30
A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Embed Size (px)

Citation preview

Page 1: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

A Brief History and Update on Life Cycle Environmental

Implications of Electronics

H. Scott Matthews

Carnegie Mellon University

April 12, 2005

Page 2: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

An Interesting Problem• Information and communications technology

(ICT) products and the systems that use them are a “double-edged sword”

• On one hand, they lead to environmental problems and concerns

• However using them can allow us to significantly improve our use of resources, energy, etc.

• Finding the balance requires a detailed, collaborative and interdisciplinary approach

Page 3: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Sales of Computers (1980-2003)

0

20

40

60

80

100

120

140

1980 84 88 92 96 00 02

Year

Units (millions)

U.S. Japan APAC EMEA

Over 100 million PCs are sold per year now. In 2003, theone-billionth PC was shipped since 1980. USA dominates

Page 4: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Life-Cycle Assessment (LCA)• A concept and methodology to evaluate the environmental effects of

a product or activity holistically, by analyzing the whole life cycle of a particular product, process, or activity (U.S. EPA, 1993).– From raw material acquisition through production, use and disposal– What are example impacts at each stage?

Page 5: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Motivations Over Time

• Concerns related to end-of-life (EOL) equipment (early 1990s)

• “Gloom and doom studies”– Carnegie Mellon University Estimates of PCs

landfilled (1991, 97)– SVTC, Basel Action Network E-waste reports

(2003)– Tantalum mining for cell phones in Africa

Page 6: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

EOL / Disposal Concerns For Electronics

• Toxic substances such as lead could leach into soil and contaminate groundwater.

• Technological advances could accelerate the turnover of TVs and computers.

• Rapid advances could lead to storage, donation, repair, or disposal of working and non-working equipment.

Page 7: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Europe: RoHS/WEEE Directives

• The primary global motivation• RoHS: bans or restricts certain substances of

concern (e.g. Lead)• WEEE: puts in place systems to require

takeback and handling of EOL electrical and electronic products (not just PCs!)

• Passed in last few years at EU level– But each EU country responsible for local definition,

legislation, enforcement– Most EU countries have not fully implemented the

required legislation yet

Page 8: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

TVs and Computer Monitors• Electronics (used to) share critical components

– Cathode Ray Tube (CRT)– CRT screen contains lead – Protects the user from radiation– Lead weighs from four to eight pounds– Newer LCD screens have less problems but have other

concerns (e.g. mercury in bulbs?)• Next series of slides gives specific data collected

from one large state (Florida) about the magnitude of the problem

• Also inspires the need for a solution

Page 9: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Residential Length and Use of Disposal Practices - Computers

• 63% of Florida’s households own a computer.• 35% of residents 65+ years old have a

computer in the home compared to 80% of residents 18 to 34 years.

• Fewer than 3% of residents had broken monitors in their home.

• Computer owners will handle broken monitors the same way broken TVs are handled.

Page 10: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Residential Awareness of Hazardous Materials

• 63% of residents are unaware of the hazards posed by CRTs.

• Women were the least likely to be aware of the potential threat posed by CRTs to household or family.

• Only 15% of residents were aware of demanufacturers or “recyclers” for electronics.

Page 11: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Residential Preferences for Recycling

• 44% of residents would prefer to recycle TVs and computer monitors at a donation center.

• 58% of residents don’t want to pay anything for recycling electronics.

• If a fee is imposed:– 50% of residents would prefer to have the fee

imposed at the time of discard– 15% at the time of purchase,– and 11% itemized on the receipt at time of

purchase.

Page 12: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Educating the Public About Recycling

• Residents don’t consider the CRT issue urgent and 70% don’t want additional information.

• Younger residents (18-34) were the most interested in recycling information.

• Residents rated county/city recycling programs as preferred education method for recycling info.

• TV and Radio were stated as the best media for receiving information.

Page 13: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

CMU Dell Event Context

• A few hundred people, 50 tons collected– About half from a few large groups (school

districts, etc.)– Thus a few hundred individuals brought

about 25 tons.

• How much of the Pittsburgh-area e-waste did we likely collect?

• What else could we do?

Page 14: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

The Evolving Electronics Infrastructure

• The Evolution– Demanufacturers/Entrepreneurs– Corporate Recovery Programs– Government Regulatory Discussions– Local County Government Pilot Programs– Government Bans or Regulations– Media Coverage– Producer Responsibility

Page 15: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Manufacturer Actions• Hewlett-Packard (HP) and IBM have long been

industry leaders– Were amongst first companies to develop in-house

electronics recycling facilities– Were first to offer publicly available takeback and

recycling programs (for a fee)– Unclear what volume of recycled product and

revenue streams look like– Unclear whether these programs are profitable

Page 16: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

State Actions (2005)• After more than 10 years of waiting, it seems that

several states poised to pass legislation about takeback/recycling– California is often a leader at state-level environmental

management (e.g. automobile emissions)– Other states look to California for leadership– California’s current plan not friendly to manufacturers -

some headquartered in the state (e.g. HP)– Will place large burden on manufacturers not

consumers

Page 17: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Some Concerns

• Computer recycling IS NOT FREE– There are many costs associated with

logistics, handling, demanufacturing– Actual cost on order of $10-$20 per unit– Free events may send wrong signals to

people about costs of recycling– Similar to how artificially low gas prices in

US lead to purchase of large vehicles and 15,000 miles driven per car per year?

Page 18: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Beyond End-of-Life Issues

• In last 5 years, focus of much research has moved from EOL to sustainability of information and communications technology (ICT) systems

• Expectation is that hardware issues will eventually be solved - but what will happen as ICT systems become more pervasive in the world?

Page 19: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

What is sustainability?

• Sustainability is a concept related to managing growth

• “Meeting the needs of the present generation without compromising the ability of future generations to meet their needs”

Page 20: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Press: Optimists vs. Pessimists

• Energy consumption of Internet– Mills “Dig More Coal” vs. Romm/ Koomey– Study claimed that 10% of US electricity

use was from the Internet – Later disproved but still gets much

attention• Effects of Hardware Production

– Total environmental flows of small DRAM chips (2g) were 2 kg (Williams 2002)

Page 21: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Energy Flow Diagram

Page 22: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

System Losses

36.3 GJ Electricity Grid10%

Distribution/Transmission

32.7 GJCustomer

PowerSupply 40%

19.6 GJ

We lose, on average, 80% of the energy we extract when

using it for electronic products

Page 23: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Power Naps• Campus initiative to set power management on

computers/monitors (10-20,000 computers!)• Electricity use of computer equipment:

– Desktop Computer: 110 W– CRT Monitor: 80 W– LCD Monitor: 24 W

• Unlike PCs, monitors can be turned off quickly, easily, painlessly, and temporarily– Turning off monitors saves 72% of desktop energy

• Could also save cooling energy use in summer from less need to dissipate heat (not included here)

Page 24: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Growth of Retail E-commerce • US DOC began

measuring and reporting retail e-commerce in March 2000– 4Q 03 = $17 Billion,

up 25% from 4Q 02– Only 2% of retail

purchases ($918 B)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

–Note the following are not considered retail (and thus also not counted)–Travel, financial, ticket brokering

Page 25: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Will E-commerce Improve or Degrade the Environment?

• Pro - – reduce private and commercial travel -

avoid shopping trips, – remove transaction inefficiencies, – reduce logistic and manufacturing

inefficiencies,– reduce waste of inventory and remainders, – digital manufacturing service provision

Page 26: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Will E-commerce Improve or Degrade the Environment?

• Con - – overhead of Internet infrastructure - electricity use

increase, computers, switches, etc.– shift to high impact travel modes, – reduce scale economies - smaller shipment sizes, – stimulate growth, – encourage dispersion– Harry Potter

Page 27: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Summary Environmental Impacts (per-book basis)

Trad. E-Com.

Energy (MJ) 115 105

Conventional Air (kg) 0.2 0.1

Hazardous Waste (kg) 0.2 0.2

Greenhouse Gas (kg) 7 7

Page 28: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

•Previously measured wired, wireless, and total electricity use of CMU campus network•Total: ‘network’ uses 5% of campus electricity (~5 MkWh / yr)–Wireless ‘equipment’: 5-10x less electricity than wired•While not purely generalizable, an indicator of the potential energy efficiency of wireless

Our Prior Research

Page 29: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

Wired vs. Wireless electricity (W per subscriber)

Thus, electricity use ‘per subscriber’ will rapidly favor wireless and trend to 10x

Page 30: A Brief History and Update on Life Cycle Environmental Implications of Electronics H. Scott Matthews Carnegie Mellon University April 12, 2005

•‘Efficiency’ of wireless (versus wired) communications is irrelevant!•For foreseeable future, we will have need for wired networks (if nothing else, to make long-range mobile calls!)•This dependency will limit our ability to realize energy savings from wireless –i.e., until we ‘pull the plug’, we are using more total energy to have both to use

Final Thoughts