45
ASSESSMENT OF RESTORATION ALTERNATIVES AT GRAND LAKE ST. MARYS, OHIO From: Henry Pate Battelle FMRF 4928 Sailfish Dr. Ponce Inlet, FL 32127 To: Jared Ebbing Grand Lake Restoration Commission 220 West Livingston St. Celina, OH 45822 February 7, 2011 © 2010 Battelle This report is provided under the terms of the Technical Service Agreement No. OP60287R “Consulting Services for the Assessment of Restoration Alternatives in Grand Lake St. Mary’s, Ohio” dated June 4 th . 2010.

A RESTORATION ALTERNATIVES AT GRAND LAKE ST MARYS OHIO · This report is in response to requests from Mr. Jared Ebbing, representing the Grand Lake Restoration Commission, to provide

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

ASSESSMENT OF RESTORATION ALTERNATIVES AT GRAND LAKE ST. MARYS, OHIO

From: Henry Pate Battelle FMRF 4928 Sailfish Dr. Ponce Inlet, FL 32127

To: Jared Ebbing Grand Lake Restoration Commission 220 West Livingston St. Celina, OH 45822

February 7, 2011 © 2010 Battelle

This report is provided under the terms of the Technical Service Agreement No. OP60287R “Consulting Services for the Assessment of Restoration Alternatives in Grand Lake St. Mary’s, Ohio” dated June 4th. 2010.

ii

EXECUTIVE SUMMARY

For several decades, Grand Lake Saint Marys (GLSM) has been characterized as a

eutrophic or hyper-eutrophic lake. In 2009, after an advisory by the Ohio Environmental

Protection Agency (Ohio EPA) citing high levels of microcystin toxin in the lake, area

stakeholders planned and implemented several projects within the lake to evaluate restoration

alternatives. In June 2010 elevated levels of toxins found in lake samples resulted in a “NO-

Contact” advisory, which shut down all lake activities and severely affected local and regional

recreational businesses.

In June, 2010, Battelle entered into a contract with The Grand Lake Restoration

Commission to review data collected during the demonstration of an Airy-Gator unit supplied by

Streamside Systems, Findley, Ohio, and installed in the South Moor Embayment of GLSM.

Battelle was also commissioned to provide input on other alternatives for lake restoration. This

report is the product of this effort.

Based on the observed effects of aeration created by the Airy-Gator unit installed within

the Southmoor embayment as described in this report, it is recommended that aeration devices be

installed at strategic locations around the lake. However, in order to reduce the risk of another

shutdown of lake activities this summer, additional remediation activities should be considered

and implemented as soon as practical. As outlined in this report, this should include approaches

that have been successful at other lakes; for example, alum treatment, biomanipulation and

circulation.

Establishment and execution of comprehensive sampling and evaluation programs are

essential to determine the impact and effectiveness of any remediation technique employed at

GLSM. These sampling and evaluation programs should establish baseline conditions and

measure in a consistent and statistically defensible manner the response of impacted areas of the

lake to applied remediation techniques.

iii

TABLE OF CONTENTS

Executive Summary ........................................................................................................................ ii 

Table of Contents ........................................................................................................................... iii 

Figures............................................................................................................................................ iv 

Purpose ............................................................................................................................................ 1 

Background ..................................................................................................................................... 1 

Timeline .......................................................................................................................................... 2 

Approach ......................................................................................................................................... 2 

Literature Review.................................................................................................................... 2 

Airy-Gator Unit ....................................................................................................................... 3 

South Moor Demonstration..................................................................................................... 4 

Analytical/Sampling Methods ................................................................................................ 5 

Results ............................................................................................................................................. 6 

Lake Parameters (Historical) .................................................................................................. 6 

Water Quality Parameters (Spring-Summer, 2010) .............................................................. 10 

Dissolved Oxygen ................................................................................................................. 14 

Redox Potential/ Discontinuity Layer ................................................................................... 15 

Sediment Parameters ............................................................................................................. 16 

Benthic Samples.................................................................................................................... 17 

Phytoplankton Samples ......................................................................................................... 18 

Circulation............................................................................................................................. 19 

Discussion/Recommendations ...................................................................................................... 20 

Airy-Gator Performance ....................................................................................................... 20 

Restoration Alternatives ........................................................................................................ 21 

Next Steps ..................................................................................................................................... 22 

References ..................................................................................................................................... 24 

Appendix A ................................................................................................................................... 26

iv

FIGURES

Figure 1. Grand Lake Demonstration Projects .............................................................................. 1 

Figure 2. South Moor Demonstration ............................................................................................ 3 

Figure 3. Prototype aerators operating near Ponce Inlet, Florida .................................................. 4 

Figure 4. Sampling Transects for Airy Gator Assessment. ........................................................... 5 

Figure 5. Grand Lake Water Sampling Sites by ERA 1972-75 (Source: ACOE 1981(4) p.269) ... 7 

Figure 6. Grand Lake Water Parameters by ERA 1972-75 (Source: ACOE 1981(4) p.270) ......... 8 

Figure 7. ACOE Sampling Sites 1980 (Source: ACOE 1981(4) p.293) ......................................... 8 

Figure 8. ACOE Water Column/Sediment Results 1980 (Source: ACOE 1981(4) p.296 [Att.2,

p.7]) ........................................................................................................................................ 9 

Figure 9. ACOE Percent Total Volatile Solids (TVS) Sediment Results 1980 (Source: ACOE

1981(4) p.299 [Attch 2, p10]) .................................................................................................. 9 

Figure 10. Water Column Parameters in Grand Lake St. Marys - Control ................................. 11 

Figure 11. Water Column Parameters in Grand Lake St. Marys – Park Grand ........................... 12 

Figure 12. Water Column Parameters in Grand Lake St. Marys - Southmoor ............................ 13 

Figure 13. August 14, 2010 Dissolved Oxygen Readings ........................................................... 14 

Figure 14. DO Average, standard deviation and sample number (n) Southmoor and Control

Samples ................................................................................................................................ 15 

Figure 15. Average DO (mg/l) in Southmoor and Control Areas ................................................ 15 

Figure 16. Average Sediment RPD depth .................................................................................... 16 

Figure 17. Sediment Images ........................................................................................................ 16 

Figure 18. Sediment Analysis of Surficial Grab Samples from Southmoor and Control Sites ... 17 

Figure 19. Total abundance of benthic organisms at Southmoor and Control Sites .................... 18 

Figure 20. Algae concentrations in Southmoor (T1,T2, T3) and Control (T4) MAD Scientist and

Associates(23) ........................................................................................................................ 19 

Figure 21. Velocity measurements in Southmoor and Control areas. MAD Scientist and

Associates(23) ........................................................................................................................ 20 

1

PURPOSE This report is in response to requests from Mr. Jared Ebbing, representing the Grand Lake

Restoration Commission, to provide input on lake restoration alternatives and the effects of

artificial circulation created by an Airy-Gator unit installed within the South Moor Embayment

of Grand Lake St. Marys, Ohio.

Figure 1. Grand Lake Demonstration Projects

BACKGROUND

Since the early 1970’s, Grand Lake Saint Marys (GLSM) has been characterized as a

eutrophic or hyper-eutrophic lake with numerous studies being conducted by authorities (e.g. 1-5,

9), culminating with the completion of a Total Maximum Daily Load (TMDL) study by Ohio

Department of Environmental Protection in 2007 6 and a list of recommended actions published

in a preliminary form in late July 2010 7. In 2009, after an advisory by the Ohio Environmental

Protection Agency (Ohio EPA) citing high levels of microcystin toxin in the lake, area

2

stakeholders planned and implemented several demonstration projects within the lake aimed at

evaluating restoration alternatives for GLSM (Figure 1). In June 2010 elevated levels of toxins

found in lake samples resulted in a “NO-Contact” advisory, which shut down all lake activities

and severely affected local and regional recreational businesses.

TIMELINE

At least two Surface Water Improvement applications (SWIM) were filed in early 2010

by area stakeholders. The applications were for the addition of flow devices (Two Airy-gator

aerators), bed-load collectors (sediment collectors made by Streamside Systems of Findlay,

Ohio) and floating wetlands (Beemats, New Smryna Beach, FL) to embayments within GLSM.

In late April 2010, flow devices were installed (Figures 1 and 2) and began operation in separate

embayments located on the lake’s south shore.

During the spring and summer of 2010, sediment collectors were installed on Chickasaw

and Beaver Creeks (Barnes Creek install is pending) in the approximate locations shown in

Figure 1.

Starting in April 2010, Dr. Robert Hiskey of Wright State University began sampling and

analysis of water quality parameters within the Park Grand, Southmoor and open parts of the

lake for parameters that included total and reactive phosphorus, nitrogen, silica and iron.

In late August 2010, MAD Scientist and Associates (MAD) of Columbus, Ohio was

contracted to conduct sampling on the South Moor bay for the effects of circulation created by an

Airy-Gator unit (23).

APPROACH

Literature Review In order to understand the current problems and recommend future actions, Battelle

personnel undertook a literature review, including past GLSM studies and reports of restoration

efforts on other lakes and watersheds (1-18). Of particular interest were restorations of large

shallow lakes where reduction of nutrient inputs, both internal and external, for control of algal

blooms had been augmented by biomanipulation and circulation.(11,12, 14-18)

3

Figure 2. South Moor Demonstration

Airy-Gator Unit The Airy-Gator is an aerator whose impeller consists of 10 shaft-mounted discs (diameter

4.5'), rotated at ~40 rpm by a 5 horsepower electric motor and speed reducer assembly. Discs are

oriented vertically, with the bottom third of each disc immersed in the water column.

The unit differs from aerators such as paddlewheels or air diffusers in that the flow

created is mostly uni-directional with a large horizontal component (Figure 3). When deployed in

lakes, this configuration may allow the device’s circulation effects to be multiplied by water

column entrainment (i.e. as water is moved downstream from the unit, upstream water moves to

replace it, creating circulation that exceeds the direct pumping rate of the unit).

4

Figure 3. Prototype aerators operating near Ponce Inlet, Florida

South Moor Demonstration The South Moor embayment is about 18 acres in area, with depths ranging from 1-4 feet.

The bay is well-sheltered from the open waters of GLSM, but connected to the lake by two

canals on the north side of the bay (Figure 2). The Airy-Gator unit was emplaced near the

southeast shore of the bay, with the flow created by the 5 horsepower unit directed to the north

beginning April 2010.

On August 31, 2010, MAD began assessing aerator performance by selecting sampling

transects within the bay and adjacent control area (representative non-treatment area) as shown

in Figure 4, four months after the aerator began operation.

5

Figure 4. Sampling Transects for Airy Gator Assessment.

Analytical/Sampling Methods

1. Flow. Flow measurements began on 8/31/2010 using a Sontek FlowTracker® to profile flow velocities at each of the sampling stations, starting ~6” below the surface using 6” increments to the bottom. Since the directional component of flow could not be determined with the FlowTracker®, a Lagrangian-style drifter was employed starting 9/15/2010. The drifter used had a diameter of 3-feet with a body one foot deep; the device is deployed just beneath the surface and tracked visually to determine flow direction and magnitude.

2. Benthos Sample Collection. Composite sediment samples, each consisting of 3 grabs/transect, were collected on 9/15/2010 using a Petite Ponar sampler. Composites were then sieved using a 500 µm screen and preserved in formalin with dye for later enumeration.

3. Sediment Profile Measurements: Following the methods of Dr. Ray Grizzle (19) an acrylic box corer was used on 9/1/2010 and 9/29/2010 to collect sediment profile measurements of the redox potential discontinuity layer (RPD) within Southmoor and the control area. The apparent color redox potential discontinuity (RPD) layer is an indicator of benthic habitat

6

quality which estimates the depth to which sediments are oxidized. The term apparent is used in describing this parameter because no actual measurement is made of the redox potential. An assumption is made that, given the complexities of iron and sulfate reduction-oxidation chemistry, reddish-brown sediment color tones are indications that the sediments are oxic, or at least are not intensely reducing (19). Black sediment tones indicate anoxic sediments. Often a thin black line forms in sediments at the depth where oxygen is unable to reach. This is in accordance with the classical concept of RPD depth, which associates it with sediment color. In this study, manual measurements (2-3 per box core face) were taken of the sediment layer and documented with digital photographs. If the sediment/water boundary layer was black or dark brown without an apparent RPD layer, depth was recorded as zero.

4. Meter Data for pH, DO, Temperature, ORP, Wind Speed and Direction. Meter measurements at the surface, and at 1’ increments down (within 1”) to the bottom of the water column at each of the sampling stations. Additionally the ORP measurements (oxidation reduction potential in mV) were carried 1-4” into the upper sediments. DO (dissolved oxygen) measurements were taken (using a Luminescent Dissolved Oxygen (LDO) probe in a YSI 6920 sonde or a Hach LDO model HQ40D ) as early as possible in order to measure the low range of the lake DO cycle; confirmatory samples were analyzed using the Winkler method to confirm meter operation in the hypoxic levels (<2mg/l DO) found. Wind velocities were noted using a “Kestral” meter, air temperatures using the YSI sonde. Please note that pH, Temperature and ORP data were not analyzed as part of this report.

5. Phytoplankton counts: As a check on the types of algae within the South Moor and control areas, waters samples were collected (on 8/31 and 9/29/2010) using a “Van Dorn” type horizontal sampler with plankton counts made to a family level (eg green or blue-green).

6. Sediment Sampling: The highly reduced environment found in the lake and sediments, with extremely low DO levels measured around the lake mid- August 2010 and throughout the study period, conflicted with reports (1-7) from previous studies indicating the lake was well-aerated. These findings led to the addition of sediment samples from the control and South Moor areas which were analyzed for total solids (Std. Methods 2540G), volatile and fixed solids (SM 2540G), sulfate (EPA 375.4), iron (EPA 6010A) and phosphorus (EPA 6010A).

RESULTS

Lake Parameters (Historical) The most comprehensive study on GLSM was conducted by the Army Corps of

Engineers (4) in the late 1970s in response to flooding and algal bloom events earlier in the

decade. The study included detailed measurements and calculations for flood control, and a wide

7

range of water and sediment parameters taken over the years by Federal, State and non-

government groups (Figures 5-9).

Bloom effects were extreme enough to galvanize stakeholders to study the problem and

act to improve watershed point sources, but without modern assays for algal toxins,

comprehensive approaches lacked urgency to address the lake’s decline.

Figure 5. Grand Lake Water Sampling Sites by ERA 1972-75 (Source: ACOE 1981(4) p.269)

8

Figure 6. Grand Lake Water Parameters by ERA 1972-75 (Source: ACOE 1981(4) p.270)

Figure 7. ACOE Sampling Sites 1980 (Source: ACOE 1981(4) p.293)

9

Figure 8. ACOE Water Column/Sediment Results 1980 (Source: ACOE 1981(4) p.296

[Att.2, p.7])

Figure 9. ACOE Percent Total Volatile Solids (TVS) Sediment Results 1980 (Source:

ACOE 1981(4) p.299 [Attch 2, p10])

10

Water Quality Parameters (Spring-Summer, 2010)

Results of work conducted by Dr Robert Hiskey, Wright State University, and associates

are summarized in Figures 10 - 12, with graphical representations and reported raw (as collected)

data in Appendix A. Water sampling was conducted at Southmoor and the Park Grand Airy-

Gator installation site, which is more open to influence from the lake than the Southmoor Airy-

Gator installation site; Control site results were from the Windy Point area of the lake.

Results are similar to the data collected 30-40 years ago, indicating watershed

improvements to date have not been able to address lake conditions.

11

Control SummaryAdapted from Dr. Robert Hiskey Data

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

April Surface Average 8.1 17.6 7.9 60.0 15.1 0.10 0.30 1.1 0.1 1.1 0.21 1.0n 2.0 2.0 2.0 0.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 0.0 2.0 1.0SD 0.2 1.6 0.6 4.2 0.1 0.2 0.0 0.4 0.1

0.50 Average 8.0 16.8 7.9n 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.1 0.4 0.4

1.00 Average 8.1 17.0 7.9n 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.0 0.7 0.3

1.50 Average 8.0 16.6 7.2 16.3 0.08 0.30 1.1 0.1 0.7 0.10 2.6n 2.0 2.0 2.0 0.0 0.0 2.0 2.0 2.0 2.0 1.0 1.0 0.0 1.0 1.0SD 0.1 0.1 0.5 0.4 0.1 0.1 0.4

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

May Surface Average 8.4 23.5 9.2 11.4 49.5 22.5 0.05 0.38 0.8 0.1 1.6 0.19 0.5n 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 2.0 1.0SD 0.1 5.9 1.8 17.7 10.6 0.0 0.2 0.3 0.0 0.2 0.1

0.50 Average 8.4 23.3 9.2 15.3n 2.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.1 5.5 1.7

1.00 Average 8.4 22.2 9.3 19.8 56.0 0.13 0.56 1.7 0.33 6.4n 2.0 2.0 2.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0SD 0.1 4.1 1.3

1.50 Average 7.9 25.1 5.6 21.4 21.0 0.04 0.36 1.5 0.2 1.7 0.14n 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0SD

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

June Surface Average 9.1 26.1 16.8 95.2 41.0 36.0 0.09 0.53 0.8 0.1 1.0 0.07 9.3n 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 2.0 1.0SD 0.3 0.6 5.4 22.6 12.8 0.0 0.1 0.4 0.0 0.1 0.1

0.50 Average 9.1 25.8 16.7 99.0n 2.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.3 0.3 5.2

1.00 Average 8.9 25.4 13.8 96.3n 2.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.4 0.1 5.8

1.50 Average 8.0 24.6 5.9 68.9 36.5 0.10 0.55 0.9 0.1 1.1 0.29 7.6n 2.0 2.0 2.0 1.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 2.0 1.0SD 0.4 0.3 2.2 12.0 0.1 0.2 0.5 0.1 0.1 0.1

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

July Surface Average 9.7 32.2 18.8 30.0 35.0 25.4 0.15 0.44 0.2 0.0 0.4 0.12 0.1n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0SD

0.50 Average 9.6 31.7 19.3 42.5n 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

1.00 Average 8.5 28.3 8.9 44.8n 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

1.50 Average 7.9 27.2 3.5 42.6 0.6 0.16 0.56 0.1 0.0 0.5 0.60 4.8n 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0SD

Figure 10. Water Column Parameters in Grand Lake St. Marys - Control

12

Park Grand SummaryAdapted from Dr. Robert Hiskey Data

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

April Surface Average 8.5 17.6 10.8 59.6 15.0 0.08 0.40 1.2 0.1 0.8 0.10 2.3n 9.0 9.0 9.0 0.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 0.0 3.0 2.0SD 0.3 0.7 1.5 8.7 3.9 0.0 0.1 0.3 0.0 0.3 0.1 1.5

0.50 Average 8.5 17.3 10.4n 9.0 9.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.3 0.4 1.3

1.00 Average 8.4 16.8 9.7 15.9 0.03 0.43 1.2 0.1 0.7 0.02 3.3n 9.0 9.0 9.0 0.0 0.0 5.0 5.0 5.0 5.0 2.0 3.0 0.0 1.0 1.0SD 0.3 0.5 1.4 1.3 0.0 0.1 0.3 0.0 0.1

Lowest  Average 8.3 17.0 9.8 23.1 0.08 0.35 1.0 0.8 0.08Recorded n 4.0 4.0 4.0 0.0 0.0 4.0 4.0 4.0 4.0 0.0 1.0 0.0 1.0 0.0Level SD 0.5 0.3 1.9 16.9 0.0 0.2 0.3Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

May Surface Average 8.5 24.4 10.0 16.1 42.0 28.9 0.07 0.36 1.5 0.1 1.6 0.20 1.5n 10.0 10.0 10.0 4.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 10.0 5.0SD 0.3 4.0 3.0 2.1 7.2 7.0 0.0 0.1 1.1 0.1 0.2 0.1 0.9

0.50 Average 8.4 23.8 9.4 17.0n 10.0 10.0 10.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.3 4.0 2.6 3.1

1.00 Average 8.2 22.9 7.7 17.5 44.5 0.09 0.53 1.9 0.2 1.6 0.36 5.3n 10.0 10.0 10.0 4.0 0.0 4.0 5.0 5.0 1.0 1.0 5.0 0.0 5.0 4.0SD 0.3 4.0 2.3 2.5 2.5 0.0 0.1 0.2 0.1 1.2

Lowest  Average 7.9 24.2 4.6 18.1 40.6 0.11 0.38 2.2 0.2 1.7 0.34 0.5Recorded n 5.0 4.0 5.0 3.0 0.0 5.0 5.0 5.0 4.0 4.0 5.0 0.0 5.0 1.0Level SD 0.1 3.9 1.3 1.9 19.9 0.0 0.1 0.2 0.0 0.0 0.1Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

June Surface Average 9.0 26.6 13.8 73.3 33.6 33.8 0.08 0.53 1.0 0.1 0.8 0.11 2.6n 10.0 10.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 10.0 10.0SD 0.3 0.3 3.2 11.5 9.3 11.6 0.1 0.2 0.7 0.1 0.3 0.0 2.9

0.50 Average 8.9 26.4 13.3 81.1n 10.0 10.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.3 0.4 3.4 13.8

1.00 Average 8.7 25.8 11.4 78.2n 10.0 10.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.4 0.4 3.0 16.4

Lowest  Average 8.4 25.3 7.9 68.6 61.9 0.13 0.64 1.1 0.1 1.0 0.28 2.6Recorded n 9.0 9.0 9.0 4.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 10.0 10.0Level SD 0.5 0.5 2.8 16.7 24.9 0.0 0.2 0.8 0.1 0.4 0.1 1.7Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

July Surface Average 9.4 30.5 15.5 35.1 28.2 43.7 0.30 0.60 0.1 0.0 0.6 0.28 2.9n 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 0.0 5.0 5.0SD 0.0 0.3 0.6 8.0 3.6 3.7 0.1 0.1 0.1 0.0 0.1 0.0 1.4

0.50 Average 9.3 30.0 15.2 41.4n 5.0 5.0 5.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.1 0.2 1.2 4.2

1.00 Average 8.8 29.0 8.6 45.0 57.6 0.22 0.59 0.1 0.0 0.7 0.41 5.7n 5.0 5.0 5.0 5.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0SD 0.2 0.6 3.1 2.9

Lowest  Average 8.2 28.4 4.9 45.8 58.3 0.29 0.72 0.2 0.0 0.7 0.33 4.0Recorded n 4.0 4.0 4.0 2.0 0.0 4.0 4.0 4.0 4.0 4.0 4.0 0.0 4.0 4.0Level SD 0.5 0.6 1.6 6.7 6.9 0.1 0.1 0.1 0.0 0.1 0.1 1.5

Figure 11. Water Column Parameters in Grand Lake St. Marys – Park Grand

13

Southmoor SummaryAdapted from Dr. Robert Hiskey Data

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

April Surface Average 8.8 17.8 10.9 44.4 27.1 0.07 0.46 1.0 0.1 0.3 0.14 2.5n 7.0 8.0 8.0 0.0 8.0 7.0 7.0 6.0 7.0 7.0 6.0 0.0 4.0 3.0SD 0.2 1.1 0.7 5.1 5.0 0.1 0.1 0.4 0.0 0.2 0.1 1.0

0.50 Average 8.8 17.5 11.0 36.0 0.02 0.53 0.4 0.1n 7.0 8.0 8.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0SD 0.2 1.3 0.9

0.75 Average 8.8 17.0 11.0n 4.0 2.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.2 1.0

1.00 Averagen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

May Surface Average 8.5 16.8 10.5 34.8 45.8 0.11 0.66 0.4 0.1 1.0 0.37 1.9n 4.0 4.0 4.0 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 0.0 4.0 4.0SD 0.1 0.1 0.8 2.1 7.8 0.0 0.0 0.1 0.0 0.0 0.2 0.3

0.50 Average 8.5 16.8 10.3n 4.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.1 0.1 0.7

0.75 Averagen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

1.00 Averagen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

June Surface Average 7.2 26.9 6.2 85.6 26.4 45.1 0.08 1.26 0.1 0.4 1.9 0.25 6.7n 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.0 0.0 8.0 8.0SD 0.9 1.5 1.5 33.2 5.5 3.1 0.0 0.5 0.1 1.0 0.9 0.2 3.1

0.50 Average 7.0 27.0 5.1 90.5n 8.0 8.0 8.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.7 1.7 1.9 7.6

0.75 Average 7.7 27.7 2.9n 4.0 3.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD 0.2 0.1 1.3

1.00 Averagen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

Depth pH Temp DO Chlorophyll Secchi Turbidity PO4 Total P Nitrate Nitrite Ammonia Total N Iron Silicameters 0C mg/l raw cm NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

July Surface Average 9.6 32.7 19.2 177.8 18.5 84.2 0.14 0.99 0.1 0.0 1.1 0.31 6.1n 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 0.0 4.0 4.0SD 0.1 0.2 1.4 29.4 1.7 20.0 0.0 0.1 0.1 0.0 0.2 0.1 3.5

0.50 Average 8.7 29.6 10.6 185.8 93.1 0.26 1.17 0.2 0.0 1.2 0.59 10.3n 4.0 4.0 4.0 4.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0SD 0.2 0.4 1.8 9.8

0.75 Average 8.0 28.8 5.5 91.0 0.20 1.11 0.1 0.0 1.3 0.56 5.6n 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0SD

1.00 Averagen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0SD

Figure 12. Water Column Parameters in Grand Lake St. Marys - Southmoor

14

Dissolved Oxygen Previous work (4,27,28) indicated that low dissolved oxygen (DO) was not a problem at

GLSM due to its shallowness and wind-induced mixing, though extended periods of ice-cover or

low winds may cause periodic fish kills in some areas of the lake. On Aug 14 2011, an early

morning survey was conducted around the lake margin to ascertain DO levels at the low extreme

of its daily cycle. This effort showed that while the West Bank sampling sites had DO levels that

in some areas exceeded saturation (Figure 13), except for the Southmoor area (2.1 mg/l DO),

starting from Windy Point the entire south and eastern shore was hypoxic (<2 mg/l DO).

Figure 13. August 14, 2010 Dissolved Oxygen Readings

The trend of higher DO levels within the Southmoor bay was continued during sampling

events in early to mid September 2010 by MAD, with DO levels reaching 2-3 times the values

seen in the nearby control area. (Figures 14 and 15). By late September with water temperature

dropping to 15°C, only the control area (4.5 mg/l DO) remained below EPA’s minimum water

quality criteria of 5 mg/l DO (22).

15

Figure 14. DO Average, standard deviation and sample number (n) Southmoor and

Control Samples

Figure 15. Average DO (mg/l) in Southmoor and Control Areas

Redox Potential/ Discontinuity Layer One measure of Airy-Gator performance is the unit’s ability to maintain an oxic layer, as

indicated by RPD measurements, at the sediment/water interface. Maintenance of such a layer is

important to provide benthic habitat, reduce the flux of nutrients from deeper anoxic sediments

and to increase the rate at which the organic fraction of sediments are mineralized (20, 21).

Two rounds of sampling showed that only the Airy-Gator area had an RPD layer; the

control area samples indicated a lack of oxygen at the sediment/water interface (Figure 16 and

example photos in Figure 17).

16

Figure 16. Average Sediment RPD depth

Figure 17. Sediment Images

Sediment Parameters

Analysis of sediment grab samples (Figure 18) indicates that GLSM sediments have

changed very little since the 1970-80’s. While the volatile fraction results around the Airy-Gator

unit (Transect T1S2 and T2S1) were lower than those taken in the control area, the 2010 data

still falls within the range of ACOE results (3.0-12.3%, see Figure 9). The total phosphorus (TP

0.19 g/kg, average of all 2010 data) in the sediments indicates that if external sources of

phosphorus are controlled, internal sources are not at a level (TP>1g/kg dry matter ) 9 that would

overwhelm such improvements. This is supported by the results for iron and sulfate, which at a

ratio of 259:1 (Fe:SO4, average of all data) indicate that the sediments could retain substantial

amounts of phosphorus if the lake system was not subjected to extended cycles of anoxia, such

17

as seen in 2010. Note that while standard methods were used, more exacting methods of

sediment analysis may be required for a complete picture of GLSM sediments.

Figure 18. Sediment Analysis of Surficial Grab Samples from Southmoor and Control Sites

Benthic Samples

Collection of surficial grab samples on September 15, 2010 was designed as a

reconnaissance survey to characterize sediment habitat quality, based on the presence of

indicator species. This single sampling event found only pollution-tolerant species at the control

and Southmoor sites. The taxa found (Figure 19) were larvae of midges or flies (Diptera) and

aquatic worms (annelids) that are adapted to conditions in nutrient-rich waters like GLSM.

While greater numbers of individuals were found in the Southmoor sites than in the control sites,

additional sampling would be required to determine if a significant difference exists between the

two areas.

18

Figure 19. Total abundance of benthic organisms at Southmoor and Control Sites

Phytoplankton Samples Results of two reconnaissance surveys for phytoplankton (algae) are shown in Figure 20.

With one exception, samples were dominated by green algae. More samples containing blue-

green algae were found in the Southmoor site than in the control area. While this may be a result

of the circulation created by the Airy Gator and the type of samples collected (one horizontal

sub-surface grab at each transect), a more rigorous sampling program would be required to

determine if significant differences exist between the Southmoor and control sites.

19

Figure 20. Algae concentrations in Southmoor (T1,T2, T3) and Control (T4) MAD

Scientist and Associates(23) Circulation

Since the currents created by an Airy-Gator are relatively modest (~0.03-.04

meters/second), a Lagrangian-style drifter was employed starting 9/15/2010. This allows the

movement of the water column to be measured. The drifter used had a diameter of 3-feet with a

body one foot deep; the device was deployed just beneath the surface and tracked visually using

a GPS device to determine flow direction and magnitude. While currents generated near the unit

averaged 0.12 m/s, currents at the northern margin of the embayment (200-300 feet from the

device) were still 50-100% greater than the average velocity recorded in the control area (Figure

21).

20

Figure 21. Velocity measurements in Southmoor and Control areas. MAD Scientist and

Associates(23)

DISCUSSION/RECOMMENDATIONS

Airy-Gator Performance While a lack of data taken before the Airy-Gator began operation makes evaluation of

before and after effects problematic, concurrent sampling between the Southmoor and control

sites does allow some aspects of the unit’s performance to be evaluated. While early morning

DO levels in the control area (and many near-shore areas of the lake) were often below 1.0 mg/l,

the Southmoor site was maintained at >2 mg/l throughout the study period. This may have

allowed the formation of an RPD layer within the Southmoor embayment, a layer that increased

over the study period and was non-existent in the control area during the study period.

Circulation created by the unit was measurable 200-300 ft away from the device, and the flows

created (>100 m/hr horizontal velocity) there may exceed the 1-2 m/hr (vertical velocity)

21

requirement (12, 28) for inhibiting blue-green algae populations by neutralizing their buoyancy

advantage.

Based on the observed effects of artificial circulation and aeration created by the Airy-

Gator unit installed within the Southmoor embayment as described in this report, it is

recommended that aeration devices be installed at strategic locations around the southern and

eastern margins of the lake where hypoxia was a common event during the summer and early fall

of 2010. Consideration can also be given to outfitting the aeration devices with advanced

treatment technology such as UVC lights, UV-generated ozone or ferrate in order to make use of

the large water surface area and mixing within the aeration device to increase the breakdown rate

of algal toxins.

Restoration Alternatives Restoration alternatives have been listed in various works on Grand Lake St. Marys,

starting with the ACOE in 1981(4) and culminating with a strategic plan by the Lake Restoration

Commission in 2011(29). Based on general observations of GLSM and preliminary review of

data contained in previous reports describing the historical and present condition of GLSM, it

appears unlikely that clear water conditions can be reached and maintained by phosphorus level

reduction/inactivation alone. This statement is supported by the TMDL results (6) and Tetra

Tech’s recommended actions(7) for GLSM, which indicate that even with very significant

reductions in phosphorus sources the lake will remain in a eutrophic state.

A review of a small portion of the considerable literature on lake management shows that

a number of successful management programs, in the face of conditions similar to GLSM, have

included large scale biomanipulation of fish stocks (11, 12, 14). Where harmful algae blooms were a

concern, circulation has also been successful in reducing the dominance of blue-green algae(12).

The GLSM Restoration Commission should consider the success of these techniques at other

lakes when establishing the priorities of biomanipulation and circulation within their strategic

plan. (29).

22

NEXT STEPS

GLSM and its stakeholders are at a critical decision point. Additional evaluation studies

will be useful in evaluating various long-term alternatives for remediation of GLSM. However,

in order to reduce the risk of another year of crisis, evaluation of long-term alternatives will need

to be combined with near-term actions that can be implemented as soon as practical. GLSM

stakeholders should consider the following:

1. Select, prepare and install temporary injector equipment on GLSM tributaries with the goal of significantly reducing external phosphorus inputs to the lake. Given its history, availability and price, buffered aluminum sulfate (alum) is considered the preferred initial treatment chemical.

2. As soon as possible begin operation of the injector equipment. Based on Ohio EPA Studies (6) the priority tributaries for chemical injection are Coldwater and Beaver (near Montezuma) Creeks, followed by Chickasaw, Prairie, Little Chickasaw and Barnes Creeks. During high-flow events, the three highest priority creeks (Coldwater, Beaver and Chickasaw) account for about 88% of the external P loads flowing into GLSM.

3. Drawdown the lake in conjunction with injector operation. Temporarily lowering lake volume will increase the ability of treated low-P water from the tributaries to dilute the high levels of P within the lake’s water column.

4. Prepare for surface spraying of the lake with alum using local vessels and equipment. The goal is to have equipment and permitting in place to deal with water-column P and clarity extremes, not to provide a multi-year dose to the sediments.

5. Begin biomanipulation efforts including:

a. Carp roundups (especially in the creeks during spawning season) and tournaments engaging the public, possibly with bounties or ‘Lake Improvement Credits’.

b. Placement of carp holding pens made of nylon netting, as appropriate, around the lake for deposit of carp and other rough fish by the public. Once caught, fisherman should be encouraged to never return a live carp back to the open lake.

c. File for a carp collection permit with Ohio DNR and begin trapping fish.

d. Stock game fish, shellfish and zooplankton.

23

6. As noted in the section on Airy-Gator performance, circulate selected areas of the lake to reduce low oxygen events and P transport from the sediments and enhance conditions for desirable organisms (game fish, shellfish, zooplankton and algae other than blue-greens).

7. Investigate the use of local vessels as anchored surface pumps to provide emergency circulation. Lake Erie research personnel have expressed an interest in the use of conventional boats as pumps to breakdown lake stratification and the resultant Dead Zones that have become common(24-26) world-wide (Lake Erie and the mouth of the Mississippi are two USA examples).

24

REFERENCES

1. Wabash River Basin Comprehensive Study, Wabash River Coordinating Committee, Appendix A-M,

June, 1971. 

2. Ohio Department of Natural Resources. “Grand Lake St. Marys; The Restoration of a Canal Lake”

Columbus. Ohio. After 1983. 

3. U.S. EPA. “Report on Grand Lake of St. Marys Working Paper No. 411”. June 1975.

4. Army Corps of Engineers. “Grand Lake St. Marys, Ohio: Survey Report for Flood Control and Allied

Purposes” August 1981.

5. Ohio Department of Natural Resources. “Grand Lake St. Marys Watershed Protection Plan.”

December 1998.

6. Ohio EPA. “TMDLs for the Beaver Creek and Grand Lake St. Marys Watershed.” August 2007.

7. TetraTech for Ohio EPA. “Recommended Actions for Grand Lake St. Marys, Ohio” July 29, 2010.

8. Hiskey, Robert. Wrightsville State University “Master Data File.xls”. July 2010.

9. TetraTech for Ohio EPA. “Effectiveness of Alum Treatments Grand Lake St. Marys, Ohio” Dec 21,

2010.

10. Carpenter et.al. “Lake restoration: capabilities and needs” Hydrobiologia 395/396: 19–28, 1999. The

Ecological Bases for Lake and Reservoir Management.

11. Robertson etal. 'Rehabilitation of Delavan Lake, Wisconsin', Lake and Reservoir Management, 16: 3,

155-176, (2000).

12. Cooke etal. “Restoration and Management of Lakes and Reservoirs” 2005 3rd edition.

13. Ohio EPA, Ohio Lake Erie Phosphorus Task Force Final Report April 2010

14. Schaus and Godwin etal, ‘Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient

cycles in Lake Apopka, Florida.’ Freshwater Biology (2010)

15. Vancouver Lake Watershed Partnership ‘Algal Control Techniques version 1’ (April 2009)

16. Shapiro J. & Carlson R.E. ‘Comment on the role of fishes in the regulation of phosphorus availability

in lakes.’ Canadian Journal of Fisheries and Aquatic Sciences 39, 364. (1982)

17. Shapiro etal. ‘Biomanipulation : An Ecosystem Approach to Lake Restoration” Univ. of Minnesota

(1973)

18. Mueller etal. 1999 Green Lake Surveys: ‘Aspects of the Biology of Common Carp with Notes on the

Warmwater Fish Community’ Washington Sept. of Fish and Wildlife (2000)

19. Grizzle etal. ‘Effects of organic enrichment on estuarine macrofaunal benthos: a comparison of

sediment profile imaging and traditional methods.’ Mar. Ecol. Progress Series 74:249-262 (1991)

25

20. Kristensen, Ahmed, and Devol. 1995. Aerobic and Anaerobic Decomposition of Organic Matter in

Marine Sediment: Which is Fastest? Limnology and Oceanography, Volume 40, number 8: 1430-

1437.

21. Hulthe, Hulth, and Hall. 1998. Effect of Oxygen on Degradation Rate of Refractory and Labile

Organic Matter in Continental Margin Sediments. Geochimica Et Cosmochimica Acta, Volume 62,

number 8: 1319-1328.

22. EPA 2002. “National Recommended Water Quality Criteria” EPA-822-R-02-047.

23. MAD Scientist and Associates, Columbus, Ohio 2010. “Airy Gator Demo Data”.

24. Lake Erie Protection & Restoration Plan 2008

http://www.lakeerie.ohio.gov/Portals/0/Reports/2008LEPRplan.pdf

25. Diaz et al “Spreading Dead Zones and Consequences for Marine Ecosystems.” Science Vol. 321 no.

5891 pp. 926-929 2008.

26. Zhang etal. “Natural and human-induced hypoxia and consequences for coastal areas: synthesis and

future development” Biogeosciences, 7, 1443–1467 (2010).

27. Ohio EPA 2010. http://www.epa.state.oh.us/portals/35/inland_lakes/2010GLSMWQSummary.pdf

28. Ohio EPA and TetraTech May 2010. Grand Lake St. Marys In-Lake Actions Evaluation (Working

Draft)

29. GLSM Restoration Commission January 2011. The Strategic Plan for Grand Lake St. Marys.

26

APPENDIX A

GLSM

Water Parameter Charts and Tables 2010

Adapted from Data Collected by:

Dr. Robert Hiskey, Wright State University

A1

Graphs (Page A1 – A5) Adapted from Dr. Robert Hiskey Data

0.0

2.0

4.0

6.0

8.0

10.0

April May June July

pH

Month

Figure 1.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.0

2.0

4.0

6.0

8.0

10.0

April May June July

pH

Month

Figure 1.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.0

2.0

4.0

6.0

8.0

10.0

April May June July

pH

Month

Figure 1.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.05.0

10.015.020.025.030.035.0

April May June July

Tempe

rture, oC

Month

Figure 2.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.05.0

10.015.020.025.030.035.0

April May June July

Tempe

rture, oC

Month

Figure 2.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.05.0

10.015.020.025.030.035.0

April May June July

Tempe

rture, oC

Month

Figure 2.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.0

5.0

10.0

15.0

20.0

April May June July

Dissolved Oxygen

mg/l

Month

Figure 3.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.0

5.0

10.0

15.0

20.0

April May June July

Dissolved Oxygen

mg/l

Month

Figure 3.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.0

5.0

10.0

15.0

20.0

April May June JulyDissolved Oxygen

mg/l

Month

Figure 3.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

A2

0.0

50.0

100.0

150.0

200.0

April May June July

Chloroph

ylraw

Month

Figure 4.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.0

50.0

100.0

150.0

200.0

April May June July

Chloroph

ylraw

Month

Figure 4.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.0

50.0

100.0

150.0

200.0

April May June July

Chloroph

ylraw

Month

Figure 4.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.010.020.030.040.050.060.070.0

April May June July

Secchi

cm

Month

Figure 5.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.010.020.030.040.050.060.070.0

April May June July

Secchi

cm

Month

Figure 5.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.010.020.030.040.050.060.070.0

April May June July

Secchi

cm

Month

Figure 5.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.0

20.0

40.0

60.0

80.0

100.0

April May June July

TUrbidity

NTU

Month

Figure 6.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.0

20.0

40.0

60.0

80.0

100.0

April May June July

TUrbidity

NTU

Month

Figure 6.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.0

20.0

40.0

60.0

80.0

100.0

April May June July

TUrbidity

NTU

Month

Figure 6.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

A3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

April May June July

PO4

mg/l

Month

Figure 7.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.00

0.05

0.10

0.15

0.20

0.25

0.30

April May June July

PO4

mg/l

Month

Figure 7.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.00

0.05

0.10

0.15

0.20

0.25

0.30

April May June July

PO4

mg/l

Month

Figure 7.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.000.200.400.600.801.001.201.40

April May June July

Total P

mg/l

Month

Figure 8.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.000.200.400.600.801.001.201.40

April May June July

Total P

mg/l

Month

Figure 8.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.000.200.400.600.801.001.201.40

April May June July

Total P

mg/l

Month

Figure 8.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.00

0.50

1.00

1.50

2.00

2.50

April May June July

Nitrate

mg/l

Month

Figure 9.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.00

0.50

1.00

1.50

2.00

2.50

April May June July

Nitrate

mg/l

Month

Figure 9.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.00

0.50

1.00

1.50

2.00

2.50

April May June July

Nitrate

mg/l

Month

Figure 9.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

A4

0.00

0.10

0.20

0.30

0.40

0.50

0.60

April May June July

Nitrite

mg/l

Month

Figure 10.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.00

0.10

0.20

0.30

0.40

0.50

0.60

April May June July

Nitrite

mg/l

Month

Figure 10.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.00

0.10

0.20

0.30

0.40

0.50

0.60

April May June July

Nitrite

mg/l

Month

Figure 10.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.00

0.50

1.00

1.50

2.00

April May June July

Ammon

iamg/l

Month

Figure 11.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.00

0.50

1.00

1.50

2.00

April May June July

Ammon

iamg/l

Month

Figure 11.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.00

0.50

1.00

1.50

2.00

April May June July

Ammon

iamg/l

Month

Figure 11.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

0.000.100.200.300.400.500.600.70

April May June July

Iron

mg/l

Month

Figure 12.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter 0.000.100.200.300.400.500.600.70

April May June July

Iron

mg/l

Month

Figure 12.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.000.100.200.300.400.500.600.70

April May June July

Iron

mg/l

Month

Figure 12.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

A5

0.00

2.00

4.00

6.00

8.00

10.00

12.00

April May June July

Silica

mg/l

Month

Figure 13.1Control Data Summary

Surface

0.50 meter

1.00 meter

1.50 meter

0.00

2.00

4.00

6.00

8.00

10.00

12.00

April May June July

Silica

mg/l

Month

Figure 13.2Park Grand Data Summary

Surface

0.50 meter

1.00 meter

Lowest recorded level 0.00

2.00

4.00

6.00

8.00

10.00

12.00

April May June July

Silica

mg/l

Month

Figure 13.3Southmoor Data Summary

Surface

0.50 meter

0.75 meter

A6

Table (A6 – A15) Hiskey Raw Data As Reported Location: Southmoor #1

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/13/2010 Surface 8.5100 17.6000 9.3500 55 cm 26.6000 0.0500 lost 1.3000 0.1230 0.3100

0.5 8.4600 16.1000 8.9700

0.75 8.4900 15.4000 9.3500

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/30/2010 Surface 9.0000 18.6000 11.7600 40 cm 36.0000 0.0900 0.3200 0.5000 0.0780 0.7000

0.5 18.6000 12.0700

1 18.6000 12.1000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/18/2010 Surface 8.5900 16.7000 10.8800 35 cm 46.0000 0.1200 0.6600 0.5000 0.0680 0.9500 0.3400 1.9000

0.5 8.5400 16.7000 10.3800

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/4/2010 Surface 6.3700 25.3000 5.9600 84.5 raw 35 cm 44.0000 0.1400 0.7300 0.1000 0.0640 1.3600 0.3900 9.5000

0.5 6.3700 25.5000 5.9100 86.1000

0.7 3.9400

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/21/2010 Surface 7.6800 28.0000 5.7400 107 raw 20.0000 45.2000 0.0600 1.7300 0.2000 0.0680 2.8100 0.1600 3.4000

0.5 7.5200 27.7000 2.2500 95.0000

0.75 7.4600 27.6000 1.2700

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

7/710 Surface 9.5100 32.6000 19.3100 218 raw 17.0000 76.3000 0.1100 1.1800 0.0000 0.0220 1.0300 0.3700 2.7000

o. j. 0.5 8.5800 29.5000 11.5100 199 raw

0.7 7.9700 28.8000 5.4500 91.0000 0.2000 1.1100 0.1000 0.0110 1.3100 0.5600 5.6000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A7

Location: Southmoor #2

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/13/2010 Surface 8.8400 16.5000 11.2700 45 cm 24.1000 0.0400 0.4500 1.4000 0.1250 0.1800 0.1000 2.2000

0.5 8.8300 16.3000 11.2000

0.75 8.8000 11.2400

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/30/2010 Surface 8.9200 18.5000 11.2900 45 cm

0.5 8.9200 18.4000 11.3700 36.0000 0.0200 0.5300 0.4000 0.0750

75 8.9100 11.3000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/18/2010 Surface 8.3800 16.7000 9.9600 35.0000 37.0000 0.1100 0.6400 0.4000 0.0730 1.0600 0.3400 1.5000

0.5 8.4100 16.7000 9.8500

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/4/2010 Surface 6.3900 25.3000 5.7900 80.9 raw 30 cm 42.0000 0.1400 0.7700 0.0710 1.1000 0.3200 11.9000

0.5 6.3800 25.7000 5.7100 80.2000

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/21/2010 Surface 7.7200 28.0000 3.3400 102 raw 22 cm 49.2000 0.0200 1.8100 0.1000 0.0590 2.9800 0.0600 6.6000

0.5 7.6200 27.8000 3.0100 94.4000

0.75 7.5800 2.0900

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

7/7/2010 Surface 9.5700 33.0000 17.5000 159 raw 20.0000 75.1000 0.1000 0.9900 0.2000 0.0220 0.9200 0.3600 5.9000

o.j 0.5 8.8000 29.7000 11.2900 177 raw 93.1000 0.2600 1.1700 0.2000 0.0290 1.1900 0.5900 10.3000

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

Surface

0.5

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A8

Location: Southmoor #3

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/13/2010 Surface 8.8100 16.5000 10.7000 45 cm 22.3000 0.0500 0.4900 1.2000 0.1320 0.1800 0.1000

0.5 8.7900 16.3000 10.7300

0.75 8.8100 10.9600

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/30/2010 Surface 8.8500 19.1000 11.2700 38 cm 30.0000 0.1900 0.5400 0.5000 0.0720

0.5 8.8400 19.1000 11.2700

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/18/2010 Surface 8.5000 16.8000 9.8500 37.0000 56.0000 0.1100 0.6700 0.2000 0.0690 1.0400 0.5900 2.0000

0.5 8.4800 16.8000 9.7600

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/4/2010 Surface 6.3700 25.5000 6.4900 85.6 raw 30 cm 44.0000 0.1200 0.8400 0.1000 0.0580 1.0900 0.4300 4.5000

0.5 6.3800 26.0000 6.1400 86.6000

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/21/2010 Surface 8.2800 28.5000 8.6100 114 raw 22.0000 50.5000 0.0400 1.6500 0.3000 0.0710 2.9000 0.1200 6.8000

mika 0.5 7.8600 28.3000 7.4000 105.0000

0.75 7.8900 27.8000 4.3000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

7/7/2010 Surface 9.5200 32.7000 19.2000 153 raw 20.0000 71.4000 0.1400 0.8800 0.1000 0.0280 0.9900 0.3800 4.7000

O.J. 0.5 8.9500 30.0000 11.8000 180 raw

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

Surface

0.5

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A9

Location: Southmoor #4

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/13/2010 Surface 8.7900 16.5000 10.7900 45 cm 22.0000 0.0300 0.4700 1.3000 0.1350 0.1600 0.0400 1.7000

0.5 8.7900 16.5000 10.8300

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/30/2010 Surface 18.9000 11.1600 42 cm 29.0000 0.0500 0.4900 0.5000 0.0510 0.4000 0.3000 3.7000

0.5 8.9400 18.8000 11.3000

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/18/2010 Surface 8.6800 16.8000 11.4700 32 cm 44.0000 0.0900 0.6700 0.4000 0.0700 1.0100 0.2100 2.1000

0.5 8.5500 16.8000 11.2500

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/4/2010 Surface 6.4000 25.7000 7.0100 85.7 raw 30 cm 42.0000 0.0600 0.8300 0.0000 0.0660 1.0500 0.4300 7.9000

0.5 6.3800 25.0000 6.7200 86.2000

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/21/2010 Surface 8.1200 28.7000 6.8400 101 raw 22.0000 43.8000 0.0500 1.7100 0.0640 2.8300 0.0500 2.9000

mika 0.5 7.7300 29.8000 3.3000 90.3000

0.75 7.7000 27.8000 3.1000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

7/7/2010 Surface 9.6600 32.5000 20.8600 181 raw 17.0000 114.0000 0.2000 0.9200 0.1000 0.0250 1.3400 0.1300 11.0000

0.5 8.3900 29.1000 7.9400 187 raw

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

Surface

0.5

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A10

Location: West #1

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/15/2010 Surface 8.4000 17.2000 9.5300 70 cm 8.4300 0.0500 0.3500 1.4000 0.1140 0.6400 0.1400 1.2000

0.5 8.4200 16.8000 9.5900

1 8.2000 16.1000 8.0200 17.6000 0.0100 0.4900 1.5000 0.8000 0.0200

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/29/2010 Surface 8.5100 17.3000 10.3800 50 cm 17.0000 0.1500 0.4700 1.0000 0.1240 0.9800

0.5 8.5100 17.1000 10.4300

1 8.3400 17.0000 10.1000 17.0000 0.0600 0.2700 0.9000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/14/2010 Surface 8.7800 20.9000 14.0800 37 cm 37.0000 0.0700 0.5200 0.5000 0.0910 1.4500 0.2500

0.5 8.7900 20.5000 11.0000

1 8.5600 19.4000 10.4800 41.0000 0.0800 0.5200 1.5600 0.4000 6.4000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/28/2010 Surface 8.0600 28.0000 6.7100 14.8 raw 40 cm 26.0000 0.0700 0.2400 1.9000 0.1820 2.0300 0.1400 2.6000

0.5 8.0400 27.1000 6.3300 16.4000

1 7.8700 26.7000 5.0800 16.7000 0.1200 0.4200 1.9000 0.2020 1.8900 0.5400

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/14/2010 Surface 8.6800 26.6000 10.8500 40.0000 9.9900 0.2100 0.4200 2.1000 0.2100 1.1700 0.0500 2.0000

mika 0.5 8.5100 26.1000 9.0400

1 8.0900 25.8000 8.0900

1.5 8.0800 25.7000 7.5200 44.4000 0.0800 0.6600 2.1000 0.2100 1.2000 0.2600 3.0000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/30/2010 Surface 9.2100 26.7000 15.6600 75.8000 25 cm 45.8000 0.1300 0.7000 0.4000 0.0610 0.5700 0.1700 9.9000

OJ 0.5 9.1200 26.5000 14.4700 84.0000

1 9.0800 26.1000 13.7400 81.5000

1.25 81.0000 61.6000 0.1700 0.7300 0.4000 0.0530 0.4800 0.2200 5.2000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

7/14/2010 Surface 9.3500 30.2000 16.1100 43.3000 25.0000 48.9000 0.2500 0.6200 0.0000 0.0050 0.6300 0.2900 3.0000

OJ 0.5 9.3000 30.2000 14.8100 47.2000

1 8.8300 29.5000 4.5000 46.3000 57.6000 0.2200 0.5900 0.1000 0.0060 0.7000 0.4100 5.7000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A11

Location: West #2

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/15/2010 Surface 8.7200 17.8000 11.6600 67 cm 12.6000 0.0500 0.5100 1.5000 0.1150 0.5000

0.5 8.6900 17.7000 11.8700

1 8.5200 16.9000 10.4100 15.2000 0.0500 0.5400 1.4000 0.6000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/29/2001 Surface 8.6200 17.2000 11.1800 52 cm 14.0000 0.0500 0.3200 0.9000 0.0920 1.0200

0.5 8.6200 17.1000 11.0000

1 8.5900 17.1000 11.0200

1.5 8.5800 17.1000 11.0300 16.0000 0.0200 0.2600 0.9000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/14/2010 Surface 8.6700 21.0000 11.7400 37 cm 34.0000 0.0800 0.4200 0.6000 0.0900 1.4600 0.2500

0.5 8.5000 18.8000 11.8400

1 8.0900 18.8000 7.7300

1.5 8.0800 18.4000 6.6500 76.0000 0.1100 0.6000 1.7800 0.4500 0.5000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/28/2010 Surface 8.1000 27.9000 6.7000 15.0 raw 55 cm 20.0000 0.1000 0.1100 2.0000 0.1820 1.8000 0.0400 0.7000

0.5 8.0900 27.7000 6.5800 14.9000

1 7.9400 27.0000 5.7100 15.2000

1.4 7.8100 26.2000 4.2400 16.1000 34.0000 0.0600 0.3300 2.3000 0.2030 1.7500 0.3100

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/14/2010 Surface 8.6600 26.3000 10.6300 40.0000 23.3000 0.0700 0.4400 1.5000 0.1980 0.7200 0.1300 1.5000

mika 0.5 8.6900 26.3000 10.7000

1 8.5600 25.7000 9.6500

1.5 7.9700 25.3000 5.9400 40.1000 0.1000 0.4500 2.2000 0.2200 1.2900 0.2800 1.3000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/30/2010 Surface 9.2200 26.8000 15.9900 91.5000 25 cm 42.6000 0.0800 0.6900 0.3000 0.0570 0.5100 0.1300 3.2000

0.5 9.2200 26.8000 15.9000 99.2000

1 9.1500 26.5000 14.8600 101.0000

1.4 8.8700 25.7000 11.4800 84.8000 48.6000 0.1900 0.7500 0.4000 0.0640 0.6100 0.1800 3.7000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

7/14/2010 Surface 9.4100 30.2000 14.6400 42.7000 25.0000 44.0000 0.3200 0.5900 0.1000 0.0040 0.6300 0.2900 4.8000

OJ 0.5 9.4000 30.2000 16.6100 44.0000

1 8.9500 29.5000 11.0900 46.5000

1.5 8.3300 28.7000 4.7400 54.6000 0.2100 0.6000 0.1000 0.0070 0.5900 0.3500 4.2000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A12

Location: West #3

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/15/2010 Surface 8.7800 18.3000 12.8000 65 cm 12.1000 0.0500 0.4500 1.5000 0.1200 0.4100

0.5 8.7900 18.2000 11.6300

1 8.2800 16.1000 8.5900 14.8000 0.0100 0.3700 1.5000 0.1260 0.6200

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/29/2010 Surface 8.6100 17.4000 10.9700 52 cm 22.0000 0.0900 0.4400 1.0000 0.1230 1.0100

0.5 8.5300 17.4000 10.4000

1 8.5300 17.3000 10.4600 15.0000 0.0400 0.4900 0.9000 0.1210 3.3000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/14/2010 Surface 8.7200 20.7000 13.5200 42 cm 35.0000 0.1100 0.4400 0.5000 0.0940 1.4100 0.2500

0.5 8.5400 20.2000 11.5400

1 8.2100 19.0000 9.0100 45.0000 0.0800 0.5600 1.5700 0.2100 5.8000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/28/2010 Surface 8.2500 28.2000 7.2300 45 cm 22.0000 0.1000 0.3200 2.7000 0.1740 1.7200 0.2600 2.1000

0.5 8.1100 27.6000 6.8600

1 7.9500 26.8000 5.8400

1.5 7.8600 26.5000 4.9100 29.0000 0.1100 0.3300 2.0000 0.1990 1.7300 0.3400

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/14/2010 Surface 8.6100 26.6000 9.9200 35 cm 28.3000 0.0700 0.3500 2.0000 0.2150 1.2300 0.1500 0.3000

mika 0.5 8.5900 26.4000 10.1700

1 8.3800 25.7000 8.0000

1.5 7.9200 25.6000 7.3600 52.7000 0.1700 0.4700 1.9000 0.2090 1.3500 0.3100 2.0000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/30/2010 Surface 9.3000 26.9000 17.1900 67.7000 25 cm 37.4000 0.0500 0.8100 0.3000 0.0670 0.6900 0.0900 2.4000

OJ 0.5 9.3200 26.9000 17.6700 84.8000

1 9.1900 26.3000 15.7600 84.0000

1.25 9.0900 25.8000 12.0800 120.0000 0.1800 1.0700 0.2000 0.0680 0.9100 0.2300 4.2000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

7/14/2010 Surface 9.4600 30.5000 15.5700 34.0000 32.0000 43.0000 0.3800 0.7900 0.2000 0.0020 0.5600 0.2900 1.4000

0.5 9.4000 30.1000 15.8300 40.7000

1 9.1200 29.4000 11.9700 48.3000

1.2 8.6800 29.1000 7.1700 56.7000 0.2800 0.8200 0.2000 0.0060 0.7100 0.3900 5.9000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A13

Location: West #4

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/15/2010 Surface 8.7000 19.1000 11.7000 70 cm 14.8000 0.0300 0.4200 1.6000 0.1150 0.6800 0.0300 3.3000

0.5 8.4200 17.3000 9.2500

1 8.3200 16.4000 8.8700

1.5 8.3200 16.5000 8.8000 48.5000 0.1000 0.5800 1.4000 0.8200 0.0800

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/29/2010 Surface 8.6500 17.3000 11.6600 50 cm 18.0000 0.0500 0.3200 1.0000 0.1240 1.0000 0.1300

0.5 8.6700 17.3000 11.5200

1 8.6700 17.3000 11.7900

1.5 8.6800 17.3000 11.5800 14.0000 0.0500 0.3500 0.8000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/14/2010 Surface 8.7900 21.4000 12.8300 35 cm 28.0000 0.0800 0.3900 0.6000 0.0910 1.2500 0.2000

0.5 8.7500 20.9000 13.0300

1 8.4800 19.2000 10.0100 45.0000 0.1200 0.6100 1.5100 0.3000 5.2000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/28/2010 Surface 8.1900 28.0000 7.2000 15.4 raw 47.0000 23.0000 0.0400 0.3600 2.1000 0.1900 1.6300 0.1500 0.5000

0.5 8.1400 27.5000 6.9900 15.1000

1 8.1100 26.8000 6.7500 16.9000

1.5 7.7900 3.3900 18.3000 33.0000 0.1400 0.3400 2.0000 0.2000 1.7200 0.3400

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/14/2010 Surface 8.6800 26.3000 10.0800 42.0000 27.6000 0.0000 0.3000 1.2000 0.1840 1.0500 0.0200 0.2000

mika 0.5 8.5800 26.0000 8.7200

1 8.3700 25.5000 7.6200

1.5 8.1500 25.3000 5.2600 43.6000 0.0700 0.3500 1.4000 0.1930 1.5600 0.2600 0.1000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/30/2010 Surface 9.3200 26.9000 17.9600 70.8000 22 cm 45.3000 0.0700 0.5600 0.5000 0.0590 0.7300 0.1300 2.6000

oj 0.5 9.2300 26.6000 17.0900 75.9000

1 8.7400 25.3000 10.9900 61.1000

1.5 8.8400 24.7000 5.6600 57.4000 73.0000 0.1100 0.6400 0.1000 0.0610 0.8600 0.3800 3.8000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

7/14/2010 Surface 9.3900 30.8000 15.2000 31.2000 27.0000 43.9000 0.2500 0.5000 0.1000 0.0070 0.5200 0.3100 3.5000

OJ 0.5 9.3700 29.6000 15.1800 37.4000

1 8.4800 28.7000 9.1200 41.3000

1.5 7.5400 28.0000 3.9100 41.0000 53.3000 0.2500 0.6300 0.2000 0.0030 0.6300 0.4100 3.6000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A14

Location: West #5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/29/2010 Surface 7.7300 17.2000 7.7300 60 cm 16.0000 0.1600 0.3000 1.0000 0.1180 1.3400

0.5 7.8000 17.2000 7.8000

1 7.7800 17.1000 7.7800

1.5 7.6500 17.1000 7.6500 14.0000 0.1300 0.1900 0.8000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/14/2010 Surface 8.6300 19.5000 11.0300 32 cm 40.0000 0.0300 0.5100 0.5000 0.0820 1.4100 0.2800

0.5 8.6200 19.6000 11.1300

1 8.5900 19.5000 11.1000 47.0000 0.0700 0.5500 1.5000 0.3500 3.7000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/28/2010 Surface 8.3600 28.6000 8.6500 19.3 raw 50 cm 24.0000 0.0500 0.3200 3.4000 0.2020 1.4700 0.1600 1.5000

0.5 8.3500 27.6000 8.6800 21.5000

1 8.0400 26.1000 5.4900 21.0000

1.5 7.8500 25.7000 3.7700 19.8000 31.0000 0.1500 0.3200 2.4000 0.2120 1.6800 0.2400

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/14/2010 Surface 8.9900 26.3000 13.2500 50 cm 34.3000 0.0300 0.5200 1.7000 0.1630 0.8900 0.1400 0.0000

0.5 8.9900 25.9000 13.2800

1 8.9300 25.4000 12.1100

1.5 8.8300 25.2000 10.8400 85.5000 0.1600 0.7200 1.4000 0.1480 1.2200 0.5200 0.0000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/30/2010 Surface 9.2200 26.1000 16.1700 60.9000 32 cm 43.7000 0.1200 0.5400 0.4000 0.0630 0.5200 0.0700 3.8000

0.5 9.2100 26.0000 16.0300 61.6000

1 8.9900 25.4000 12.7700 63.4000

1.5 8.2900 24.4000 5.0000 51.3000 49.5000 0.0900 0.5600 0.4000 0.0720 0.5200 0.1800 3.1000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

7/14/2010 Surface 9.4600 30.7000 15.8600 24.3000 32.0000 38.5000 0.3000 0.4900 0.0000 0.0050 0.4500 0.2300 1.7000

OJ 0.5 9.2500 30.0000 13.4900 37.6000

1 8.7200 28.1000 6.3800 42.8000

1.4 8.2900 27.7000 3.5900 50.5000 68.4000 0.4300 0.8200 0.3000 0.0070 0.8800 0.1800 2.3000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

Surface

0.5

1

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5

A15

Location: Control

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

4/15/2010 Surface 8.2200 18.7000 8.3500 12.1000 0.0000 0.3600 1.2000 0.1130 0.7800 0.1100 1.0000

0.5 7.9600 17.1000 8.1600

1 8.0600 17.5000 8.0500

1.5 7.9500 16.6000 6.8000 16.6000 0.0400 0.3600 1.4000 0.6500 0.1000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

4/29/2010 Surface 8.0000 16.4000 7.5200 60 cm 18.0000 0.1000 0.2400 0.9000 0.1390 1.3600 0.3000

0.5 8.0400 16.5000 7.6500

1 8.0500 16.5000 7.6600

1.5 8.0500 16.5000 7.5700 16.0000 0.1200 0.2400 0.8000 0.1320 2.6000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

5/14/2010 Surface 8.4600 19.3000 10.4200 37 cm 30.0000 0.0600 0.5500 0.6000 0.0940 1.5300 0.2400

0.5 8.4700 19.4000 10.4300

1 8.4300 19.3000 10.1900 56.0000 0.1300 0.5600 1.7400 0.3300 6.4000

1.5

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

5/28/2010 Surface 8.2500 27.7000 7.9400 11.4 raw 62 cm 15.0000 0.0400 0.2000 1.0000 0.1440 1.7600 0.1300 0.5000

0.5 8.2600 27.2000 8.0000 15.3000

1 8.2700 25.1000 8.4200 19.8000

1.5 7.9200 25.1000 5.6200 21.4000 21.0000 0.0400 0.3600 1.5000 0.1610 1.6600 0.1400

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

6/14/2010 Surface 8.9200 25.7000 13.0000 57 cm 26.9000 0.0600 0.4300 1.1000 0.1170 1.0300 0.0200

mika 0.5 8.9100 25.6000 13.0100

1 8.6300 25.3000 9.6500

1.5 7.6900 24.8000 4.2600 28.0000 0.0400 0.4300 1.2000 0.1450 1.1400 0.1800

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

6/30/2010 Surface 9.3100 26.5000 20.5700 95.2000 25 cm 45.0000 0.1200 0.6300 0.5000 0.0700 0.9000 0.1100 9.3000

oj 0.5 9.3100 26.0000 20.3000 99.0000

1 9.2000 25.4000 17.9100 96.3000

1.5 8.2700 24.4000 7.4400 68.9000 44.9000 0.1600 0.6700 0.5000 0.0730 1.0300 0.3900 7.6000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen

Iron Silicia

7/14/2010 Surface 9.6600 32.2000 18.7700 30.0000 35.0000 25.4000 0.1500 0.4400 0.2000 0.0090 0.4300 0.1200 0.1000

OJ 0.5 9.5600 31.7000 19.3100 42.5000

1 8.5000 28.3000 8.9200 44.8000

1.5 7.8700 27.2000 3.4900 42.6000 0.6000 0.1600 0.5600 0.1000 0.0060 0.4600 0.6000 4.8000

Date: Depth pH Temp D.O. Chlorophyll Secchi Turb PO4 Total P Nitrate Nitrite Ammonia Total Nitrogen Iron Silicia

Surface

0.5

1

1.5