A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    1/47

    Double-Layered Electrode Composed of

    Compact and Mesoporous TiO2 Layers

    for Dye-Sensitized Solar Cells (DSSCs)

    (E-mail: [email protected])

    Hyun Joong Kim

    Nanostructured Eco- and Energy Materials Lab.

    Department of Materials Science and Engineering

    Seoul National University

    2007. 12. 18

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    2/47

    Nanostructured Eco- and Ener Materials Lab.

    Introduction

    Low energetic production cost

    Low cost of the raw materials

    Eco-friendly energy source

    Application

    Benefits of DSSC

    e-

    e-e-

    Dye

    h

    e-

    I3-

    I3-

    I-

    I-

    Pt

    TCO

    TCO TiO2

    h

    Electrolyte

    Principle

    Operating Mechanism of Dye-Sensitized Solar Cells (DSSCs)

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    3/47

    Nanostructured Eco- and Ener Materials Lab.

    IntroductionOperating Mechanism of Dye-Sensitized Solar Cells (DSSCs)

    Materials

    Electron acceptor (electrode): ZnO, TiO2

    Hole acceptor (electrolyte): acetonitrile based

    electrolyte

    Photosensitizer: Ru-dyer

    S0/S+

    S*

    Voc

    VB

    CB

    Fermi Level

    injcc

    TiO2 Dye

    surface

    states

    e-

    e- e-

    e-

    I -

    I3-

    e-

    e-e-

    Dye

    h

    e-

    I3-

    I3-

    I-

    I-

    Pt

    TCO

    TCO TiO2

    h

    Electrolyte h

    Principle

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    4/47

    Nanostructured Eco- and Ener Materials Lab.

    Introduction

    Large surface area

    - Large amount of adsorption of Ru-dye

    Requirement for TiO2 Layer

    e-

    e-e-

    Dye

    h

    e-

    I3-

    I3-

    I-

    I-

    Pt

    TCO

    TCO TiO2

    h

    Electrolyte

    Principle

    Efficient electron transfer

    - Low defect

    - Good connectivity without grainboundary

    - High crystallinity

    Efficient diffusion of electrolyte

    - Narrow pore size distribution

    - High porosity

    Operating Mechanism of Dye-Sensitized Solar Cells (DSSCs)

    Materials

    Electron acceptor (electrode): ZnO, TiO2

    Hole acceptor (electrolyte): acetonitrile based

    electrolyte, LiI

    Photosensitizer: Ru-dye

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    5/47

    Nanostructured Eco- and Ener Materials Lab.

    Approaches Require Modification of TiO2 Photoelectrode to

    Large Surface Area

    Blocking of Direct Contact With Electrolyte

    Introduction

    nanocrystal TiO2 film with smallsurface area (< 60m2/g)

    has limitation of dye adsorption site

    Collapse of porous structure

    Direct contact with electrolyte

    Ref.) Philippe Preneet al., Chem. Mater., 2006, 18, 6152

    TiO2 Nanoparticles Layer

    Direct contact with electrolyte

    Mesoporous TiO2 Layer

    collapsePorous

    stuctureNanoparticles Mesopore

    FTO

    FT

    O

    TiO2 Layer

    electrolyte electrolyte

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    6/47

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    7/47

    Nanostructured Eco- and Ener Materials Lab.

    ObjectiveBlocking Layer

    Double-Layered TiO2 Electrode

    Preventing electron leakagefrom FTO regardless influencingelectron injection

    TiO2 deposited by sputtering

    Morphology

    Crystal composition

    Transmittance

    J-Vcharacteristics

    Mesoporous TiO2

    Morphology

    Particle-size-distribution

    Crystal composition

    Specific surface area and pore size

    Hydrothermal treatment

    Maintenance of porous structureand large surface area

    Morphology

    Transmittance

    J-Vcharacteristics

    Mesoporous TiO2 Layer

    Sufficient dye adsorption site

    Morphology

    Crystal composition

    J-Vcharacteristics

    Development of Enhanced TiO2 Photoelectrode for DSSC

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    8/47Nanostructured Eco- and Ener Materials Lab.

    ExperimentalDeposition of TiO2 Blocking Layer by Reactive Sputtering

    Experimental Condition

    Base Pressure < 5 107 mTorr Magnetron DC power 300 WWorking Pressure 10 ~ 30 mTorr ICP power (r.f. coil) 400 W

    Substrate Temperature Unheated Deposition Rate 30 ~ 40 nm/min

    Experimental Condition

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    9/47Nanostructured Eco- and Ener Materials Lab.

    Experimental

    Experimental Condition

    Base Pressure < 5 107 mTorr Magnetron DC power 300 WWorking Pressure 10 ~ 30 mTorr ICP power (r.f. coil) 400 W

    Substrate Temperature Unheated Deposition Rate 30 ~ 40 nm/min

    Experimental Condition Principle of Sputtering Process

    Ar+

    Ar+Ar+ e-

    e- e-

    plasma

    - voltage

    O2 flow

    Ti atom

    TiO2

    Vacuum chamber

    Ti

    FTO

    Ar flow

    Deposition of TiO2 Blocking Layer by Reactive Sputtering

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    10/47Nanostructured Eco- and Ener Materials Lab.

    ExperimentalDeposition of TiO2 Blocking Layer by Reactive Sputtering

    Experimental Condition

    Base Pressure < 5 107 mTorr Magnetron DC power 300 WWorking Pressure 10 ~ 30 mTorr ICP power (r.f. coil) 400 W

    Substrate Temperature Unheated Deposition Rate 30 ~ 40 nm/min

    Experimental Condition

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    11/47Nanostructured Eco- and Ener Materials Lab.

    ExperimentalPreparation of Mesoporous TiO2 Electrode

    Pore-forming agentP123

    (Nonionic surfactant)

    (EO)20(PO)70(EO)20 Aldrich, Mw = 5,800 g/mol

    Titania precursorTitanium(IV)

    isopropoxide(TTIP)

    Aldrich, 97%, Mw = 284.26 g/mol

    Titania source

    Acetyl acetone(AcAc)

    Aldrich, 99%, Mw = 100.12 g/mol

    Retarding agent controlling the hydrolysis of TTIP

    Materials

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    12/47Nanostructured Eco- and Ener Materials Lab.

    Synthesis of Mesoporous TiO2

    Experimental

    micelle

    TTIP + AcAc

    Hydrothermal treatment

    90 oC, 12 h

    PEG, PEO

    Doctor blade

    Preparation of Mesoporous TiO2 Electrode

    distilled water + P123+ H2SO4

    Calcination at 500 oC& dye adsorption

    (1:1)

    (100 ml) (14 g) (1.5 g)

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    13/47Nanostructured Eco- and Ener Materials Lab.

    (100 ml) (14 g) (1.5 g)

    Synthesis of Mesoporous TiO2

    Experimental

    micelle

    TTIP + AcAc

    Hydrothermal treatment

    90 oC, 12 h

    PEG, PEO

    Doctor blade

    Preparation of Mesoporous TiO2 Electrode

    distilled water + P123+ H2SO4

    Surfactant-to-Timoalr ratio

    1:10

    1:30

    1:50

    1:70

    Calcination at 500 oC

    & dye adsorption

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    14/47Nanostructured Eco- and Ener Materials Lab.

    (100 ml) (14 g) (1.5 g)

    Synthesis of Mesoporous TiO2

    Experimental

    micelle

    TTIP + AcAc

    Hydrothermal treatment

    90 oC, 12 h

    PEG, PEO

    Doctor blade

    Calcination at 500 oC

    Mesoporous TiO2

    Preparation of Mesoporous TiO2 Electrode

    distilled water + P123+ H2SO4

    & dye adsorption

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    15/47Nanostructured Eco- and Ener Materials Lab.

    (100 ml) (14 g) (1.5 g)

    Synthesis of Mesoporous TiO2

    Experimental

    distilled water + P123+ H2SO4

    micelle

    TTIP + AcAc

    Hydrothermal treatment

    90 oC, 12 h

    PEG, PEO

    Doctor blade

    Mesoporous TiO2

    Preparation of Mesoporous TiO2 Electrode

    Calcination at 500 oC& dye adsorption

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    16/47Nanostructured Eco- and Ener Materials Lab.

    ExperimentalCharacterization

    - Field Emission Scanning Electron Microscopy (FE-SEM)JEOL JSM-6330F, electron acceleration voltage: 5.0 kV, WD: 14 ~ 15 mm

    Morphology

    - Brunauer-Emmett-Teller (BET) method- Barrett-Joyner-Halenda (BJH) method

    Micromeritics ASAP 2000, degassing at 100o

    C, analysis at 77 K

    Specific surface area and pore size

    - Wide angle X-ray diffraction (WXRD)MAC/Sci. MXP 18XHF-22SRA with Cu K radiation source,

    wavelength: 0.154 nm, scan speed: 5o/min

    Crystal structure

    - High Resolution-Transmission Electron Microcopy (HR-TEM)

    JEOL JEM-3010

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    17/47Nanostructured Eco- and Ener Materials Lab.

    Experimental

    - Dynamic light scattering (DLS)

    Photal DLS-7000 and GC-1000 photon correlator

    Size distribution

    - Ultraviolet visible (UV-Vis.)spectroscopyShimadzu, UV-1650PC

    Transmittance analysis

    - Photocurrent density-voltage characteristic (Solar simulator)

    Keithley 2400 source, Xe lamp (Oriel, 300W), under the global AM1.5, 100 mW/cm2

    Photovoltaic characteristic

    - Surface profiler

    Nanospec AFT/200, scan length: 10 mm, scan speed: 2 /sec

    Thickness of TiO2 electrode

    - Field Emission Scanning Electron Microscopy (FE-SEM)JEOL JSM-6330F, electron acceleration voltage: 5.0 kV, WD: 14 ~ 15 mm

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    18/47Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionTiO

    2Blocking Layer Produced by Sputtering

    Morphology (FE-SEM)

    Film Thickness : ~ 1

    Surface Cross Section

    High Dense Film

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    19/47Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Morphology (FE-SEM)

    Film Thickness : ~ 1

    Surface Cross SectionSurface of P25

    High Dense Film

    TiO2

    Blocking Layer Produced by Sputtering

    Relatively low dense film

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    20/47Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionTiO

    2Blocking Layer Produced by Sputtering

    Morphology (FE-SEM)

    Film Thickness : ~ 1

    Surface Cross Section

    High Dense Film

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    21/47Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Morphology (AFM)

    TiO2

    Blocking Layer Produced by Sputtering

    Rq(root mean squire roughness)

    Rpv(peak to valley roughness)

    6.88 nm 65.75 nm

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    22/47Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionTiO

    2Blocking Layer Produced by Sputtering

    Uniformity (-step)

    d0d

    d0 d Uniformity

    885 nm 773 nm 87 %

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    23/47Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Transmittance Analysis

    (UV-Vis. Spectroscopy)

    400 500 600 700

    0

    20

    40

    60

    80

    100

    Transmittanc

    e(%)

    Wavelength (nm)

    Sputtered TiO2

    20 30 40 50 60

    2 (deg)

    (101)

    Crystal phase

    Anatase Higher Transmittance than P25 Film

    Crystal Structure (WXRD)

    P25

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    24/47Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionJ-VCharacteristics

    P25 Sputtered TiO2

    + P25

    Area (cm2) 0.14 0.14

    Voc (V) 0.77 0.76

    Jsc (mA/cm2) 11.22 12.72

    FF 0.66 0.66

    EFF (%) 5.7 6.4

    Sputtered TiO2 + P25

    P25

    Sputtered TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    25/47Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionJ-VCharacteristics

    P25 Sputtered TiO2

    + P25

    Area (cm2) 0.14 0.14

    Voc (V) 0.77 0.76

    Jsc (mA/cm2) 11.22 12.72

    FF 0.66 0.66

    EFF (%) 5.7 6.4

    12 %

    Sputtered TiO2 + P25

    P25

    Sputtered TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    26/47Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Photo Image

    Hydrothermally Treated Mesoporous TiO2

    (HT-M-TiO2

    )

    [1:10] [1:30] [1:50] [1:70]

    Surfactant-to-TTIP

    molar ratio1:10 1:30 1:50 1:70

    Sample state Precipitaion Precipitaion Colloid Solid

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    27/47Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Photo Image

    Hydrothermally Treated Mesoporous TiO2

    (HT-M-TiO2

    )

    1:10 1:30 1:50 1:70

    Sample state Precipitaion Precipitaion Colloid Solid

    [1:10] [1:30] [1:50] [1:70][1:70]

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    28/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Photo Image

    Hydrothermally Treated Mesoporous TiO2

    (HT-M-TiO2

    )

    1:10 1:30 1:50 1:70

    Sample state Precipitaion Precipitaion HT-M-TiO2 Solid

    [1:10] [1:30] [1:50] [1:70][1:70]

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    29/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Particle-Size-Distribution (DLS)

    HT-M-TiO2 (1:50)1:10

    Average size: 80 nm

    Average size

    : 2

    0 100 200 3000 6000 90000

    2

    4

    6

    8

    10

    12

    14

    Intensity

    Diameter (nm)

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    30/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Crystal Structure (WXRD & HR-TEM)

    cos

    K

    : crystallite size K: 0.89

    : wavelength of the X-ray radiation (0.154 nm)

    : full width at half maximum intensity (FWHM)

    : diffraction angle (2= 25.3o)

    HT-M-TiO2

    (nm)0.0268 5.24

    Crystal Phase

    Anatase

    Amorphous phase of mesoporous TiO2 can besuccessfully converted to an anatase phase bycarrying out hydrothermal treatment

    Ref.) Appl. Catal. A: Gen.2007, 323, 110

    HT-M- TiO2

    (101)

    (200) (105)(004)

    Mesorporous TiO2 withoutHydrothermal Treatment(M-TiO2)

    20 30 40 50 60

    Intensity(a.u.)

    2 (deg)

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    31/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion

    cos

    K

    : crystallite size K: 0.89

    : wavelength of the X-ray radiation (0.154 nm)

    : full width at half maximum intensity (FWHM)

    : diffraction angle (2= 25.3o)

    Crystal Structure (WXRD & HR-TEM)

    HT-M- TiO2

    (101)

    (200) (105)(004)

    Mesorporous TiO2 withoutHydrothermal Treatment(M-TiO2)

    20 30 40 50 60

    Intensity(a.u.)

    2 (deg)

    5 nm

    5 ~ 6 nm

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    32/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion

    cos

    K

    : crystallite size K: 0.89

    : wavelength of the X-ray radiation (0.154 nm)

    : full width at half maximum intensity (FWHM)

    : diffraction angle (2= 25.3o)

    Crystal Structure (WXRD & HR-TEM)

    HT-M- TiO2

    (101)

    (200) (105)(004)

    Mesorporous TiO2 withoutHydrothermal Treatment(M-TiO2)

    20 30 40 50 60

    Intensity(a.u.)

    2 (deg)

    5 nm

    5 ~ 6 nm

    Hydrothermal treatment

    - A kind of soft chemistry to crystallize ceramic powderdirectly at low temperature in water

    Role of water

    Stabilizing of porous lattices

    by acting as space fillers

    Hydrolysis and reformation

    of Ti-O-Ti bond

    Nucleation and growth of new crystalline phases bybreaking Ti-O-Ti bonds under hydrothermal conditions

    H2O+

    amorphous anataseTi

    OH

    OHTi

    HO

    HO+

    Ti O Ti

    OH OH

    Ti Ti

    O

    Olow temp. low temp.H2O+

    Ref.) Chem. Mater.1995, 7, 663

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    33/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Specific Surface Area and Pore Size

    < Before calcination > < After calcination >

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300

    400

    VolumeAdsorbed(cc/g)

    Relative Pressure (P/P0)

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300

    400

    VolumeAdsor

    bed(cc/g)

    Relative Pressure (P/P0)

    Surface area (m2/g) Pore size (nm)

    beforecalcination

    after

    calcination

    beforecalcination

    after

    calcination

    HT-M-TiO2 347 304 3.9 8.1

    M-TiO2 386 104 3.7 11.5

    HT-M-TiO2M-TiO2

    HT-M-TiO2M-TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    34/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Specific Surface Area and Pore Size

    < Before calcination > < After calcination >

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300

    400

    VolumeAdsorbed(cc/g)

    Relative Pressure (P/P0)

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300

    400

    VolumeAdsorbed(cc/g)

    Relative Pressure (P/P0)

    Surface area (m2/g) Pore size (nm)

    beforecalcination

    after

    calcination

    beforecalcination

    after

    calcination

    HT-M-TiO2 347 304 3.9 11.5

    M-TiO2 386 104 3.7 8.1

    HT-M-TiO2M-TiO2

    HT-M-TiO2M-TiO2

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300

    400

    VolumeAdsor

    bed(cc/g)

    Relative Pressure (P/P0)

    P25

    Surface area : 80 m2/g

    < After calcination >

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    35/47

    Nanostructured Eco- and Ener Materials Lab.

    Surfactant is decomposed at 200~300 0 100 200 300 400 500 600 700 800

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90100

    Weight(%)

    Temperature ()

    HT-M-TiO2

    M-TiO2

    < 200 >< Before calcination >

    Crystallization

    Surfactantdecomposed

    Thermal Properties (TGA)

    Results & Discussion

    < 300 > < 500 >

    Crystal growth

    Maintenance of mesoporous structure

    Hydrothermaltreatment

    Crystallizationof pore wallinto anatase

    No phase transformation during calcination

    Amorphous

    Anatase

    HT-M-TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    36/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionMesoporous TiO2 Layer Composed of HT-M-TiO2

    HT-M-TiO2 M-TiO2 P25

    X 3,000

    X 100,000

    Morphology (FE-SEM)< after calcination at 500 oC>

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    37/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Crystal Structure (WXRD & HR-TEM)

    < after calcination at 500 oC>

    20 30 40 50 60

    Intensity(a.u.)

    2 (deg)

    HT-M- TiO2

    (101)

    (200) (105)(004)

    HT-M-TiO2

    (nm) Crystal Phase0.0193 7.28 Anatase

    5 nm

    6 ~ 7 nm

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    38/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion Transmittance Analysis (UV-Vis. Spectroscopy)

    400 500 600 7000

    20

    40

    60

    80

    100

    Transmittance(%)

    Wavelength (nm)

    P25

    HT-M-TiO2

    HT-M-TiO2

    P25

    < Photo image>

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    39/47

    Nanostructured Eco- and Ener Materials Lab.

    J-V Characteristics

    Results & Discussion

    HT-M-TiO2 M-TiO2 P25

    Area (cm2) 0.16 0.16 0.16

    Voc (V) 0.7471 0.6918 0.7387

    Jsc (mA/cm2) 5.5712 0.3619 3.4837

    FF 0.6830 0.5475 0.6801

    EFF (%) 2.832 0.1371 1.7503

    P25

    HT-M-TiO2

    0.0 0.2 0.4 0.6 0.80

    2

    4

    6

    8

    Bias (V)

    Current(mA/cm

    2)

    M-TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    40/47

    Nanostructured Eco- and Ener Materials Lab.

    J-V Characteristics

    Results & Discussion

    HT-M-TiO2 M-TiO2 P25

    Area (cm2) 0.16 0.16 0.16

    Voc (V) 0.7471 0.6918 0.7387

    Jsc (mA/cm2) 5.5712 0.3619 3.4837

    FF 0.6830 0.5475 0.6801

    EFF (%) 2.832 0.1371 1.7503

    P25

    HT-M-TiO2

    0.0 0.2 0.4 0.6 0.80

    2

    4

    6

    8

    Bias (V)

    Current(mA/cm

    2)

    M-TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    41/47

    Nanostructured Eco- and Ener Materials Lab.

    J-V Characteristics

    Results & Discussion

    HT-M-TiO2 M-TiO2 P25

    Area (cm2) 0.16 0.16 0.16

    Voc (V) 0.7471 0.6918 0.7387

    Jsc (mA/cm2) 5.5712 0.3619 3.4837

    FF 0.6830 0.5475 0.6801

    EFF (%) 2.832 0.1371 1.7503

    62 %

    P25

    HT-M-TiO2

    0.0 0.2 0.4 0.6 0.80

    2

    4

    6

    8

    Bias (V)

    Current(mA/cm

    2)

    M-TiO2

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    42/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & DiscussionDouble Layered TiO2 Electrode

    Morphology

    Film Thickness : ~ 5

    Surface Cross Section

    Crack-Free Film

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    43/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion J-V Characteristics

    Double Layer

    (Sputtered TiO2 + HT-M-TiO2)P25

    Double Layer

    (Sputtered TiO2 + P25)

    Area (cm2) 0.16 0.16 0.16

    Voc (V) 0.723 0.738 0.651

    Jsc (mA/cm2) 6.539 3.483 4.659

    FF 0.667 0.680 0.699

    EFF (%) 3.153 1.750 2.123

    Sputtered TiO2 + HT-M-TiO2

    Double layer

    P25

    0.0 0.2 0.4 0.6 0.80

    2

    4

    6

    Current(mA/cm

    2)

    Bias (V)

    HT-M-TiO2 (4)Sputtered TiO2

    (1)

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    44/47

    Nanostructured Eco- and Ener Materials Lab.

    Results & Discussion

    Double Layer

    (Sputtered TiO2 + HT-M-TiO2)P25

    Area (cm2) 0.16 0.16

    Voc (V) 0.7231 0.7387

    Jsc (mA/cm2) 6.5387 3.4837

    FF 0.6666 0.6801

    EFF (%) 3.1528 1.7503

    80 %

    J-V Characteristics

    Sputtered TiO2 + HT-M-TiO2

    Double layer

    P25

    0.0 0.2 0.4 0.6 0.80

    2

    4

    6

    Current(mA/cm

    2)

    Bias (V)

    HT-M-TiO2 (4)Sputtered TiO2

    (1)

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    45/47

    Nanostructured Eco- and Ener Materials Lab.

    ConclusionBlocking Layer Mesoporous TiO2 Layer

    Double-Layered TiO2 Electrode

    Prevention from direct contactwith electrolyte

    Increase of photocurrent

    Film thickness: 1Uniformity : 87%Density: sputtered TiO2 > P25 Transmittance: sputtered TiO2 > P25 Crystal structure: anatase

    Energy conversion efficiency: sputtered TiO2/P25 > P25

    Film thickness: 4Crystal structure: anatase Transmittance: HT-M-TiO2 > P25

    Surface area (after calcination)

    : HT-M-TiO2 > M-TiO2 >> P25

    Pore size: HT-M-TiO2 > M-TiO2 >> P25

    Energy conversion efficiency: HT-M-TiO2 > P25 >> M-TiO2

    Film thickness: 5Crystal structure: anatase Transmittance: Double-layered TiO2 > P25

    Energy conversion efficiency

    : double-layered TiO2 (HT-M-TiO2) > double-layered TiO2 (P25) > P25

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    46/47

    Nanostructured Eco- and Ener Materials Lab.

    ConclusionBlocking Layer Mesoporous TiO2 Layer

    Double-Layered TiO2 Electrode

    Prevention from direct contactwith electrolyte

    Increase of photocurrent

    Film thickness: 1Uniformity : 87%Density: sputtered TiO2 > P25Transmittance: sputtered TiO2 > P25 Crystal structure: anatase

    Energy conversion efficiency: sputtered TiO2/P25 > P25

    Film thickness: 4Crystal structure: anatase Transmittance: HT-M-TiO2 > P25

    Surface area

    : HT-M-TiO2 > M-TiO2 >> P25

    Pore size: HT-M-TiO2 > M-TiO2 >> P25

    Energy conversion efficiency: HT-M-TiO2 > P25 >> M-TiO2

    Film thickness: 5Crystal structure: anatase Transmittance: Double-layered TiO2 > P25

    Energy conversion efficiency

    : double-layered TiO2 (HT-M-TiO2) > double-layered TiO2 (P25) > P25Successful Development of Novel TiO2 Photoelectrode for DSSC

  • 8/3/2019 A Coast, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films

    47/47