13
Slide 1 2009 Power Amplifier Symposium, San Diego, CA. 2009 Power Amplifier Symposium, San Diego, CA. A New Inverse Class E A New Inverse Class E Power Amplifier Topology Power Amplifier Topology Jukka Typp Jukka Typp ö ö and Morten Olavsbr and Morten Olavsbr å å ten ten Department Department of Electronics and Telecommunications of Electronics and Telecommunications Norwegian University of Science and Technology Norwegian University of Science and Technology

A New Inverse Class E Power Amplifier Topologypasymposium.ucsd.edu/papers2009/RWS09_JT.pdf · Slide 1 2009 Power Amplifier Symposium, San Diego, CA. A New Inverse Class E Power Amplifier

Embed Size (px)

Citation preview

Slide 12009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

A New Inverse Class E A New Inverse Class E Power Amplifier TopologyPower Amplifier Topology

Jukka TyppJukka Typpöö and Morten Olavsbrand Morten OlavsbrååtentenDepartmentDepartment of Electronics and Telecommunicationsof Electronics and TelecommunicationsNorwegian University of Science and TechnologyNorwegian University of Science and Technology

Slide 22009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

OutlineOutline

Class E, Inverse Class EChoke-free Inverse Class EPotential benefitsExpected problemsSimulated waveformsConclusion

Slide 32009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

Class E AmplifierClass E Amplifier

N. & A. Sokal, 1975

Slide 42009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

Brabetz, Fusco, 2004

Inverse Class E AmplifierInverse Class E Amplifier

Slide 52009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

ChokeChoke--free Inverse Class E Amplifierfree Inverse Class E Amplifier

GB0810017.4, June 2008

Slide 62009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

ChokeChoke--free Inverse Class E Amplifierfree Inverse Class E Amplifier

Keeping the VDD node in low Keeping the VDD node in low imedanceimedance

GB0810017.4, June 2008

Slide 72009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

ChokeChoke--free Inverse Class E Amplifierfree Inverse Class E Amplifier

Keeping the VDD node in low Keeping the VDD node in low imedanceimedanceUsing the self resonance of MIM capacitor fingers?Using the self resonance of MIM capacitor fingers?

GB0810017.4, June 2008

Slide 82009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

ChokeChoke--free Inverse Class E Amplifierfree Inverse Class E Amplifier

GB0810017.4, June 2008

Differential configuration: outphasing the odd harmonicsDifferential configuration: outphasing the odd harmonics

Slide 92009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

ChokeChoke--free Inverse Class E Amplifierfree Inverse Class E Amplifier

Typical component values:Typical component values:

--100mW, 433 MHz, VDD=5V:100mW, 433 MHz, VDD=5V:5.66nH 3.08nH 48.85pF5.66nH 3.08nH 48.85pF

--100mW, 870 MHz, VDD= 2.5V:100mW, 870 MHz, VDD= 2.5V:3.65nH 1.99nH 18.87pF3.65nH 1.99nH 18.87pF

--100mW, 2,4 GHz, VDD=3,3V:100mW, 2,4 GHz, VDD=3,3V:2.30nH 1.25nH 3.92pF2.30nH 1.25nH 3.92pF

Slide 102009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

Potential benefitsPotential benefits

--No bias chokeNo bias choke

--DC block only if the load needs it DC block only if the load needs it

--Realizable component sizesRealizable component sizes

--Integrating the whole output network?Integrating the whole output network?

--Output power control through Output power control through VddVdd

Slide 112009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

Expected problems

-High currents in the parallel resonator, low-loss passive components necessary

-Drain capacitance -Discharge current: iC = CD V f-Ringing with L1 when the switch is opened

-The switch channel must also sink the discharge current of the drain capacitor

Slide 122009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

Simulated waveformsSimulated waveforms

0.0ns 0.2ns 0.4ns 0.6ns 0.8ns 1.0ns 1.2ns 1.4ns 1.6ns 1.8ns0.0V

0.8V

1.6V

2.4V

3.2V

4.0V

4.8V

5.6V

6.4V

7.2V

8.0V

8.8V

0mA

10mA

20mA

30mA

40mA

50mA

60mA

70mA

80mA

90mA

100mA

110mA

120mAV(vsw) I(S1)

S1

SINE(0 10 868E6 0 6 6 1000)

V1

L1

5.7e-9

C1

11.05e-12

L23.46e-9

C2

5p

R1190

L36.72406n

C3

2.5p

L43.362n

C4

2p

L51.868n C6

1p

I1

32m

C7

0.05p

E1 1

Vsw

VDD

in

tank out

.tran 0 50n 48n 1p

.model MYSW SW(Ron=0.1 Roff=100000 Vt=0 Vh=-.1)f 2f 3f

Slide 132009 Power Amplifier Symposium, San Diego, CA.2009 Power Amplifier Symposium, San Diego, CA.

ConclusionConclusion

-Potential for full integration

-Still unproven

-Simulations with ideal switches exist

-Patent application GB0810017.4, June 2008