12
CROATICA CHEMICA ACTA 42 (1 97 0) 1 < CCA-565 539.19:547.5 Original Scientific Paper A SCF MO Treatment of Some Tropone Derivatives* M. J. S. Dewar and N. Trinajstić** Department of Chemistry, The University of Texas, Austin, Texas 78712, U.S.A. Received August 9, 1969 Recent work in these laboratories has led to the development of a semiempirical SCF MO treatment which seems to give extremely good results for ground States of conjugated molecules of ali kinds composed of carbon, hydrogen, nitrogen and oxygen. We have now applied this treatment to a problem of current interest, namely the structures of tropolone and tropone deri- vatives. The calculations lead to the conclusion that neither of these ring systems is in itself aromatic, while tropone is now re- cognized to be polyenoid, tropolone still seems to be generally regarded as aromatic. This belief, however, arose from the behavior of tropolone derivatives in strong acid solution, where they exist as hydroxy tropylium derivatives, or in alkali where they form mesomeric anions. Calculated heats of formation, resonance ener- gies, and bond lengths are reported. IN T R O D U CTION Some time ago one of us1 concluded on the basis of available Chemical <evidence that stipitatic acid and colchicine must contain a novel aromatic system, tropolone (I), containing a seven-membered ring. Subsequent work not only confirmed this conclusion but also led to the synthesis of tropolone2 itself, and of the related tropone3 (II); both these compounds seemed to show stability characteristics of typical aromatic systems, and it was quickly realized that this might be due to the fact that both I and II can be regarded as deri- vatives of the tropylium ion, C7H7+, which Hiickel4 in 1931 had predicted to be aromatic, a prediction which has been fully confirmed.5 However although an enormous amount of experimental work has been carried out since then on the synthesis and properties of numerous tropone and tropolone derivatives, very few theoretical studies seem as yet to have been reported. The only published investigations of ground State properties have been based on the HMO method,6’7 and a little work has also been reported on exciteđ States.8 While the HMO method is known to be quite unreliable for compounds containing heteroatoms, more satisfactory procedures, based on the Pople SCF MO treatment, have been described in recent years. The best of them, in so far as ground States are concerned, is a semiempirical SCF MO treatment that has been developed in these laboratories*1-12. In its current form, this * This work was supported by the Air Force Office of Scientific Research through Grant number AF-AFOSR-1050-67. ** Robert A. Welch Postdoctoral Fellow; on leave of absence from the »Ruđer Bošković« Institute, Zagreb, Croatia, Yugoslavia.

A SCF MO Treatment of Some Tropone Derivatives*

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A SCF MO Treatment of Some Tropone Derivatives*

C R O A T I C A C H E M I C A A C T A 42 (1 97 0) 1

<CCA-565 539.19:547.5Original Scien tific Paper

A SCF MO Treatment of Some Tropone Derivatives*

M. J. S. D ew ar and N. Trinajstić**

D epartm ent of C hem istry, The U niversity o f Texas, A ustin , Texas 78712, U.S.A.

R e c e iv e d A u g u s t 9, 1969

Recent w ork in these laboratories has led to the developm ent of a sem iem pirical SCF MO trea tm en t w hich seems to give extrem ely good resu lts fo r ground States of conjugated molecules of ali kinds composed of carbon, hydrogen, n itrogen and oxygen.We have now applied th is trea tm en t to a problem of cu rren t in terest, nam ely the structu res of tropolone and tropone deri­vatives. The calculations lead to th e conclusion th a t n e ither of these ring system s is in itself arom atic, w hile tropone is now re - cognized to be polyenoid, tropolone still seems to be generally regarded as arom atic. This belief, how ever, arose from the behavior of tropolone derivatives in strong acid solution, w here they exist as hydroxy tropylium derivatives, o r in alkali w here they form m esom eric anions. C alculated heats of form ation, resonance ener- gies, and bond lengths are reported.

IN T R O D U C T IO N

Some tim e ago one of u s1 concluded on th e basis of availab le Chemical <evidence th a t s tip ita tic acid and colchicine m u st contain a novel arom atic system , tropolone (I), contain ing a seven-m em bered ring . Subsequen t w ork not only confirm ed th is conclusion b u t also led to th e syn thesis of tropo lone2 itself, and of th e re la ted tropone3 (II); bo th these com pounds seem ed to show s tab ility characteristics of typ ica l arom atic system s, an d i t w as qu ick ly realized th a t th is m igh t be due to th e fac t th a t b o th I and II can be reg a rd ed as d e ri­vatives of th e tropy lium ion, C7H 7+, w hich H iickel4 in 1931 h ad p red ic ted to b e arom atic, a p red iction w hich has been fu lly confirm ed.5 H ow ever a lthough an enorm ous am ount of exp erim en ta l w ork has been ca rried ou t since th en on th e synthesis and p roperties of num erous tropone and tropolone derivatives, v e ry few th eo re tica l stud ies seem as y e t to have been reported . The only published investigations of g round State p ro p erties have been based on th e HMO m ethod,6’7 and a little w ork has also been rep o rted on exciteđ States.8

W hile th e HMO m ethod is know n to be q u ite u n re liab le fo r com pounds con ta in ing heteroatom s, m ore sa tisfac to ry procedures, based on th e Pople SCF MO trea tm en t, have been described in recen t years. The best of them , in so fa r as g round States a re concerned, is a sem iem pirical SCF MO tre a tm e n t th a t has been developed in these laboratories*1-12. In its c u rre n t form , th is

* This w ork w as supported by the A ir Force Office of Scientific Research th rough G ran t num ber AF-AFOSR-1050-67.

** Robert A. W elch Postdoctoral Fellow; on leave of absence from the »Ruđer Bošković« Institu te , Zagreb, Croatia, Yugoslavia.

Page 2: A SCF MO Treatment of Some Tropone Derivatives*

2 M. J. S. DEWAR AND N. TRINAJSTIĆ

enables th e h ea ts of fo rm ation of a v e ry w ide v a rie ty of con jugated m o le- cules, bo th arom atic and non-arom atic , and contain ing n itrogen and /o r oxygen as w ell as carbon and hydrogen , to be calcu lated w ith in th e lim its of expe- rim en ta l e rro rs in th e availab le therm ochem ical data. We th ere fo re though t it w ould be of in te re s t to apply th is technique to a v a rie ty of tropone and tropolone derivatives; th e p resen t pap er describes th e resu lts of these cal- culations.

T H E O R E T IC A L A P P R O A C H A N D C H O IC E O F P A R A M E T E R S

U sing th e H iickel a, n approxim ation, the hea t of atom isation (AH.,) of a con jugated system can be w ritte n in th e form :

- A H a = 2E,;b + F„b + 2 Ex_h (1)

w h ere E^b is th e bond energy of a p a rtic u la r X—Y a bond of leng th r, E„b is th e to ta l jt b ind ing energy, calcu lated b y a su itab le MO procedure, and E x H is th e bond energy of X—H bond (X being C, N or O). In th e p resen t w ork, E„b w as calcu lated by a SCF MO procedure based on the Pople tre a tm e n t13, in w hich th e F -m a trix is g iven by:

F ii = w i + V* q, (ii, ii) + 2 ^ ) (qj — Cj) (ii, jj) (2)

F ii = Pii — Va p u (ii, jj) (3)

H ere W; is th e valence State ionisation p o ten tia l of the p AO of a to m i and (ii, ii) the corresponding one-cen ter repulsion in teg ra l; (ii, jj) is the usual repu lsion in teg ra l b e tw een AOs of atom s i and j and pfj the corresponding ćore resonance in teg ra l; and q, and p,j a re respectively the jt e lectron density of atom i and th e bond o rd e r be tw een atom s i and j.

The q u an tities W, and (ii, ii) w ere found by th e m ethod of P a rise r and P a r r 14, using th e valence s ta te ionization po ten tia ls of H inze and Ja ffe 13,. T ab le I show s values fo r carbon, py rro le - and p y rid ine-type n itro g e n and ke tone- and e th e r - ty p e o x y g m .

t a b l e i

O ne-center Integrals

Atom or Ion Valence S tate Wi (eV) (ii, ii) (eV)

C trtrtr .T — 11.16 11.13N* tr tr trn ( > N —) — 28.59 16.63O tr 2t r 2trjr ( > C = O) — 17.70 15.23O" t r 2trtr ji ( > O) — 33.90 18.60

The tw o -een te r repu lsion in teg ra ls w ere found as befo re9 12 from the- follow ing expression (cf. O hno10):

(ii, jj) = e2 [rij2 + (R; + Rj)2]"* (4)

2R; = e2 / (ii, ii); 2R, = e- / (jj, jj)w here:

(5)

Page 3: A SCF MO Treatment of Some Tropone Derivatives*

MO TREATMENT OF TROPONE DERIVATIVES 3

The ćore resonance in teg ra l |3?j w as evalu ted from th e therm ocycle p ro ­cedure of D ew ar and Schm eising17’18, as ind icated in Eq. (6):

R ' C' R E*b R — C" R "X—Y ----> X—Y -----^ X = Y ------ X = Y (6)

1_______________ __________________ t

(D —D")

H ere R ' and R " a re th e equ ilib rium bond lengths, and D ' and D " the bond energy, of pure XY single and double bonds respectively , w hile C ' and C" are com pression energies eva lua ted from M orse p o ten tia l functions. The jt b ind ing energy (E„b ) is equal to m inus th e jt bond energy of th e X = Y bond s tre tch ed to leng th R and in ou r case is given by the fo llow ing expression:

E„b = qx/Wx + >/4qx (xx, xx)/ + q y/W y + V4qy (yy, yy)/ + 2pxy(3xy +

+ (Qx — cx) (qy — cy) (xx, yy) — ‘/2p xy (xx, yy) — Wx — Wy (7)

F rom Eqs. (6) and (7):

P Xy = / (1 — qx)Wx + (1 — qy)Wy — V4q x (xx, xx) — V4qx (yy, yy) —^Pxy

— (qx — cx) (qy — Cy) (xx, yy) + V*pxy (xx, yy) + D ' — D " — C' + C "/ (8)

In our procedure (variab le fl-procedure10) (3 |j and (ii, jj) a re recalcu lated fo r each bond a t each stage in th e ite ra tiv e tre a tm e n t of th e m olecule w e a re considering. In o rd er to estim ate (3fj w e need to know six q u an tities: R ', R", D ', D ", a' and a"; a' and a" being th e M orse constan ts fo r a CC sigma bond and fo r a CC double bond, respectively . These qu an tities can be estim ated qu ite easily in th e case of hydrocarbons9_n, b u t d ifficu lties a riše12 in th e case of bonds involving n itrogen or oxygen. A p art from th e d e a rth of exp erim en ta l data, double bonds involv ing p y rro le -ty p e n itrogen or e th e r-ty p e oxygen in - volve charged species (e. g. R 2N+ = CR,, RO+ = CR,); n o t only it is im possible to estim ate th e h ea t of atom isation of such ions in th e gas phase, w ith suf- fic ien t accuracy, b u t it is also questionab le if p a ram e te rs de te rm ined in th is w ay can leg itim ate ly be used to describe n e u tra l m olecules such as p y rro le o r fu ran . The p a ram ete rs fo r bonds of th is ty p e w ere th e re fo re de te rm ined from sem iem pirical re la tions betw een bond len g th and o th e r bond p roperties; viz.:

(a) A lin ea r re la tio n w as assum ed (cf. 9— 12) betw een bond o rd er and bond length :

r ;j = F —• Gpjj (9)

(b) A t r a t r ix re la tio n 18 w as assum ed b e tw een bond energy and bond length :

B r = A ln [A + (A2 — D 2),/!] — AlnD — (A2 — D2),/2 (10)

(c) A n inverse pow er šeries re la tio n 18 w as assum ed betw een force constan t (k) and bond length :

k = Cr"2 + Dr 4 + Er# (11)

Page 4: A SCF MO Treatment of Some Tropone Derivatives*

4 M. J. S. DEWAR AND N. TRINAJSTIĆ

V alues fo r th e p a ram ete rs A—E w ere found by f ittin g su itab le experim en ta l d a ta and used to estim ate th e qu an tities D, R, and a; the re su lts a re lis ted in T able II.

T A B L E I I

Therm ocycle Data

Bond D"(eV)

D'(eV)

R"(A)

R'(A)

a"(A-1)

a'(A-1)

F(A)

G(A)

CC 5.5600 3.9409 1.338 1.512 2.3177 2.0022 1.512 0.174CN 5.1766 3.3463 1.270 1.448 2.5161 1.9209 1.448 0.178CO 7.1011 3.9987 1.230 1.395 2.1787 1.7870 1.395 0.165

A s b efo re12, w e found it necessary to allow fo r the effects of po la rity of th e 0

bonds link ing d issim ilar atom s (i. e. C and N, or C and O). We assum ed th a t re su ltin g charges (q;) on th e atom s form ing a heteroatom ic bond to be pro - p o rtio n a l to the d ifference in e lec tronegativ ity betw een th e atom s concerned, and the corresponding changes in th e valence s ta te ionization po ten tia ls w ere th e n calcu la ted from th e parabolic re la tion :

Wj = a + bq, + cqs2 (12)

H ere a, b, and c a re p a ram ete rs found b y f ittin g th e valence s ta te ionization p o ten tia ls of a n e u tra l atom and tw o ions derived from it. Table III shows v alues of Wj and (ii, ii) fo r various atom s and bonds, a f te r correction for 0

polarization .T A B L E I I I

O ne-center Integrals A fte r a Polarization Corrections

Type of Bond Atom Ćore Charge W; (eV) (ii, ii) (eV)

1U

C 1.035 — 11.5516 11.3236N 1.926 — 27.4161 16.2842

O II O C 1.100 — 12.2872 11.6786O 0.900 — 16.0190 14.4871

c — 0 C 1.093 — 12.2075 11.6406O 1.814 — 30.5989 17.6709

T h e 0 bond energ ies (E„ ) a re found au tom atica lly in the calcu lation of (3fj b y th e therm ocycle, being g iven by:

E o = D ' — C ' (13)

w h ere C ' is found from the M orse function:

C ' = D ' {1 — exp [a' (R' — R)2]} (14)

T he X—H bond energ ies w ere also estim ated during th e p aram etriza tio n p rocedure; th ey a re lis ted in T able IV.

Page 5: A SCF MO Treatment of Some Tropone Derivatives*

MO TREATMENT OF TROPONE DERIVATIVES 5

T A B L E IV

X — H Bond Energies

Bond Bond Energy (eV)

C—H 4.4375N—H 4.0418O—H 4.7700

R E S O N A N C E E N E R G Y

We have đefined9-11 th e resonance energy (EK) of con jugated h y d rocarbons as the d ifference in h ea t of atom isation betw een it and corresponding classical polyene, the la tte r value being found by sum m ing ap p ro p ria te bond energies. This defin ition is superio r to o thers th a t have been proposed, fo r tw o reasons.

F irst, th e q u an tity in w hich chem ists are p rim arily in te rested concerning a conjugated m olecule is no t its s tab ility re la tiv e to some idealized s tru c tu re w ith pure single and double bonds, b u t ra th e r its s tab ility re la tiv e to an open chain analog. Since th e la tte r is a classical polyene, th e q u an tity in question is precisely the one w e have defined as resonance energy.

Secondly, our defin ition is independen t of theory ; fo r th e polyene bond energies could (and should) be estim ated from therm ochem ical data . In o u r w o rk u we have estim ated th e ir bond energies from calcu la ted hea ts of a tom ­isation of classical polyenes only because th e necessary therm ochem ical d a ta are s till lacking; w hile it is to be hoped th a t such d a ta w ill becom e av a ilab le in th e n ea r fu tu re , th e availab le evidence sup p o rt th a t th e values based on th eo ry are not fa r from the t ru th 19.

This defin ition of resonance energy can be carried over to com pounds con tain ing heteroatom s only if a sim ilar add itiv ity can be estab lished fo r bond energ ies in corresponding classical com pounds. H ere th e s itu a tio n reg a rd in g therm ochem ical d a ta is even m ore d isastrous th a n in th e case of h y d ro - carbons, b u t recen t theo re tica l stud ies20’21 in th is lab o ra to ry seem to suggest th a t the necessary add itiv ity does indeed hold w ith su ffic ien t accuracy. The h ea t of atom isation of classical con jugated com pounds contain ing n itrogen or oxygen and calcu lated by our SCF MO m ethod a re w ell rep resen ted by sum s of ap p ro p ria te bond energies. The values used in th e p re sen t w ork a re lis teđ in Table V.

t a b l e v Bond Energies

Bond Bond Energy (eV)

C—C 4.3499C = C 5.5378C—0 4.1594c= o 7.1575C—N 3.5903C = N 5.1654

Page 6: A SCF MO Treatment of Some Tropone Derivatives*

6 M. J. S. DEWAR AND N. TRINAJSTIC

R E S U L T S A N D D IS C U S S IO N

The com pounds stud ied h e re are show n in Fig. 1 and th e ir calcu la ted to ta l a and jt b ind ing energies, hea ts of atom isation, and resonance energies a re lis ted in T able VI. Since m ost of th e com pounds are e ith e r s till unknow n, o r have only recen tly been p repared , h a rđ ly any therm ochem ical d a ta are available. Indeed, th e only experim en ta l hea t of atom isation so fa r repo rted is fo r tropo lone22; i t d iffers from our calcu lated value by only 0.056 eV or 1.3 kcal/m ole.

F ig . 1. A to m ic s k e le ta l s t r u c tu r e fo r in v e s t ig a te d m o le c u le s .

T he resonance energ ies in the la s t colum n of T able VI a re in te restin g and su rp rising , im ply ing th a t tropone, tropolone, and th e corresponding n itrogen derivatives, a re non-arom atic. The only com pounds w ith large resonance energ ies are those contain ing benzene or nap h th a len e rings and th e ir re ­sonance energies are alm ost iden tica l w ith those estim ated11 for the benzenoid com pounds. This conclusion is of course d iam etrica lly opposed to th e c u rren t

Page 7: A SCF MO Treatment of Some Tropone Derivatives*

MO TREATMENT OF TROPONE DERIVATIVES 7

T A B L E V I

Calculated Total Energies, Heats o f A tom isation and Resonance Energies

Compound-(Total Energy) (eV) -(H eat of

A tom - ResonanceEnergy

(kcal/mole)- Ercb - E abisation)

(eV)

a-Tropolone (I) 11.8420 33.3665 72.266“ — 0.5Tropone (II) 11.7355 23.4678 67.828” 0.8A zatropone (III) 10.5739 28.7376 69.968 2.8p-Tropolone (IV) 11.9189 33.4748 72.351 1.57-Tropolone (V) 11.9162 33.4765 72.350 1.5a-A m inotropone (VI) 11.9481 32.8390 75.058 0.6p-Am inotropone (VII) 11.9679 32.8258 75.065 0.87-Am inotropone VIII) 11.9497 32.8288 75.050 0.44,5-Benzotropone (IX) 17.9436 48.1617 101.605” 18.73,4-Benzotropone (X) 17.3294 48.1142 100.944 3.42,3-Benzotropone (XI) 18.0038 48.1884 101.692 20.64,5-Bentropolone (XII) 18.0471 52.1574 106.037 17.35,6-Benzotropolone (XIII) 17.4343 52.1139 105.381 2.23,4-Benzotropolone (XIV) 17.4320 52.1152 105.380 2.16,7-Benzotropolone (XV) 18.1071 52.1826 106.122 19.34,5-Naphthotropone (XVI) 23.8694 66.7903 135.035” 28.63,4-Naphhotropone (XVII) 22.9013 66.7694 134.046 5.82,3-N aphthotropone (XVIII) 23.9953 66.8217 135.192 32.22,3,6,7-Dibenzotropone (XIX) 24.2700 66.9211 135.566 40.82,3,5,6-Dibenzotropone (XX) 23.6011 66.8101 134.786 22.82,3,4,5-Dibenzotropone (XXI) 24.2201 66.9055 135.501 39.3

a E x p e r im e n ta l h e a t o f a to m is a t io n f o r t r o p o lo n e is 72.21 eV (R ef. 22)b E x p e r im e n ta l h e a t s o f a to m iz a t io n f o r t r o p o n e , 4 ,5 -b e n z o tro p o n e a n d 4 ,5 -n a p h th o tro p o n e a r e 67.43 eV , 101.44 eV , a n d 135.03 eV , r e s p e c t iv e ly . ( P r iv a te c o m m u n ic a t io n f r o m P r o f e s s o r E . H e il- h ro n n e r ) .

assum ption th a t tropolone, and perhaps also tropone, a re arom atic ,23 an assum ption th a t is strong ly supported by HMO calcu lations7’23; th e availab le Chemical and spectroscopic evidence does, how ever, seem to suggest th a t it is w rong24. Thus tropone very read ily undergoes D iels-A lder reactions25, u n d er n e u tra l or basic conditions, and a recen t s tru c tu re analysis26 of 4,5-benzo­tropone show s th a t th e bonds in th e seven m em bered ring a lte rn a te strong ly and indeed approx im ate closely to th e values expected for single and double honds in classical polyene (1.46 A and 1.35 A).

The idea th a t tropolone is arom atic arose from its ab ility to undergo facile arom atic substitu tions (e. g. diazo coupling), and its s tab ility to strong acids. These reactions are, how ever, ca rried ou t u n d er basic or acidic con­ditions w here the com pound ex ists as a sym m etrical anion C7H ,0,~, o r cation C7H 70 2+. B oth these m ust be h igh ly resonance-stab ilized ; th u s th e la tte r m ust approx im ate in s tru c tu re to a d ihydroxy deriva tive of th e arom atic trop y liu m ion. S im ilar reasons apply of course to the s tab ility of tropone in s trong acid, w here it exists as hydroxy tropy lium ; u n d er these conditions th e rin g is very inert. One m igh t add th a t the fact th a t tropone is qu ite strong base m ust

Page 8: A SCF MO Treatment of Some Tropone Derivatives*

8 M. J. S. DEWAR AND N. TRINAJSTIĆ

im ply th a t th e con jugated acid has a v e ry m uch la rg e r resonance energy th an tropone itself; th e p a re n t base m ust th e re fo re be m uch less arom atic than tropylium .

The theo re tica l p rocedure9-1'2 used h ere leads au tom atica lly to estim ates of bond leng ths; these, and corresponding n e lec tron densities, a re p resen teđ in d iag ram atic form in Fig. 2. U n fo rtu n a te ly no adequate s tru c tu re de te rm i- n a tio n have as y e t been reported , except fo r th e 4,5-benzotropone (IX)26 and even h e re th e possible e rro rs in th e experim en ta l bond lengths, a re ra th e r large. In v iew of th is, th e ag reem ent be tw een them and our calcu lated values m ust be reg a rd ed as satisfactory . In th e case of tropone and tropolone, e lectron d iffrac tio n stud ies27-31 have lead to th e conclusion th a t th e rings in them a re

1 .0 0 6 9 0 .9 8 5 4 0 .9 8 6 8

1.389 X 1 0 9 4 9 0 ^ > / ] 0 1 9 8

H O1.9988 1.258 *■

( I )

0 .9 4 6 4

1.0092

0 .9 5 9 4

T 0 .6 6 3 0 J 0 .6 4 6 21 .259*—| 1.2 9 5 * 4

0 , .1.4720 ( U )

1.9985

NH1.3658

H O 1.390 X 1 .9990 V o 926 4 1,0314

6*?/fb.6455 1.259 X-

1.4963 (N )0 |TT,

1.4763 ( Y )

0 .9 6 4 3 1.0113

1.00731 .3 6 0 *

1.406* i ? - 9878

H 2N y 5051.9432 1 .260*-

1 .0 0 5 0 0 .9 7 2 0 ,

1 .4 0 8 * /&>, , ’ i 1.357H N - 'L v ' V 1n 2 ^ T O . 9 2 9 4 > 0 .9 5 8 3

1.359 X 1 .3 5 4 *

1 .0 6 3 5 ^ „ caV o .9973

1 .9 5 5 4 \ 0 9 6 3 2 1 0 3 9 2

0 .9 6 6 2

m)1.259 X-

014746 ( M )

F ig . 2. M o le c u la r o r b i t a l d ia g ra m s (b o n d le n g th s a n d c h a r g e d e n s it ie s ) f o r m o le c u le s I —X X I. F r e l i m in a r y d e te r m in a t io n o f t h e s t r u c tu r e o f 4 ,5 -b e n z o tro p o n e ( in b ra c k e t s ) b y X - r a y in v e -

s t ig a t io n f r o m R e f . 26.

Page 9: A SCF MO Treatment of Some Tropone Derivatives*

MO TREATMENT OF TROPONE DERIVATIVES 0

1 .4 0 3 8[1.384)1] 0 .9831

1 .3 9 0 8tov. 1.4085 8],

1 .4 6 0 8 [av. 1.4875 8 ] /

> 0 .9 8 8 0 1 .4 0 5 8

[1 .3 8 9 & J/1-0''. 1.44858]

M oil^10'30

0 .9 7 8 0 0 .9770

1.451 8 \ 1 .3 5 6 8 ' 1

^ .0 0 8 91 .4 5 6 8 ,1 4 5 7 8

0.91

0 .9 5 9 2 1.(5113

/ l . 3 9 8 8 \1 .3958 1,394 8

^.016®> )o .8 9 9 3

1 .4 0 0 8 ,1 .4 0 6 8

0 .9 4 0 0

1 .3 5 2 8 I 1.444’8

tov. 1.378 8 ] \ . 0 2 4 8 0 .9534M 5s < ^ 0 6561

•« ? < 7 ^ .o 5 !6 3 6 1 0 .9999 1.261 £ 01 1.48

0 (IX)1 .4 6 6 2

0 .9 8 2 2 0 .9909

) l . 4 0 3 8 ^1 .3 9 0 8 ' 1.3908

0 .9 9 0 6 ^

1.406 8\ l . 4 0 2 8 /

0 .9 9 9 9 )— —--- < 39

0 .9 8 8 0 0 .9 7 5 5

1.3528

0 .9 6 66 )4 9S„ . ft6 ^ 1 . 0 3 0 5

H O 1,3898 [ 0 6 5 2 9 -1 .2 5 7 8

01.4520 ( J E )

1.3568 '1 .0 0 1 9 ^

/1 .4 5 1 8 \/ 1.33 5 6 8

\ l . 0 0 6 0

1 .4 5 6 8 „ 1 .4 5 6 8‘ 1.451 8 /

0 .9 5 0 4

0 .9 6 2 9 r

1.4458

i.ooo8V ^ o ! ! ! , 26,x0

1.4740

OH1.389& -

1.9986 (xm)0.9944

- ,i3548^ , ^ 0 . 9 7 2 6 ^ ~ \ 0 ,9 9 0 8

\ , 4 5 7 8

13908OH.9 9 8 9

(X2)

F ig . 2b

p lan a r w ith average CC bond d istances of 1.40 A; it could no t how ever be estab lished w h e th e r or no t th e bond leng ths a lte rn a te . The rep o rted C = 0 (1.26 A) and C—O (1.36 A) bond leng ths ag ree v e ry w ell w ith our ca lcu la ted values.

If tropone and tropolone are indeed non-arom atic one w ould expect gross d ifference in behav iou r betw een polycyclic com pounds fo rm ed from them by annela tion in various positions32. Thus (IX) and (XI) should be arom atic, th e benzene rings being unaffec teđ by a ttach m en t a t th e polyenoid C5 moiety,.

Page 10: A SCF MO Treatment of Some Tropone Derivatives*

10 M. J. S. DEWAR AND N. TRINAJSTIĆ

w h ere as (X) should have a non-arom atic quinonoid stru c tu re . L ikew ise the position of the h y d roxy l p ro ton in annela ted tropolones should be unam bi- guous, one isom er in each case being arom atic and the o ther non-arom atic (cf. (XII) w ith (XIII) or (XIV) w ith (XV). These in tu itiv e conclusions are fu lly confirm ed bo th by the calculations rep o rted here (Table VI and Fig. 2), w hich im ply th a t th e non-arom atic anne la ted com pounds should have low resonance energies and strong ly a lte rn a tin g bonds, and also by the availab le experi- m e n ta l evidence32. Thus none of the non-arom atic tropones has as ye t been

Page 11: A SCF MO Treatment of Some Tropone Derivatives*

MO TREATMENT OF TROPONE DERI VATI VES 11

synthesized, a lthough a num ber of the arom atic isom ers are know n and a re stable. N ote also th a t th e jt electron d is trib u tio n in tropolone, and arom atic anne la ted derivatives, corresponds closely to th a t expected fo r a classical s tru c tu re w ith localized single and double bonds; th u s th e rt charges on carbon a re close to u n ity and on oxygen close to two. On th e o th e r h an d th e non- arom atic benzotropone (X) show s re la tiv e ly la rg e d e p a rtu re from th is clas­sical p icture , due to the despera te efforts of the benzene ring to recover some a t least of its arom aticity .

SU M M A R Y A N D C O N C L U S IO N S

The m ost im p o rtan t conclusion from th e w ork rep o rted here is th e defi- n itiv e pred iction th a t n e ith e r tropone n o r tropolone is arom atic, in d irec t contrad ic tion to the resu lts of HMO calculations. Since the procedure used h ere has proved un ifo rm ly sa tisfac to ry fo r a li system s w hich p roperties are know n experim entally , its p red ic tive pow er seem s strong; tropone and tro ­polone th ere fo re seem likely to prove add itional nails in th e coffin of HMO theory , rep resen tin g y e t tw o m ore cases w hen HMO erroneously p red icts non-arom atic com pounds to be arom atic.

We hope th a t th e p resen t com m unication m ay stim u la te fu r th e r expe- rim en ta l w ork to se ttle th is point, in p a rticu la r a syn thesis of (X); though if w e are righ t, (X) should not only be d ifficu lt to synthesize b u t p robab ly im - possible to iso late in v iew of facile polym erisation .

R E F E R E N C E S

1. M. J. S. D e w a r , N ature 155 (1945) 50, 141, 479; 166 (1950) 790.2. a. J . W. C o o k , A. R. G i b b, R. A. R a p h a e 1, and A. R. S o m e r v i l l e ,

Chem. Ind. (London) 1950, 427.b. J. W. C o o k , A. R. G i b b, R. A. R a p h a e 1, and A. R. S o m e r v i l l e , J.

Chem Soc. 1951, 503.c. T. N o z o e, S. S e t o , Y. K i t a h a r a , M. K u n o r i, and Y. N a k a y a m a ,

Proc. Japan Acad. 26 (1950) 38.d. W. v o n E. D o e r i n g and L. H. K n o x, J. Am . Chem. Soc. 72 (1950) 2305.

3. a. W. v o n E. D o e r i n g and F. L. D e t e r t , J. Am . Chem. Soc. 73 (1951) 876.b. T. J . D a u b e n and H. J. R i n g o 1 d, J. Am . Chem. Soc. 73 (1951) 876.c. T. N o z o e, Y. K i t a h a r a , T. A n d o, and S. M a s a m i n e , Proc. Japan

Acad. 27 (1951) 415.4. E. H ii c k e 1, Z. Physik. 70 (1931) 204.5. a. W. v o n E. D o e r i n g and L. H. K n o x, J. A m . Chem. Soc. 76 (1954) 3203.

b. M. J . S. D e w a r and R. P e 11 i t, Chem. Ind. (London) 1955, 199.c. M. J. S. D e w a r and R. P e 11 i t, J. Chem. Soc. 1956, 2021, 2026.

6. L. K 1 a s i n c, Z. M a j e r s k i, and N. T r i n a j s t i ć, Z. Naturforschg. 23a (1968) 192.

7. D. R. B u r n h a m and M. J. C o o k, Tetrahedron Letters 1968, 3771.8. a. E. K l o s t e r - J e n s e n , N. T a r k o y , A. E s c h e n m o s e r , and E. H e i l -

b r o n n e r, Helv. Chim. Acta 39 (1956) 786.b. D. M e u c h e, H. S t r a u s s, and E. H e i l b r o n n e r , Helv. Chim. Acta 41

(1958) 2220.c. E. W e 11 i n, E. H e i l b r o n n e r , and H. L a b h a r t, Helv. Chim. A cta 46

(1963) 2041.d. K. I n u z u k a and T. Y o k o t a , J . Mol. Spectry. 21 (1966) 272.

9. A. L. H. C h u n g and M. J . S. D e w a r, J. Chem. Phys. 42 (1965) 756.10. M. J. S. D e w a r and G. J . G 1 e i c h e r, J. Am . Chem. Soc. 87 (1965) 685.11. M . J. S. D e w a r and C. d e L l a n o , J. Am . Chem. Soc. 91 (1969) 789.12. M. J. S. D e w a r and T. M o r i t a, J. Am . Chem. Soc. 91 (1969) 796.13. J. A. P o p 1 e, Trans. Faraday Soc. 49 (1953) 1375.14. R. P a r i s e r and R. G. P a r r, J. Chem. Phys. 21 (1953) 466, 767.

Page 12: A SCF MO Treatment of Some Tropone Derivatives*

12 M. J. S. DEWAR AND N. TRINAJSTIČ

15. J . H i n z e and H. H. J a f f e, J. A m . Chem. Soc. 84 (1962) 540.16. K. O h n o, Theoret. Chim. A cta 2 (1964) 219.17. M. J. S. D e w a r and H. N. S c h m e i s i n g , Tetrahedron 5 (1959) 166.18. M. J. S. D e w a r and H. N. S c h m e i s i n g , Tetrahedron 11 (1960) 96.19. M. J. S. D e w a r, Tetrahedron Suppl. 8 (1966) 75.20. M. J. S. D e w a r and N. T r i n a j s t i ć , J. Chem. Soc. A 1969, 1754.21. M. J. S. D e w a r , A. J. H a r g e t , and N. T r i n a j s t i ć , J. A m . Chem. Soc_

91 (1969) 6321.22. W. N. H u b b a r d, C. K a t z , G. B. G u t h r i e , and G. W a đ đ i n g t o n , J.

Am . Chem. Soc. 74 (1952) 4456.23. a. G. M. B a d g e r, Arom atic Character and A rom aticity , U niversity Press, Cam -

bridge 1969, p. 85 and 86. b. R. D. B r o w n, J. Chem. Soc. 1951, 2670.

24. a. D. J. B e r t e l l i and T. G. A n d r e w s , Jr., J. A m . Chem. Soc. 91 (1969)-5280.

b. D. J. B e r t e 11 i, T. G. A n d r e w s, Jr., and P. O. C r e w s, J. Am. Chem. Soc. 91 (1969) 5286.

25. a. S. 11 6, Y. F u j i s e, and M. C. W o o d s, Tetrahedron L etters 1967, 1059. b. S. I to , Y. F u j i s e , and M. S a t o, Tetrahedron Letters 1969, 691.

26. T. H a t a, H. S h i m a n o u c h i , and Y. S a s a d a, Tetrahedron L etters 1969, 753.

27. E. H e i l b r o n n e r and K. H e d b e r g, J. A m . Chem. Soc. 73 (1951) 1386.28. M. K i m u r a and M. K u b o , Buli. Chem. Soc. Japan 26 (1953) 250.29. M. K u b o and K. K i m u r a, Buli. Chem. Soc. Japan 27 (1954) 455.30. K. K i m u r a, S. S u z u k i , M. K i m u r a, and M. K u b o , J . Chem. Phys. 27

(1957) 320.31. K. K i m u r a , S. S u z u k i , M. K i m u r a, and M. K u b o , Buli. Chem. Soc.

Japan 31 (1958) 1051.32. a T. N o z o e, in N on-Benzenoid Arom atic Hydrocarbons, Edited by D. G i n s~

b u r g, Interscience Publishers, New Y ork 1959, p. 339.b. D. L 1 o y d, Carboxylic N on-Benzenoid Arom atic Compounds, Elsevier, Am ­

sterdam 1966, p. 117.

IZVOD

Račun SCF MO za neke derivate tropona

M. J. S. Dewar i N. Trinajstić

Račun SCF MO je p rim ijen jen na izračunavanje svo jstava osnovnoga s ta n ja (toplina atom iziranja, to ta lna energ ija m olekule, energ ija rezonancije, dužina veze, n-elek tronska raspodjela) tropona, tropolona i njihovih derivata. N ajvažniji zak lju ­čak rada je st to da tropon i tropolon n i s u arom atske molekule, suprotno ran ijim p redviđanjim a baziranim na HMO računim a. Z načajan je i zak ljučak rada da postoji osnovna razlika između m olekula dobivenih p ripajan jem benzena troponu (ili tropo- lonu) u položaju 2,3- ili 4,5- (to su onda arom atske molekule), ili p rip a jan jem ben­zena u položaju 3,4- (to je onda ne-arom atska, k inoidna molekula).

C H E M 1ST R Y D E P A R T M E N T U N IV E R S IT Y O F T E X A S

A U S T IN , T E X A S 78712 U .S .A .P r im l je n o 9. k o lo v o z a 1969.