21
A Numerical Study of Barometric Pumping Jeff Sondrup AgE 588 Fluid Mechanics of Porous Materials April 11, 2001

A Numerical Study of Barometric Pumping

  • Upload
    bruis

  • View
    24

  • Download
    1

Embed Size (px)

DESCRIPTION

A Numerical Study of Barometric Pumping. Jeff Sondrup AgE 588 Fluid Mechanics of Porous Materials April 11, 2001. Presentation Outline. Introduction Gas Transport & Barometric Pumping Model Description Model Results Conclusions. Subsurface Disposal Area, INEEL. - PowerPoint PPT Presentation

Citation preview

Page 1: A Numerical Study of Barometric Pumping

A Numerical Study of Barometric Pumping

Jeff Sondrup

AgE 588

Fluid Mechanics of Porous Materials

April 11, 2001

Page 2: A Numerical Study of Barometric Pumping

Presentation Outline

• Introduction

• Gas Transport & Barometric Pumping

• Model Description

• Model Results

• Conclusions

Page 3: A Numerical Study of Barometric Pumping

Subsurface Disposal Area, INEEL

Page 4: A Numerical Study of Barometric Pumping

VOC Background at the SDA

• VOCs first discovered in GW near SDA in 1987• Soil gas survey confirmed SDA pits and trenches were a VOC source• Inventory search indicated sludges containing VOCs from Rocky Flats

buried in SDA (1966-70)

• Primarily carbon tetrachloride (CCl4) with TCE, PCE, and TCA

• Vadose zone vapor sampling indicates a large plume• GW concentrations ND to slightly above MCL• Modeling estimates GW concentrations to peak decades in the future at

several times MCL• ROD signed in 1994, Soil Vapor Extraction (SVE) preferred alternative• Five extraction wells began operating 1996, removed ~75,000 lbs

TVOCs, ~48,000 lbs CCl4

Page 5: A Numerical Study of Barometric Pumping

Gas Transport Mechanismsin the Vadose Zone

• Advection (contaminants travel with the bulk movement of air)

– Natural: water displacement, barometric pressure changes, density

– Induced: drilling, soil vapor extraction (SVE)

• Diffusion (random motion of molecules)

• Sorption (contaminants adhere to the rock/soil)

• Vapor-Liquid Partitioning (contaminants move into and out of air-water)

Page 6: A Numerical Study of Barometric Pumping

Barometric Pumping

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

SedimentaryInterbed

SedimentaryInterbed

VadoseZone580 ft.

Region ofFractured

Basalt

Top of Snake River Pla in Aquifer

App

roxi

ma

te V

ertic

al S

cal

e (f

eet

)

0

50

100

150

200

250

300

350

400

450

500

550

600

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

RepresentativeDisposal Pits

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

2

Time

Pre

ssur

e

23

3

The sediment or lower permeabilitylayers dampen the signal and causea phase shift (lag) in the response.

Page 7: A Numerical Study of Barometric Pumping

Barometric Pressure Data

8 30

8 35

8 40

8 45

8 50

8 55

8 60

1 6 -M a r 2 1 -M a r 2 6 -M a r 3 1 -M a r 5 -A p r 10 -A p r 1 5 -A p r

Bar

omet

ric P

ress

ure

(mb) Square Wave

Approximation

Data

SinusoidalApproximation

Mean Pressure

Date

Page 8: A Numerical Study of Barometric Pumping

Model Geometry & Grid

0 20 40 60 80 1000Distance (m)

0

10

20

30

40

50

60

70

0

Dep

th (

m)

VOC Source

Basalt

Sediment

Page 9: A Numerical Study of Barometric Pumping

Hydraulic Properties of Fractured Basalt and Sediment

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Water Saturation

Pre

ssu

re (

-kP

a)

Fractured BasaltSediment

Property Basalt Sediment

Permeability 9000 mD (horz)300 mD (vert)

4 mD

Porosity 0.05 0.5Residual

Water Sat.0.02 0.194

(van G) 10 m-1 1.60 m-1

n (van G) 2.5 1.70

Page 10: A Numerical Study of Barometric Pumping

Properties ofCarbon Tetrachloride

Property Value Source

Air DiffusionCoefficient

0.72 m2/d Lugg et al. (1968)

Water DiffusionCoefficient

7.2E-05 m2/d Water diffusion coefficients are typically fourorders of magnitude less than air diffusioncoefficients (Perry and Chilton, 1973).

Organic CarbonPartition Coefficient

439 mL/g U.S. EPA (1990)

Henry's Constant 0.750 Non-dimensional value at 15 C as reported byGossett (1987).

Liquid Density 1584 kg/m3 Cohen and Mercer (1993)

Liquid Viscosity 1.0 cP Pankow and Cherry (1996)

Gas Viscosity 1.8E-5 Ns/m2 Viscosity of air at 20 C

Vapor Pressure 9.7 kPa Value at 15 C reported by Pankow and Cherry(1996)

Critical Pressure 4560 kPa CRC (1987)

Critical Temperature 557 K CRC (1987)

Page 11: A Numerical Study of Barometric Pumping

Barometric Pressure Data

8 30

8 35

8 40

8 45

8 50

8 55

8 60

1 6 -M a r 2 1 -M a r 2 6 -M a r 3 1 -M a r 5 -A p r 10 -A p r 1 5 -A p r

Bar

omet

ric P

ress

ure

(mb) Square Wave

Approximation

Data

SinusoidalApproximation

Mean Pressure

Date

Page 12: A Numerical Study of Barometric Pumping

Barometric PressureSine Wave Approximation

-1.5

-0.5

0.5

1.5

0 5 10 15 20 25 30

Time (days)

DP

(kP

a)

Page 13: A Numerical Study of Barometric Pumping

Base Case Simulation(No Barometric Pumping)

0 10 20 30 40 50 60 70 80 90 100Horizontal Distance (m)

010

20

30

40

50

6070

0

Dep

th (m

)

6 months

1000 100 10

Page 14: A Numerical Study of Barometric Pumping

Barometric Pumping(Square Wave Approximation Dt=1 day)

0 10 20 30 40 50 60 70 80 90 100

010

20

30

40

50

6070

0

Dep

th (

m)

6 months

1000 100 10

Page 15: A Numerical Study of Barometric Pumping

Barometric Pumping(Square Wave Approximation Dt=10 day)

0 10 20 30 40 50 60 70 80 90 100

010

20

30

40

50

6070

0

Horizontal Distance (m)

Dep

th (m

)

6 months

1000 100 10

Page 16: A Numerical Study of Barometric Pumping

Barometric Pumping(Sine Wave Approximation Dt=1 day)

0 10 20 30 40 50 60 70 80 90 100

010

20

30

40

50

6070

0

Horizontal Distance (m)

Dep

th (m

)

6 months

1000 100 10

Page 17: A Numerical Study of Barometric Pumping

CCl4 Vertical Profile (1 year)0

10

20

30

40

50

60

700 500 1000 1500 2000

CCl Vapor Concentration (ppmv)4

Dep

th(m

)

Base Case (no barometric pumping)

Baro Pumping (sine wave, t=1 day)D

Baro Pumping (sqr wave, t=1 day)D

1 year

Page 18: A Numerical Study of Barometric Pumping

CCl4 Vertical Profile (5 years)0

10

20

30

40

50

60

700 10 20 30 40 50

CCl Vapor Concentration (ppm v)4

Dep

th(m

)

Base Case (no barometric pumping)

Baro Pumping (sine wave, t=1 day)D

Baro Pumping (sqr wave, t=1 day)D

5 years

Page 19: A Numerical Study of Barometric Pumping

CCl4 Mass Remaining in VZ

0.01

0.1

1

1 2 3 4 5

Time (years)

CC

l M

ass

in V

ado

se Z

on

e (k

g)

4

Base Case (no barometric pumping)

Barometric Pumping (sine wave, t=1 day)D

Barometric Pumping (square wave, t=10 days)D

Barometric Pumping (square wave, t=1 day)D

Page 20: A Numerical Study of Barometric Pumping

CCl4 Mass Accounting(Barometric Pumping, Square Wave, Dt=1 day)

CC

l M

ass

(kg

)4

0.001

0.010

0.100

1.000

0 1 2 3 4 5

Time (years)

Total Mass

Mass in Vadose Zone

Diffusive Mass to Atmosphere

Advective Mass to Atmosphere

Mass to Aquifer

Page 21: A Numerical Study of Barometric Pumping

Conclusions

• Time step important when simulating BP

• Square wave approximation is reasonable if pressure patterns predictable and repeatable

• BP impact small but can be important

• Impact is site and event specific (depends on contaminant, location, pressure patterns, subsurface)

• Diffusion is the dominant mechanism

• BP important for passive soil venting (gas extraction)