0

5

62

03

.8

98

.2

69

.7'(

82

-5

.43

?4

A

UG

UST

2

4

15

.83

-8

1. 8

80

3

40

. 1

30

7

56

28

9.9

{

)62

01

. 5

88

.4

69

.77

'!!7

-5

.43

77

A

UG

UST

2

4

17

. 1

7

-81

.91

22

4

0.

18

60

5

61

23

.3

tJ6

23

0.2

-1

06

.9

69

.81

66

-5

.42

93

A

UG

UST

2

4

17

.25

-8

1.9

20

1

4·0

. 1

88

7

56

13

6.3

5

62

32

.3

-96

.0

69

.82

10

-5

.42

32

7j

.. l\U

GU

ST

24

1

7.3

3

-81

.93

25

•H~. 1

91

8

56

14

7.9

5

62

34

.8

-86

.9

69

.82

37

-5

.41

32

'

-AU

GU

ST

24

1

7.5

8

-81

.93

11

1

40

. 1

81

8

5u

21

2.0

5

62

29

.9

-17

.9

69

.01

59

-5

.4·1

05

A

UG

UST

2

4

17

.43

-8

1.9

34

·1

40

. 1

70

8

56

17

1.2

5

62

25

.1

-53

.9

69

.80

73

-5

.-4

04

1 A

UG

UST

2

4

17

.92

-8

1.9

16

1

4·0

.16

81

5

61

02

.2

56

22

2.3

-1

20

. 1

69

.60

48

-5

.41

93

A

UG

UST

2

4

18

.00

-8

1.9

04

13

4·0

. 1

79

9

56

13

8.5

5

62

26

.7

-88

.2

69

.81

37

-5

.43

4·2

AU

GU

ST

24

1

8.

17

-8

1.8

98

6

4·0

. 1

88

4

56

11

8.3

5

62

30

.3

-11

2.0

6

9.8

20

1

-5,4

4,2

4 A

UG

UST

2

4

18

.25

-8

1.

91

41

•M

). 1

99

2

56

12

1.7

5

62

36

.8

-11

5.

1 6

9,8

28

9

-5.

4.·3

25

AU

GU

ST

24

1

8.3

3

-81

.92

32

4

0.2

07

9

56

13

8.6

5

62

41

. 6

-10

3.0

6

9.8

36

0

-5.4

27

5

AU

GU

ST

24

1

8.4

2

-81

.91

74

4

0.2

09

3

56

14

9.2

5

62

41

. 7

-92

.5

69

.83

69

-5

.43

32

A

UG

UST

2

4

18

.55

-8

1.8

91

1

40

.24

33

5

60

58

.4

56

25

5.7

-1

97

.3

69

.86

30

-5.4

69

4

AU

GU

ST

24

1

8.6

7

-81

.89

39

4

0.2

37

1

56

02

2.0

5

62

52

.9

-23

0.9

6

9.8

53

0

-5.4

64

5

\'o

.,._A

UG

UST

2

5

14

.98

-8

1.<

)4.5

2

•M>.

17

08

5

62

95

.7

69

.7

69

.80

76

-5

.39

42

5

62

26

.0

AU

GU

ST

25

1

5.

13

-8

1.9

51

7

4·0.

18

09

5

62

44

.7

56

23

1.2

1

3.4

6

9.8

15

?

-5.3

92

1

AU

GU

ST

25

1

5.2

5

-81

.95

16

4,0

. 1

87

3

56

25

6.7

5

62

34

.4

22

.3

69

.82

07

-5

.39

45

A

UG

UST

2

5

f5.4

0

-81

.96

06

•M

).2

03

2

56

26

5.9

5

62

42

.6

23

.3

69

.33

33

-5

.39

22

A

UG

UST

2

5

'15

.58

-8

1.9

32

0

•ML

18

93

5

62

79

.8

56

23

7.9

4

1.9

6

9.8

23

1

-5.3

68

0

AU

GU

ST

25

. 1

5.7

5

-81

.98

82

4,

0. 1

78

9

56

21

5. 8

5

62

33

.5

-17

.7

69

.81

51

-5

.35

86

A

UG

UST

2

5

15

.83

-8

1.

97

71

~·®· 1

80

3

56

25

0.3

5

62

33

.2

17

. 1

69

.01

59

-5

.36

91

A

UG

UST

2

5

15 .9

2

-81

.%1

2

40

. 1

79

8

56

25

0.l

5

62

31

.6

18

.5

69

.Ul5

2

-5.3

83

2

AU

GU

ST

25

1

5.%

-8

1.9

58

3

40

. 1

76

2

56

28

1. 5

5

62

29

.6

51

.9

69

.81

22

-5

.38

4·4

tr~

AU

GU

ST

25

1

6.3

3

-81

.93

18

4

0.

15

63

5

62

87

.4

56

21

8.0

6

9.4

6

9.7

96

0 -5

.-4

00

9

"---A

UGU

ST

25

1

6.5

8

-81

.94

64

40

. 1

51

4

56

32

6.0

5

62

16

.8

10

9.2

6

9. ?

92

6

-5.3

86

0

AU

GU

ST

25

1

6.6

7

-81

.95

34

•M

>. 1

37

9

56

42

0.4

5

62

11

. 2

20

9.2

6

9.7

82

2

-5.3

74

9

AU

GU

ST

25

1

6.7

3

-81

.%4

8 4

0.

131}

0 5

64

06

.3

56

21

2.7

1

93

.6

69

.78

34

-5

.36

50

A

UG

UST

2

5

16

.92

-8

1.9

63

4

~0. l<

!-45

56

37

7.7

5

62

15

. 1

16

2.6

6

9.7

87

6

-5.3

68

3

AU

GU

ST

25

1

7.0

0

-81

.95

62

4

0.

15

53

5

63

27

.5

56

21

9.7

1

07

.8

69

.7%

9

-5.3

?8

?

AU

GU

ST

25

1

7.0

7

-81

. 9

67

3

40

. 1

54

4

56

27

5.4

5

62

20

.2

55

.2

69

. 79

54,

-5.3

68

4

AU

GU

ST

25

1

7.

17

-8

1.

9()

26

"l'

.·0.

15

23

5

62

57

.9

56

22

1.4

3

6.5

6

9.

79

4,5

-5.

3'1·

50

A

UG

UST

2

5

17

.50

-8

1.9

90

9

4~. 1

66

3

56

34

5.6

5

62

27

.9

11

7.7

6

9.8

05

4

-5.3

51

6

AU

GU

ST

25

1

7.6

7

-81

.98

14

•M

). 1

66

0

56

29

7.6

5

62

27

.0

70

.6

69

.80

49

'-5

.36

00

A

UG

UST

25

1

7.7

5

-81

.96

77

0.

16

31

5

62

98

.6

56

22

4.4

7

4.2

6

9.8

02

3

-5.3

?1

3

AU

GU

ST

25

1

7.9

2

-81

. 94

.•02

4.•0

. 1

58

7

56

27

4·7

5

62

19

.0

54

.9

69

.79

81

-5

. 3

94.

3 j

i

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 48: A SURFACE MAGNETIC SURVEY - Ohio State University

JV

v D

.t\TE

TI

ME

LON

GIT

UD

E LA

TITU

DE

FIE

LD

IG

RF

RES

IDU

AL

INC

DEC

AU

GU

ST 3

1

14

.75

-8

1.8

57

1

40

. 1

97

1

56

12

8.8

5

62

28

.8

-10

0.0

6

9. "

'·' ·.

:::,

-5.

•Hl5

3 A

UG

UST

3

1

14

.92

-8

1.8

60

4

40

.21

86

5

61

26

'. 4

56

23

9.2

-1

12

.u

69

.L· ..

t l

-5.4

90

2

AU

GU

ST

31

1

5.0

0

-81

. 8

53

1

40

.21

79

5

60

88

.2

56

23

8.2

-1

50

.0

69.84~3

-5.4

1 )6

5

• A

UG

UST

31

15

.08

-8

1.

83

4·8

40

.22

02

5

61

25

.8

56

23

7.7

-1

11

.9

69

.lH

.·16

-5.5

13

7

/\V

t:U

: :'i'

3

1

15

. 1

3

-81

.83

4·3

4~.2300

56

25

8.

1 5

62

42

.2

15

.9

69

.81

·92

-5

.51

78

!\

l."'lt

::iT

~ 1

1

5.

18

-8

1.8

51

8

40

.23

37

5

61

10

.2

56

24

5.4

-1

35

.2

69

.85

26

-5

.50

35

.:'

tl_I·

; :~ •

·._;·

.~' ~ 1

H

i.9

2

-81

. 8

31

1

40

.23

14

5

61

76

.8

56

24

6.9

-7

0.

l 6

9.8

51

6

-5.<

-76

4

. \V

:.!

~ .. :··i

' ~·3

l

17

.GO

-S

I .8

82

5

40

.21

72

5

61

02

.5

56

24

0.5

-1

38

.0

69

.84

·06

-5

. 4

61 )

/Iv ~'

· L,;·;

~: ,;'. ~

i 1

7.0

B

-81

.83

61

4

0.2

06

7

56

05

1. 5

5

62

35

.8

-13

4·.

3'

69

.83

25

-5.4

·62

3

17

.20

-8

1.8

93

6

4·0

.21

03

5

60

74

.4

56

23

0.

1 -1

63

.7

69

.03

55

-5

. 4,

5·14

~:.

;.;u

sT

31

1

7.3

2

-81

.89

27

4

0.2

40

1

56

14

0.7

5

62

52

.l

-11

1.4

6

9.R

5H

7

-5.

4 .. 6

92

A

UG

UST

3

1

17

.4·5

-8

1.8

73

6

.24

77

5

62

09

.3

56

25

4.1

3

5.2

6

9.8

64

·1

-5.

4·8

') 1

SE

PT

. 3

15

.42

-8

1. 7

96

0

40

.28

16

5

62

93

.7

56

26

2.2

3

1. 5

6

9.8

87

5

-5.

5'(

2'.'

SE

PT

. 3

15

.50

-8

1.7

89

6

.28

01

5

62

65

.7

56

26

0.9

4

.0

69

.88

62

_.

5. 5

7'(.

'(

SE

PT

. 3

15

.53

-8

1. 7

95

7

4~.2770

56

20

6.9

5

62

59

.8

-52

.9

69

.88

39

: -

5.5

71

G

SE

PT

. 3

15

.58

-8

1.3

06

8

40

.27

59

5

63

68

.4

56

26

0.3

1

08

.1

69

.88

34

.·.

-5.5

60

6

SE

PT

. 3

15

.67

-8

1. 8

11

4

40

.27

07

5

62

43

.8

56

25

8.4

-1

4.6

6

9.8

7')

5

-5.5

54

6

SE

PT

. 3

15

. 75

-8

1.8

14

4

40

.26

57

5

62

50

.B

56

25

6.1

2

.7

69

.B7

a7

-5

.55

00

12

0 S

EP

T.

3 1

5.8

3

-81

. 8

15

5

4·0.

25

81

5

62

20

. 1

56

25

2.7

-3

2.6

6

9.8

69

8

-5.5

'i.·6

3

+--G

EP

T.

3 1

6.G

0

-81

. 79

46

4

0.2

43

1

56

24

7.2

5

62

43

.8

3.4

6

9.8

57

5

-5.5

59

4

SE

PT

. 3

16

.20

-8

1.

78

34

. 4

®.2

51

7

56

25

6.8

5

62

46

.9

9.9

6

9.8

63

9

-5.5

72

7

SE

PT

. 3

16

.25

-8

1. 7

78

5

•H>

.26

22

5

62

71

. 9

56

25

1. 3

2

0.6

6

9.8

71

9

-5.5

81

0

SE

PT

. 3

16

.28

-8

1. 7

73

3

4·®

. 264

.·3

56

23

0.8

5

62

51

. 9

-21

.1

69

.87

34

-5

.58

60

S

EP

T.

3 1

6.3

3

-81

. 7

64

®

<ti

®.2

637

56

27

6.3

5

62

50

.7

25

.6

69

.87

26

-5

.59

45

S

EP

T.

3 1

6.4

2

-81

. 7

59

2

4.•G

.26

35

5

62

63

.5

56

25

0.2

1

3.3

6

9.8

72

4

-5.5

98

7

SE

PT

. 3

16

.50

-8

1.

75

58

4

-0.2

55

5

56

22

9.7

5

62

46

.2

-16

.5

69

.86

60

-5

.59

83

S

EP

T.

3 1

6. 5

8

-81

. 7

69

8

~0.2706

56

26

8.4

5

62

54

.6

13

.0

69

.87

82

-5

.59

19

S

EP

T.

3 1

7.

17

-8

1.

70

72

<M

}.2

72

5

56

15

6.

5 5

62

49

.9

-93

.4

69

.87

78

-5

.64

·&7

SE

PT

. 3

17

.33

-8

1.7

17

4

40

.26

67

5

61

79

.6

56

24

8.

1 -6

8.5

6

9.8

73

5

-5.6

37

4

,,., ~SBPT

. 3

17

.58

-8

1.7

29

1

•M).

24

67

5

61

83

.1

56

23

9.8

-5

6.7

6

9.8

53

4

-5.6

19

5

~ S

EP

T.

3 1

7.6

7

-81

. 7

43

7

4·0.

21{

·24

5

62

22

.8

56

23

9.0

-1

6.2

6

9.8

55

5

-5.6

04

.. 8

SE

PT

. 3

17

.83

-8

1.

73

17

4

®.2

32

1

56

21

0.0

5

62

33

.0

-23

.0

69

.81

·71

-5

.61

17

S

EP

T.

3 1

3.0

0

-81

. 7

18

1

<!•G

.23

59

5

61

42

.8

56

23

3.7

-9

0.9

6

9.8

£!.

96

-5

.62

53

S

EP

T.

3 1

8.0

7

-81

. 7

10

5

•M>.

24

16

5

61

12

.1

56

23

5.6

-1

23

.5

69

.85

38

-5

.63

4·3

Sl!

:PT

. 3

18

.18

-8

1.

70

.80

4·0

.24

86

5

61

21

. 7

56

23

8.8

-1

17

.1

69

.85

92

-5

.63

91

S

EP

T.

3 1

8.2

5

-81

. 6

91

8

4•0.

25

13

5

61

31

,3

{)6

23

8.6

-1

07

.3

69

.86

08

-5

.65

47

S

EP

T.

3 1

8.3

3

-81

. 6

85

6

1·~.2483

56

12

3.6

5

62

36

.7

-11

3.1

6

9.8

58

3

-5.6

59

1

SE

PT

, 3

18

.42

-8

1.

67

36

0.2

13

3

56

15

1.2

5

62

19

.0

-67

.B

69

.83

ti7

-5

.65

68

S

EP

T.

3 1

8.5

0

-Bl.

65

96

4

0.

21

16

5

61

29

.8

56

21

6.9

-8

7,

1 6

9.8

29

0

-5.6

66

7

/Lf• ~SEPT.

3 1

8.6

5

-81

. 6

31

2

•M}.

21

32

5

61

53

.4

56

21

5.1

-6

1.7

6

9.8

29

3

-5.6

94

7

SE

PT

. 3

18

.75

-8

1.6

26

4

<_M

). 2

51

0

56

11

1. 0

5

62

32

.6

-12

1.6

6

9.8

58

5

-5.7

13

1

Sli:

PT.

3 1

9.0

3

-81

. 6

56

7

4·0

.26

37

5

60

79

.8

56

24

1.

I -1

61

.3

69

.86

94

-5

.69

07

S

El'

T.

3 1

9.5

8

-81

. 7

37

2

40

.22

19

5

61

71

.4

56

22

8.8

-5

7.4

6

9.8

39

4

-5.6

03

0

SE

PT

. 3

19

.67

-8

1. 7

66

6

40

.22

03

5

62

51

.3

56

23

0.6

2

0.7

6

9.8

38

9

-5.5

7u

t I S

EP

T.

3 1

9.7

3

-61

. 7

75

5

40

.22

09

5

62

63

.6

56

23

1.7

3

1.9

6

9.8

39

7

-5.5

66

4

"-·--

·

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 49: A SURFACE MAGNETIC SURVEY - Ohio State University

0 D

ATE

TI

ME

LON

GIT

UD

E LA

TITU

DE

FIE

LD

IG

RF

RE

SID

UA

L

INC

D

EC

SEPT

. 6

14

. 519

-3

1.8

66

9

40

.2

85

9

56

20

5.9

5

62

69

.4

-63

.5

69

.89

21

-

5.1

)11

6

SEPT

. 6

14

.83

-8

1.8

26

7 'M

). 3

08

6

56

23

4.'0

5

62

76

.4

-42

.4

69

.9t)

36

-

5.5

56

1

SEPT

. 6

14

.97

-8

1.8

15

7

•H:l

.30

75

5

62

26

.:3

56

27

5.0

-

48

.7

69

.90

74

-5

.56

56

SE

PT

. 6

15

.07

-8

1.

80

97

4

0.3

05

8

56

22

3.0

5

62

73

.6

-50

.6

69

.90

59

-5

.57

04

/!.:

./) ~

El'T.

6 1

5.

15

-81

.80

22

•H

).3

04

0

56

20

7.

1 5

62

72

.2

-65

. 1

69

.90

43

-5

.5

76

4

SE

PT

. 6

15

.23

-8

1.

79

31

4•

0.3

05

4

56

23

6.2

5

62

72

.0

-35

.8

69

.90

52

-5

.58

51

SE

PT.

6 1

5.3

8

-81

. 77

34

•M>.

32

31

5

62

21

. 7

56

27

8.5

-5

6.8

6

9.9

18

3

-5.6

09

4

SEPT

. 6

15.5

0

-8

1. 7

83

9

4·0

.31

97

5

61

92

.9

56

27

7.9

-8

5.0

6

9.9

16

@

-5.5

98

7 SE

PT.

6 1

5.6

7

-81

. 7

79

3

40

.33

53

5

62

23

.2

56

28

4.9

-6

1.

7 6

9.9

28

0 -5

.60

36

Sl~PT.

6 1

5.7

8

-81

. 7

<)0

1 ~

·ID

. 3

18

2

56

22

2.2

5

62

77

.8

-55

.6

69

. 915

19

-5.

59

26

SE

PT

. 6

18

.58

-8

1.8

17

8

'HL

29

82

5

62

26

.9

56

27

0.7

-4

3.8

6

9.9

00

3 -5

.56

02

SEPT

. 6

18

.63

-

81

. 81

73

4

0.2

94

1

56

25

2.4

5

62

68

.8

-16

.4

69

.89

70

-5

.55

92

SE

PT.

6 1

8.8

3 -8

1.

79

99

4

0.2

94

0

56

17

7.9

5

62

67

.2

-89

.3

69

.89

64

-5.57~

·8

!61

SEPT

. 6

19

.00

-81

. 7

85

5

40

.29

24

5

62

34

. 1

56

26

5.2

-3

1.

1 6

9.8

94

6

-5.5

87

1

<'--

Sl~PT.

6 1

9.

17

-8

1. 7

51

4

40

.30

49

5

61

35

.0

56

26

8.

l -1

33

.l

69

.90

35

-5

.62

24

SE

PT.

6 1

9.2

5

-81

. 7

60

3

'M~.3073

56

13

4.9

5

62

70

.0

-13

5.l

6

9.9

05

6

-s.6

g.a

SEPT

. 6

19

.33

-8

1.

77

87

4

@.3

05

9

56

10

7.0

5

62

70

.9

-16

3.9

6

9.9

05

1

-5.5

98

2 SE

PT.

6 1

9.5

0 -8

1 .

75

37

,,X

•M}.2

94

2

56

17

9.5

5

62

63

.6

-84

. l

69

.89

54

-5

.61

13

SE

PT.

6 1

9.6

7

-81

. 7

36

7 4

0.2

89

8

56

13

1.5

5

62

59

.6

-12

8.

I 6

9.8

91

3

-5.6

30

0

SI~PT.

6 1

9. 7

5

-81

.71

41

<?.o0.

29

28

5

61

10

.7

56

25

9.0

-1

4fL

3

69

.89

29

-5.

65

13

SE

PT

. 6

19

.83

-8

1.

29

~·0.3059

56

12

0.7

5

62

64

.2

-14

3.5

.

69

. 9

02

.U

.. -

5.6

66

2 SE

PT.

6 1

9.9

0 -3

1.

72

95

4

9.3

18

7

56

11

0.0

5

62

72

.6

-16

2.6

6

9.9

13

6 -5

.64

72

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 50: A SURFACE MAGNETIC SURVEY - Ohio State University

~ D

ATE

TI

ME

LON

GI1

1JD

E LA

TI11

JDE

FIE

LD

IG

RF

RES

IDU

AL

INC

U

EC

SEPT

. 7

12

. 1

7

-81

. 7

44

8

40

.34

64

5

62

44

.0

56

28

7.0

-4

3.0

6

9.9

3:;

5 -5

.64

37

S

EP

T.

7 1

2.2

5

-81

. 7

53

5

40

.34

56

56006

~0

56

28

7.4

-2

81

.4

69

.93

a2

-5.6

35

6 -

SE

PT

. 7

12

.33

-3

1.

74

87

4

0.3

37

4

56

06

9.4

5

62

83

.t

-21

3.7

6

9.9

28

7 -5

.63

69

S

EP

T.

7 1

2.4

2 -8

1.

73

70

4

0.3

28

1

56

10

9.4

5

62

77

.6

-16

0.2

6

9.

92

11

-5

.6

4·3

9

SE

PT

. 7

12

.58

-8

1.

75

29

4

0.3

27

7

56

12

0.4

5

62

78

.0

-15

0.4

6

9.9

21

3

-5.6

29

5 S

EP

T.

7 1

2.8

3

-81

. 7

42

6

40

.3

69

6

56

10

2.

5 5

62

97

.6

-t9

5.1

6

9.9

53

5 -5

.6a

44

SE

PT

. 7

12

.92

-8

1.7

51

6 4

0.3

67

8

56

10

3. 6

5

62

97

.6

-19

4.0

6

9.9

52

3 -5

. 64.·~6

SE

PT

. 7

13

.00

-81

. 7

56

5 4

0.3

71

8

56

10

1. 7

5

62

99

.9

-19

8.2

6

9. 9

5a.

<• -fi

. (1

<1.,2

7 :

SE

PT

. 7

13

. 1

7

-81

. 76

38

4

0.3

57

1

56

09

8.5

5

62

93

.6

-19

5.

1 6

9.9

44

4

-5.6

30

7

SE

PT

. 7

13

.25

-8

1.

76

57

40

.35

25

5

61

06

.0

56

29

1. 7

-1

85

. 7

69

. 9·

H)9

-5

.62

73

SE

PT

. 7

13

.30

-8

1. 7

60

t •M

L 3

54

3 5

61

01

.0

56

29

2.0

-1

91

.0

69

.94

,22

-5

.63

30

SE

PT

. 7

13

.67

-8

1.6

91

0

40

.32

37

5

61

20

.4

56

27

1.4

-t

51

.0

69

.9t6

3

-5.6

33

6 i)

t--

SE

PT

. 7

13

.75

-8

1.6

89

9

•M).

32

68

5

61

28

.6

56

27

2.8

-1

44

.2

69

.91

86

-5.6

85

7

SE

PT

. 7

13

.92

-8

t. 7

02

0 4

0.3

40

t 5

61

40

.5

56

26

0.

l -t

39

.6

69

.92

93

-5.6

79

8

SE

PT

. 7

14

.()5

-6

1. 7

10

9

40

.33

94

5

6t3

4.2

5

62

60

.6

-t4

6.4

/

69

.92

91

-5.6

71

6

SE

PT

. 7

14.

13

-8

t. 7

20

6 4

0.3

36

6

56

12

3,.

, 5

62

6t.

t

-t5

0.1

6

9.9

28

7

-5.6

62

5

SE

PT

. 7

14

.33

-8

1.7

14

7

4,0

.32

25

5

6t5

0.0

5

62

73

.0

-12

3.0

6

9.9

16

1

-5.6

61

8

SE

PT

. 7

14

.50

-8

1. 7

G4

7 4

0.3

20

4

56

14

5.0

5

62

71

.2

-12

6.2

6

9.9

14

2

-5.6

70

1 G

EP

T.

7 1

4.5

8

-81

.69

31

4

0.3

14

2

56

14

4.9

5

62

67

.7

-t2

2.8

6

9.9

09

t .-

5.6

73

7

SE

PT

. 7

t4.7

5

-81

. 6

8t2

4

0.3

53

2

56

15

1.7

5

62

84

.4

-t3

2.7

6

9.9

38

9

. ·-

5.

70

34

S

EP

T.

7 t4

.92

-8

t .6

62

9

•M>

.35

68

5

6t3

2.7

5

62

84

.4

-t5

1.7

6

9. 9

41

1

., -5

.72

12

S

EP

T.

7 t5

.0

0

-81

.66

74

~0

.3478

56

t41

.3

56

28

0.7

-1

39

.4

69

.93

42

-5.7

13

8

SE

PT

. 7

t5.0

8 -8

1.6

65

4

'M~.

33

30

5

61

75

.1

56

27

5.9

-1

00

.8

69

.92

66

-5

.7t

20

SE

PT

. 7

t5.

17

-8

1.6

74,

0 4

9.3

38

5

56

17

6.3

5

62

76

.9

-t0

0.6

6

9.9

27

2 -5

.70

44

S

EP

T.

7 t5

.25

-8

1.6

33

2

•M}.3

40

7

56

17

2.t

5

62

78

.7

-10

6.6

6

9.9

29

2

-5.6

%9

S

EP

T.

7 t5

.50

-8

t .6

&50

•M~.2840

56

16

7.8

5

62

52

.3

-84

.5

69

.BB

a2

-5

.67

42

SE

PT

. 7

t5.6

7

-81

.6

62

2 4i

J.3

06

9

56

2t6

.9

56

26

1.0

-4«~. 1

6

9.9

02

3

-5.7

03

2

GE

PT

. 7

15

.75

-

8L

66

23

4

0.3

t95

5

61

7 l.

4 5

62

66

.9

-95

.5

69

.9t

21

-5.7

07

8

SE

PT

. 7

t5.8

3

-81

. 6

55

7

49

.3t0

5

56

18

7 .3

5

62

62

.2

-74

.9

69

.90

<-9

-5.7

t03

SE

PT

, 7

15

.92

-8

1.6

5t0

4

0.2

94

0

56

19

1.5

5

62

53

.9

-62

.4

69

.09

19

-5

.70

84

8

EP

T,

7 1

6.0

0

-31

.6

31

2

40

.28

81

5

61

86

. 7

56

24

9.4

-6

2.7

6

9.B

G6

8 -5

.72

39

SE

PT

. 7

16.2

() -

81

.62

37

40

.31

97

5

61

94

.3

56

26

3.5

-6

9.2

6

9.

9 t

11

-5.

74,

2()

21

(-S

EP

T.

7 t6

.30

-8

1.6

25

4 4

9.3

22

3

56

17

6.7

5

62

64

.9

-80

.2'

69

.9t3

1

-5.

7'•!1

20

SE

PT

. 7

16

.33

-8

1.

63

70

40

.32

69

5

6t9

6.8

5

62

68

.0

-71

.2

69

.9t7

1

-5.7

33

2 S

EP

T.

7 t6

.4

2 -8

1.6

46

0

40

.33

30

5

61

75

.8

56

27

1.8

-9

6.0

6

9.9

22

0 -5

.72

7ti

~EPT.

7 t6

.5

0

-a

t. 6

•1<7

3 4

0.3

27

3

56

18

4.0

5

62

69

.2

-8G

.2

69

,91

79

-5

.72

43

S

EP

T,

7 t6

.67

-st

.64

95

40

.31

75

5

62

07

.6

56

26

4.9

-5

7.3

6

9.

9 U

H

-5.

71

85

SE

PT

, 8

14

.50

-81

.6t9

5

40

.34

81

1

11

61

26

.0

56

27

6.7

-1

50

.7

69

.93

32

-5

.75

71

S

EP

T,

8 1

4.6

7

-81

.63

67

•H

>.3

49

7

56

11

6.4

5

62

78

.8

-t6

2.4

6

9.9

34

7

-5.

74,

2t

SE

PT

, B

1

4.8

3 -8

1.6

34·

2 4

0.3

61

0

56

t23

.7

56

28

3.7

-1

60

,0

69

.94

·34

-5.7

48

6 S

EP

T.

8 1

4.9

2

-81

.62

4,2

4<

0.3

66

4

56

11

2.1

5

62

85

.4

-17

3.3

6

9,9

47

3

-5.7

59

6

SE

PT

, 8

15

.00

-8

1.6

17

0

40

.36

4t

56

12

4.1

5

62

83

.8

-15

9.7

6

9.9

45

3

-5.7

65

2

zi; 0

Sl!:

PT

. B

1

5.5

0

-81

. 7

16

7

40

.38

22

5

61

21

.3

66

30

1.0

-1

79

.7

69

.96

24

-5

.68

24

S

EP

T.

8 1

5.5

8

-81

. 7

27

0

4,0

.37

60

5

60

70

.5

56

29

9.2

-2

28

.7

69

.95

79

-5

.67

07

S

EP

T.

8 1

5.6

7

-01

.73

4,5

4

0.3

78

3

56

t l0

.9

56

30

0.8

-1

89

.9

69

.96

00

-5

.66

49

S

EP

T,

8 t5

.83

-8

1.7

27

9

40

.36

89

5

6 u

rn.

t 5

62

96

.0

-14

2.9

6

9.9

52

5

-5.6

67

3

SE

PT

, 8

t6.0

0

-81

.69

21

4

0.3

61

>0

5

61

32

.8

56

29

1.0

-1

58

.2

69

.94

83

-5.6

98

0

SE

PT

. 8

16

.25

-8

1.6

82

t 4

0.3

59

7

56

08

6.5

5

62

87

.5

-20

1.0

6

9.9

44·

0 -5

.70

51

S

EP

T.

8 t6

.50

-8

1.7

17

8

4•0

.36

07

5

6t3

3.5

5

62

91

.2

-15

7.7

6

9,9

45

8

-5.6

73

4

SE

PT

. 8

16

.67

-8

1. 7

05

6

•M).

35

40

5

61

52

.5

56

26

7.0

-t

34

.5

69

.94

02

-5.6

81

8

SE

PT

, 8

16

.75

-8

1. 7

19

9

40

.34

88

5

61

52

.2

56

28

5.9

-1

33

.7·

69

.93

66

-5.6

67

0

SE

PT

. 8

16

.78

-8

1.

73

01

•H>

.34

28

5

61

26

.4

56

28

3.9

-1

57

.5

69

.93

23

-G.6

55

6 L.l

.0 ~SEP

T.

8 1

6.8

3

-01

. 73

4,.~

, •H

!}. 3

55

0

56

09

0.2

5

62

90

.0

-19

1.0

6

9.9

419

' -5

.6G

63

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 51: A SURFACE MAGNETIC SURVEY - Ohio State University

11 t

>ATE

TI

ME

LONG

ITUD

E LA

TITU

DE

FIEL

D

IGR

F R

ESI

DU

AL

IN

C DE

C

SE

PT

. 9

14

. 17

-8

1.8

47

8

40

.36

04

5

62

99

.6

56

30

1.6

-2

.0

69

.94

87

-5

.55

76

SE

PT,

9 1

4.2

5

-81

.83

42

•M

).3

66

7

56

13

7.7

5

63

03

.4

-16

5.7

69.95~2

-5.5

72

2

SEPT

, 9

14

.33

-8

1.8

27

4 .

4

0.3

78

3

56

15

8.7

5

63

08

. 1

-14

9.4

6

9.9

62

0

-5.5

82

6

SEPT

. 9

14

.42

-8

1.8

36

6

40

.38

90

5

61

98

.7

56

31

4.0

-1

15

. 3

69

.97

06

-5

.57

83

SE

PT.

9 1

4.5

0

-81

. 8

38

4

40

.40

20

5

61

99

.5

56

32

0.3

-1

20

.8

69

.98

03

-5

.58

15

SE

PT.

9 1

4.5

8

-81

.85

19

4 ..

0. 3

76

1

56

22

7.3

5

63

09

.3

-02

.0

69

.96

11

-5

.55

98

SE

PT.

9 1

4.7

5

-81

.85

62

•M

>.3

632

56

20

5.4

5

63

03

.6

-98

.2

69

. 95

11

-5

.55

11

SE

PT.

9 1

4.9

2

-81

.84

92

~0.3568

56

22

6.5

5

63

00

.0

-73

.5

69

.94

60

-5

.55

50

:?

;o

r.EPT

. 9

15

.G0

-8

1.8

43

9

40

.3{·

79

6

62

03

,6

"6

29

3.7

-9

2.1

6

9.9

38

9

-5.5

54

7

~SEPT.

9 1

5.0

8

-81

. 8

48

8

~0.3<: .. ®

4 5

61

93

.1

56

29

2.3

-9

9.2

6

9.9

33

2

-5.5

49

3

SEPT

. 9

15

.17

-8

1.

85

93

4

0.3

4·4

6

56

21

9.4

5

62

95

.3

-76

.9

69

.93

60

-5

.54

14

SE

PT.

9 1I

J. 2

5

-Bl

.36

37

4

0.3

30

7

56

26

2.9

6

62

89

.0

-26

.1

69

.92

61

-5

.53

23

SE

PT.

9 1

5.3

0

-81

.0&

44

4

0.3

37

2

56

21

0.7

5

62

92

.2

-81

.5

69

.93

12

-5

.53

41

SE

PT.

9 1

5.3

3

-81

. 3

57

9

4@

.32

66

5

62

02

.6

56

28

6.6

-8

4.0

6

9.9

22

7

-5.5

36

0

SEPT

. 9

15

.50

-8

1.6

72

0

40

.35

76

5

62

40

.4

56

30

2.4

-6

2.0

6

9. 9

47

2--

-5.

53

48

SE

PT.

9 1

5.5

8

-81

.87

'!-5

4

0.3

65

4

56

20

4.B

5

63

06

.4

-10

1.6

. 6

9.9

53

3

-5.5

35

5

SEPT

. 9

15

.75

-8

1.8

70

8

4,0

.30

22

5

62

1l.

3

56

31

3.7

-1

02

.4

69

.96

63

-5

.54

50

SE

PT.

9 1

5.9

2

-81

.86

37

4:'

®· 3

12

1

56

17

5.0

5

62

80

.3

-10

5.3

6

9.9

11

7

-5.5

25

4

SEPT

. 9

16

.00

-8

1.

87

19

•M

t.2

96

8

56

25

0.6

5

62

73

.8

-23

.3

69

.90

00

-5

.51

25

?(

{, ~SEPT.

9 1

6.

17

-8

1.8

45

8

4~.3258

56

18

8. 3

5

62

85

.2

-96

.9

69

.92

17

-5

. 54

.,66

. SE

PT.

9 1

6.2

5

-81

.8:u

9_

4

0.3

25

0

56

15

5.7

5

62

83

.5

-12

7.8

6

9.9

20

7

-5.5

59

6

SEPT

. 9

16

.33

-8

1. 8

32

8

4,0.

32

18

5

61

75

.4

56

28

2.2

-1

06

.8

69

.91

83

-5

.55

68

Sl~PT.

9 1

6.4

2

-81

.83

49

4

0.3

08

0

56

23

2.6

5

62

75

.9

-43

.3

69

.90

76

-5

.54

.·9

8

SEPT

. 9

16

.58

-8

1.

34

75

4,

0, 2

96

1

56

23

5.0

5

62

71

.4

-36

.4

69

.89

88

-5

.53

41

SE

PT.

9 1

6.7

5

-81

.83

78

•M

).3

02

6

56

20

8.5

5

62

73

.7

-65

.2

69

.90

36

-5

.54

52

SE

PT.

9 1

6.8

3

-81

.85

70

4

0.2

93

0

56

19

7.9

5

62

70

.7

-72

.8

69

.89

66

-5

. 524."~

SEPT

. 9

17

.08

-8

1.

81)4

6 4

0.3

40

7

56

14

2.3

5

62

88

.5

-14

6.2

6

9.9

32

1

-5.5

89

1

SEPT

. 9

.17

. 17

-8

1.8

00

5

40

.34

24

5

61

13

.2

56

28

9.0

-1

75

.8

69

.93

33

-5

.59

34

21"~

SEPT

. 9

' 17

.25

-8

1. 7

97

0

4,0

.35

06

5

61

40

.6

56

29

2.6

-1

52

.0

69

.93

96

-5

.59

%

4-SE

PT.

9 1

7.4

2

-81

. 77

93

•M

l.3

35

3

56

13

7.3

5

62

03

.8

-14

6.5

6

9.9

27

2

-5.6

09

9

DEP

T.

9 1

7.5

0

-81

. 77

72

4 ..

0.

34

26

5

61

44

.8

56

28

7.0

-1

42

.2

69

.93

28

-5

.61

45

Sl

!:PT.

9

17

.58

-8

1.

73

24

4

0.3

57

9

56

09

8.3

5

62

94

.6

-19

6.3

6

9.9

44

8

-5.6

15

5

SEPT

. 9

17

.67

-8

1. 7

94

3

4.·0

.35

44

5

61

33

.3

56

29

4.

l -1

60

.8

69

.94

25

-5

.60

35

SE

PT.

9 1

7.8

3

-81

.60

09

4

0.3

63

2

56

14

1.8

5

62

98

.7

-15

6.9

6

9. 9

4,9

5

-5.6

@0

8

SEPT

. 9

17

.92

-8

1. 7

93

4

40

.35

89

5

61

37

.8

56

29

6.1

-1

58

.3

69

.94

59

-5

.60

59

SE

PT.

9 18

.4:>

0 -B

l.8

13

6

40

.35

11

5

61

48

.6

56

29

4.3

-1

45

.7

69

.94

04

-5

.58

49

SE

PT.

9 1

8.0

8

-81

.81

36

4.

·0. 3

56

2

56

11

6 .0

5

62

96

.6

-18

0.6

6

9.9

44

4

-5.5

86

8

SEPT

. 9

18

. 1

7

-81.8~30

~0. 3

5<M

J 5

61

25

.l

56

29

5.5

-1

70

.4

69

.94

32

-5

.59

13

SE

PT.

9 1

3.3

3

-81

.82

77

4

0.3

35

4

56

12

4.5

5

62

80

.2

-16

3.7

6

9.9

23

7

-5.5

66

4

2';

4-S

EPT

. 9

18

.4::

! -8

1.8

31

5

<t.•

0.34

32

56

13

2.9

5

62

92

.2

-15

9.3

6

9.9

34

!3

-5.5

65

9

SE

PT.

9 1

8.5

0

-81

.83

27

~0.3568

56

13

3.0

5

62

97

.7

-16

4.7

6

9.9

45

2

-5.5

78

9

SEPT

. 9

18

.58

-8

1.8

30

4

[email protected]

56

13

0.0

5

62

98

.5

-16

8.5

6

9.9

45

6

-5.5

72

0

fJE

PT.

9 1

8.8

3.

-Sl.

78

17

"!

o0.3

66

7

56

13

6.9

5

62

98

.8

-16

1.9

6

9.9

51

6

-5.6

19

4

SEPT

. 9

13

.92

-8

1. 7

76

0

40.36~9

56

10

3.0

5

62

97

.4

-19

4.4

6

9.9

50

1

-5.6

23

9

SE

PT

. 9

19

.00

-8

1. 7

92

8

•M).

36

95

5

61

05

.:1

56

30

1.0

-1

95

.9

69

.95

42

-5

. 6

10

5

SEPT

. C)

1

9.0

8

-81

. 79

92

~0.3712

56

14

4,;8

5

63

02

.4

-15

7.6

6

9.9

55

6 -5

.60

53

SE

PT.

9 1

9.

17

-8

1.

79

27

4•

©.3

80

4

56

16

0.6

5

63

06

.0

-14

5.4

6

9.9

62

6

-5.6

M6

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
Page 52: A SURFACE MAGNETIC SURVEY - Ohio State University

-. ·-

·-· ·~

·-··

---

~--·

.. ·-

----

9>

DA

TE

T

IME

L

ON

GIT

UD

E

LA

TIT

UD

E

FIE

Lt>

IG

RF

R

ESID

UA

L IN

C

DEC

SE

PT

. 1

0

16

.33

-8

1. 6

69

4

40

.39

82

3

63

30

.8

66

32

1.3

9

.5

69

.97

87

-5

.55

22

S

EP

T.

10

16

.42

-8

1.8

73

0

40

.40

41

5

62

85

.4

56

32

4.3

-3

8.9

6

9.9

83

4

-5.5

51

2

z-;o

(-S

EP

T.

10

1

6.5

0

-81

.86

87

0.

41

15

5

64

10

.2

56

32

7.3

8

2.9

6

9.9

69

0

-5.5

57

8

SE

PT

. 1

0

16

.67

-8

1.8

59

3

40

.41

36

5

63

53

.0

56

32

7.4

2

5.6

6

9.9

90

3 -5

.56

70

S

EP

T.

10

1

6.7

5

-81

. 8

64 ..

5 4•

0.4

03

0

56

33

2.7

5

63

23

. 1

9.6

6

9.9

82

3 -5

.55&

4 S

EP

T.

10

1

6.9

2

-81

.86

37

4

0.4

41

5

56

53

5.7

5

63

41

.3

19

4.4

7

0.0

12

2

-5.5

69

0

SE

PT

. 1

0

17

.08

-81

.87

23

4

0.4

406

5

65

76

.IJ

56

34

1.2

2

34

.2

70

.01

16

-5

.56

54

S

EP

T.

10

1

7.

17

-8

1.8

72

8

4•0

.4·3

M

56

52

3.3

5

63

37

.1

18

6.2

7

0.0

04

5

-5.5

61

5

BE

PT

. 10

1

7.3

3

-81

.8

63

2

~0.4266

36

43

5.7

5

63

33

.9

10

1.8

7

0.0

00

0 -5

.5

68

41 S

EP

T.

10

1

7.4

2

-61

.8'!

<1

8

40

.4·3

66

. 5

63

33

.5

56

33

6.7

-3

.2

70

.00

77

-5

.59

14

S

EP

T.

10

1

7.5

0 -8

1.8

37

7

•M>.

<!·4·

35

5

63

24

.3

56

33

9.5

-1

5.2

7

0.0

12

9

-5.5

97

6

n S

EP

T.

10

1

7.6

7

-81

.82

41

40

.42

71

5

62

77

.0

56

33

0.8

-5

3.8

6

9.9

99

8

-5.6

®3

8

f-S

EP

T.

10

1

7.7

5

-81

.80

76

4

0.4

16

7

56

243

.3

36

32

4.4

-8

0.9

6

9.9

91

2

-5.

61

47

S

EP

T.

10

1

7.8

3

-81

. 8

10

4 4.~).4103

56

21

2.0

5

63

21

. 6

-10

9.6

6

9.9

86

-5.6

09

8

SE

PT

. H

> 1

7.9

2

-81

.81

22

4

0.4

03

0

56

207

.5

56

31

8.4

-1

10

.9

69

.98

08

-5

.60

55

SE

PT

. 1

0

18

.00

-8

1.8

34

1

40

.41

27

5

63

02

.4

56

32

4.8

-2

2.4

6

9.9

R3

9

-5.5

89

4

SE

PT

. 1

0

18

. 1

7

-81

. 8

51

2

40

.42

22

5

63

72

.4

56

33

0.8

4

1.6

6

9.9

96

0 -5

.57

75

SE

PT

. 11

1

2.3

3

-81

. 3

70

6

411)

.45

36

5

63

67

.7

56

34

9.5

1

8.2

7

0.0

25

5

-5.5

73

6

SE

PT

. 11

1

2.4

2

-81

.86

67

4

0. 4

.·68

4 5

64

31

.7

56

35

3.0

7

7.9

7

0.0

33

0 -5

.58

07

SI':

PT

. 11

1

2.5

0

-81

. 8

69

0 41

0. 4

73

4 5

64

06

.2

56

35

6.3

4

9.9

7

0.0

30

9 -5

.58

06

§E

PT

. 11

1

2.5

8

-81

.85

60

~0

.1726

56

38

5.9

5

63

54

.7

31

.2

70.036~

-5.5

92

0

SE

PT

. 11

1

2.6

7

-81

. 8

4·88

4

0.<

l.·62

4

56

34

2.7

5

63

49

.5

-6

.8

70

.02

79

-5

. 5

94,

7 ~SEPT.

11

12

.75

-8

1.

84

73

4

0.

45

41

5

63

57

.9

56

34

5.4

1

2.5

7

0.0

21

4 -5

.59

30

'S

EP

T.

11

: 12

.83

-8

1.8

7@

6

4•0

. <!·

58

6

56

36

7.7

5

63

49

.5

18

.2

70

.02

li5

-5

.57

36

SE

PT

. 11

1

2.9

2

-81

.6

611

4.

t0. <

t·55

8

56

40

3.3

5

63

47

.4

55

.9

70

.02

31

-5

. 5

811

S

EP

T.

11

13

.08

-81

. 8

06

8

<l.·0

.<:' .. 3

96

5

61

77

.3

56

33

5.0

-1

57

.7

70

.00

89

-5.6

24·

0 S

EP

T.

11

13

. 1

7

-81

. 8

14

5 40

.~326

56

22

5.0

5

63

32

.5

-10

7.:

J 10:

-~r037--

-:.·s ;-

61

45

S

EP

T.

11

13

.25

-8

1.

82

39

4

0.4

42

6

56

26

5.5

6

63

37

.9

-72

.4

70

.01

18

-5

.60

97

S

EP

T.

11

13

.33

-8

1.8

24

0

.15

50

5

63

35

.0

56

34

3.7

-B

.7

70

.02

14

-

5.6

14

·3

SE

PT

. 11

1

3.4

2

-81

.80

25

1'11

.45

39

5

61

96

.4

56

34

1. 3

-1

44

.9

70

.01

99

-5

.63

32

S

EP

T.

11

13

.50

-0

1. 7

84

9 4

0.4

31

3

56

12

8.3

5

63

29

.3

-20

1.

0 7

0.0

01

8

-5.6

40

6 S

EP

T.

11

13

.58

-8

1.

73

22

4

0.4

35

8

56

15

9.7

5

63

31

. 1

-17

1.4

7

0.0

05

3

-5.6

44

7 )o

3 4-

SE

PT

. 11

1

3.6

7

-81

. 7

88

8

4.t®

.42

44

5

61

42

.2

56

32

6.3

-1

84

. 1

69

.9%

6

-5.6

34·

5 S

EP

T.

11

13

.75

-8

1. 7

86

8

4 .. 0

. 41

94

5

61

41

.3

56

32

3.8

-1

82

.5

69

.99

27

-5.6

34

5 S

EP

T.

11

13

.78

-8

1.

78

71

4·~.4120

56

12

5.9

5

63

20

.3

-19

4.4

6

9.9

87

0

-5.6

31

4 S

EP

T.

11

13

.83

-8

1. 7

81

4

4~.4077

56

12

0.2

5

63

17

.8

-19

7.6

6

9.9

03

4 -5

.63

4.<9

SE

PT

. 11

1

3.9

2

-81

. 7

71

6

4.t

0.4

23

2

56

11

4.7

5

63

24

.2

-20

9.5

6

9.9

95

2

-5.6

49

6

' S

EP

T.

11

14

.00

-8

1.

77

41

•H

>. 4

19

2

56

10

8.0

5

63

22

.6

-21

4.

6 6

9.9

92

2

-5.6

45

8

SE

PT

. 11

1

4.0

5.

-81

. 7

72

3

49

.41

27

5

61

06

.3

56

31

9.3

-2

13

.0

69

.98

70

-5

.64

>5

0 S

EP

T.

11

14

.08

-8

1. 7

63

7

4..0

.40

55

5

61

13

.8

56

31

5.7

-2

01

.9

69

.98

14

-5.6

4-5

5

~

SE

PT

. 11

1

4.

17

-8

1.

76

49

•HL

39

74

5

61

13

.'5

5

63

11

. 5

-19

8.0

6

9.9

75

0 -5

.64

·60

j/()

S

I~PT

. 1

1 1

4.2

5

-01

. 77

25

0.3

94

5

ti6

10

7 ,i

0 5

63

10

.8

-20

3.0

6

9.9

7a0

-5

.63

60

<:-S

EP

T.

11

14

.33

-8

1. 7

78

6

4•0

.40

00

5

61

29

.6

56

31

4.0

-1

84

.4

69

.97

74

-5.6

34

.-6

S

EP

T.

11

14.4

2

-81

. 7

89

6

•M).

39

69

5

61

51

.9

56

31

3.6

-1

61

. 7

69

.97

53

-5

.62

36

SE

PT

. 11

1

4.5

0

-8

1.

811

1.t6

40

.39

59

5

61

65

.0

56

31

4.5

-1

4·0

. 7

69

.97

50

-5

.60

97

S

EP

T.

11

14

.53

-8

1.8

®3

2

4·0

.38

78

5

61

35

.3

56

31

0.5

-1

75

.2

69

.96

87

-5.6

07

9

SE

PT

. 11

1

4.6

7

-81

. 7

71

3

4·0

.38

49

5

61

07

.0

56

30

6.2

-1

99

.2

69

.96

55

-5.6

35

5

Sl!:

PT

. 11

1

4.7

5

-81

. 7

67

3

4·0

.37

80

5

60

67

.9

56

30

3.0

-2

35

.1

69

.96

06

-5

.63

69

S

l!:P

T.

1 1

14

.83

-0

1.

75

87

4

0.:

J87

0

56

07

9.0

5

63

06

.0

-2

27

.0

69

.96

67

-5

.64

76

SF

.PT

. 1

1 1

4.8

8

-81

.75

23

0.:

J86

7

56

04

7.5

5

63

05

.5

-25

0.0

6

9.9

66

3

-5

~6533

Bl1 :1

''l'.

11

1

4.9

2

-01

. 7

tl2

9

4•0

.40

8(;

5

60

07

.2

n<13

rn

. <1

-3

90

.4

69

. 9l

l:J

t -

5.6

60

9

SE

PT

. 11

1

4.9

6

-81

. 75

50

4

0.4

01

3

{)6

07

8.0

5

63

12

.6

-23

4.6

6

9.9

7"1

7 -5

.65

63

10·1~

.Jl.D

SE

PT

. 11

1

5.0

0

-81

.75

43

•M

>. 3

9u

7

56

11

2.1

5

63

09

.7

-19

7.6

6

9.9

73

3

-5.6

51·9

dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle
dittoe.1
Rectangle