66
A. Bay LPHE EPF Lausann e 1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 1

Summary

B factories and LHCb

Page 2: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 2

CP & T violation only in K0 system ???

Since 1964, CP and or T violation was searched for in othersystems than K0, other particles decays, EDM...

No other signal until 2001...

Page 3: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 3

production of(4s) (10.58GeV/c2) = 0.425(4s) B0 B0

B+ B

BaBar (SLAC) and Belle (KEK)

in 2001: observation of CP violation in the B mesonsystem, using "asymmetric collider" B factories.KEKB machine:

8 GeVelectrons

3.5GeV positron

Page 4: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 4

KEKB24% Y(4s)76% continuum

year 2003: crossing the(psychological) luminositybarrier of 1034 cm-2s-1

1.5807 1034

on 18-May-2005

Page 5: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 5

Pea

k lu

min

osit

y cm

s

Luminosity trend in the last

30 years

Page 6: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 6

BaBar and Belle

Study of the time dependent asymmetry in decay rates ofB0 and anti-B0

m = mass difference of "mass eigenstates" ~ 0.49 1012 h/s

ACP(t) =N(B 0 → J /Ψ KS) − N(B0 → J /Ψ KS)

+(t) = S sin Δm t( )

CP violated S ≠ 0

Page 7: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 7

CP measurements at B factories

Difficult: B0 mean life 1.54 10 s. Lorentz boost very small.B factories are asymmetric: the c.m. is moving.The two B decay at different position ~ on the z axis.We measure de difference z of the 2 vertices. r is small.

Δz cβγΔt ~ 200 m at Belle

(4s)

zz1 z2

z

J/Ks

e

Dr

Page 8: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 8

CP measurements at B factories

(4s)

zz1 z2

z

J/Ks

fCP

B0 and anti-B0 oscillate coherently (QM entangled state).When the first decays, the other is known to be of the oppositeflavour use the other side to infer the flavour, B0 or anti-B0,of the fCP parent

e

D

e+ → B0

e− → B 0 ⎧ ⎨ ⎩

region of B0 & B0

coherentevolution

Page 9: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 9

Belle experiment

Central Drift Chamber He/C2H5(Pt/Pt)2=(0.0019 Pt)2+(0.0030)2

CsI(Tl) 16X0

E/E ~ 1.8% @1GeV

Aerogel Cherenkov n=1.015~1.030

Si Vertex detector3 layers mid 2003now 4 layers Impact parameter resolution 55m for p=1GeV/c

TOF counter

SC solenoid 1.5T

8GeV e

3.5GeV e

Started in 1999~300 physicists from ~60 institutes in14 countries.

/ KL detection 14/15 layers of RPC+Fe : efficiency > 90%<2% fake at p > 1GeV/c

Particle ID : dE/dx in CDC dE/dx =6.9% TOF TOF = 95ps Aerogel Cerenkov ACC Efficiency = ~90%, Fake rate = ~6% 3.5GeV/c

Page 10: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 10

Belle

ACC

Silicon Vertex Detector SVD Impact parameter resolution 55m for p=1GeV/c at normal incidenceCentral Drift Chamber CDC (Pt/Pt)2 = (0.0019 Pt)2 + (0.0030)2 K/ separation : dE/dx in CDC dE/dx =6.9% TOF TOF = 95ps Aerogel Cerenkov ACC Efficiency = ~90%, Fake rate = ~6% 3.5GeV/c, e : CsI crystals ECL E/E ~ 1.8% @ E=1GeV e : efficiency > 90% ~0.3% fake for p > 1GeV/cKL and : KLM (RPC) : efficiency > 90% <2% fake at p > 1GeV/c

~ 8 m

Ldt ≈∫ 400 fb

4 108 B pairs

Page 11: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 11

spatial resolution for Blepton + Xz (lepton) ~ 100 m

Belle micro-vertex detector

Page 12: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 12

Belle event

Page 13: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 13

Particle ID in Belle

Particle ID uses information fromACC, TOF, dE/dx( CDC)

Prob to be a K{ } =L(K)

L(π) + L(K)

Barrel ACC

Endcap ACC

dE/dx

TOF

p (GeV/c)

cut

Page 14: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 14

Experimental program: measure sides and anglesof the CKM matrix

* CP violated in the SM => the area of triangle 0* Any inconsistency could be a signal of the existence of phenomena not included in the SM

~Vub ~Vtd

~Vcb

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

Use B mesonsphenomenology

t quark

oscillations

CP asymmetries

b quark

decays

Page 15: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 15

Analysis and results

•Continuum rejection•Kinematics at the Y(4s)

•The Unitary triangle: determination of Vub

" Vcb" Vtd" " "

•No time for other topics

~Vub ~Vtd

~Vcb

Page 16: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 16

Continuum rejection24% Y(4s)76% continuumfrom event topology which

is ~spherical for BB, jet like for continuumand angular distributions

BB

qq

Build Likelihood L for B and qq hypothesisusing event shape variables and cos B

0 0.2 0.4 0.6 0.8 1

LB

LB + L qq

cut

Page 17: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 17

How to find a B meson?Kinematics variables at the Y(4S)

Mbc

5.2 5.24 5.28 GeV/c2

0

E0.2

0.2

GeV/c2

Mbc = (E beam* )2 −

r p B

* 2

E = EB* − E beam

*

Gather candidates Band calculate (pB,EB).Boost to c.m. (pB

*,EB*)

"beam constrained mass"

Ebeam* ≡

s

2

Example:B D0

with

Page 18: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 18

Determination of Vcb

l −

W

b c

Vcb

World Average: |Vcb| (inclusive) (42.0 0.6 0.8) 10-3

|Vcb| (exclusive) (40.2 +2.1 ) 10-3

-1.8

Vcb = (40.2 ±1.9)10−3

D0

dy=

GF

2

48π 3MD*

3 MB 0 − MD*( )

2g(y)Vcb

2F(y)2

g(y) known function of y

B 0 → D*+e−ν e

d

D*+B0

q

F(y) hadronic form factor

plus ~5% error on F(1)

Page 19: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 19

Determination of Vub

l

W

b u

Vub

bc

bu

0 1 2 3 GeV/cLepton momentum

(in c.m.)

Exemple: use lepton momentum distributionfrom inclusive semileptonic decays

B → Xul ν

Less than 10% of thespectrum background free

hep-ex/0305037, with reconstruction

|Vub| (10-3) = 3.96 0.17(stat) 0.44(syst) 0.29(theo) 0.34(bc) 0.26(bu)

Average(inclusive) Vub=(4.12±0.13±0.60)10-3

Page 20: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 20

Determination of Vtd

B0 B0

t

d

b

tW W

b

d

Vtd

0 3 6 9 ps

Probability1

B0

B0

Starting from a pure sampleof B0, for instance,a B0 component builds upin a time scale of a few ps:

P(B0)∝ e−t /τ 1+ cos Δmd t( )[ ]

P(B 0)∝ e−t /τ 1− cos Δmd t( )[ ]

measure oscillation frequency

Vtd ∝ Δmd

Page 21: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 21

region of B0 & B0

coherentevolution

md with di-lepton events

* KEK-B boost <Δz> cβγ ~ 200 m

(4s)

zz1 z2

z

e+

* Tag B flavour from semileptonic B0 X l B0 X l

X

Y

* B0 and B0 oscillate coherently (QM entangled state).When the first decays, the other is known to be of the oppositeflavour.

t ~ z/c

Page 22: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 22

md from di-lepton events .2

-12 -8 -4 0 GeV2

NMissing mass

Background: B+ X l B X l

Selection strategy of the "soft pion tag"B0 D* l Br3%

D0 Br70%

Event selection:- 1st lepton P*> 1.8 GeV- 1 pion of opposite sign P* < 1 GeV- 2nd lepton P*> 1.3 GeV- cut on M

2

(Frederic Ronga, PhD thesis, 2003)

Page 23: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 23

md from di-lepton events .3

Get z distributionsfor "Same Sign"and "Opposite Sign"leptons couplesand fit for md...

OSSS

J/ l+ l toinfer resolution

-2 -1 0 1 2 z (mm)

SS

-2 -1 0 1 2 z (mm)

OS

0 1 2 z (mm)

Asymmetry(t) =OS −SS

OS + SS(t)

Page 24: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 24

F. Ronga

average

md and Vtd HEP-PH/0206171

Vtd ∝ Δmd fB BB

Bagparameter

B decayconstant

|Vtd | ~ (8±2)10-3

~20% error !

{

Page 25: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 25

UT sides

The UnitaryTriangle

inferred from its sides

and fromK0 data

Vub/Vcb

From K0

md & ms

10

Excluded area has <0.05 CL

Page 26: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 26

from B0 J/ Ks

b

dB0

Vcb

cc

sKs

J/

d

B0

Vcbc

sKs

J/

Vtd

Vtb

VtdVtb

c

b

Interference between the 2 amplitudes gives a "time-dependent CPV"

AsymCP (t) =N(B 0 → J /Ψ KS ) − N(B0 → J /Ψ KS )

N(B 0 → J /Ψ KS ) + N(B0 → J /Ψ KS )(t)∝ SCP sin Δmd t( )

CKM phase 0 !

CKM phase = 0

sin2

}

SM:

B0

d

Golden ChannelGolden Channel

Page 27: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 27

Any "direct" CP violation ?

b

dB0

Vcb

cc

sKs

J/

dB0

Vtb c

K

s

J/c

b

s

No "direct CPV" expected in SM in B J/ Ks, but who knows ?...

CKM phase = 0

CKM phase = 0

t

Vts

AsymCP (t) =N (B

0→ J / Ψ KS ) − N (B

0→ J / Ψ KS )

+(t)∝ ACP cos Δmd t( ) + SCP sin Δmd t( )

sin2

}

SM:

}

0

Page 28: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 28

Time dependent asymmetry measurement

(4s)

zz1 z2

z

J/Ks

fCP

e

D

e+ → B0

e− → B 0 ⎧ ⎨ ⎩

region of B0 & B0

coherentevolution

ACP (t) =N (B

0→ J / Ψ KS ) − N (B

0→ J / Ψ KS )

N (B 0

→ J / Ψ KS ) + N (B0

→ J / Ψ KS

(t)

Need to "tag" the flavour: B0 or B0.B0 and B0 oscillate coherently (QM entangled state) use the other side to infer the flavour

t ~ z/c

ftag

Page 29: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 29

b ccs reconstruction

140 fb1, 152M BB pairs

B 0 J/KL

b ccs (J/KL excluded)

5417 events are used in the fit.pB GeV/c

Page 30: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 30

A large CP asymmetry has been observed!

World average (October 2005): SCP = 0.726 ± 0.037

J/KL

ACP~ 0, compatible with no direct CPV

SM: SCP = sin(2) => or 66.3°)

J/KL is OK

AsymCP (t) =N (B

0→ J / Ψ KS ) − N (B

0→ J / Ψ KS )

+(t)∝ ACP cos Δmd t( ) + SCP sin Δmd t( )

Page 31: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 31

SM & KM model is verified !

= 23.7°± 2.1° = 66.3°± 2.1°

Page 32: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 32

UT with sin2

The UnitaryTriangle

fit including sides,

K0 data,and

sin2

Page 33: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 33

b sss, a B0 Ks puzzle ?

b to s transition is second order

(gluonic penguin).Prediction from SM: ~

same value of sin(2) as in ccs because no additional

phase from the loop.

VtsV

tb*

B0

b

d

s

s

d Ks

s

W

t

??????

B0

b

d

s

s

d

s

squark

unless new physics entersthe loop. For instance:

Page 34: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 34

B0 Ks .2

6811 signals106 candidates in the fitpurity = 0.640.10efficiency = 27.3%

B 0 KS

5.2 5.4 5.28 GeV/c2

SφKs = −0.96 ± 0.50−0.11+0.09

AφKs = −0.15 ± 0.29 ± 0.07

BaBar

SφKs = +0.45 ± 0.43± 0.07

Beam-Energy Constrained Masssin2(ccs)

Page 35: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 35

from BD0K D0 Ks +-

See A.Giri, Yu.Grossman, A.Soffer, J.Zupan hep-ph/0303187

u

uB+

bc

s

D0

Ks+

-

K+

u

B+

c

s

D0

Ks+

-

b u

K+

A1 ~ VcbVus* ~ Aλ3

A2 ~ VubVcs* ~ Aλ3 ρ + iη( ) ~ exp iγ{ }

D0 and D0 decay to same final state mixed state is produced:

˜ D 0 = D 0 + ae iθ D0

˜ D 0 = D 0 + ae i(δ +γ ) D0

Dalitz's analysis with variables and

m2(Ks,π +)

m2(Ks,π −)

a, , unknown

Page 36: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 36

from BD0K D0 Ks +- .2

0.5 1 1.5 2 2.5 3

3

2

1

m2(Ks,π +)

m2(Ks,π −)D0 Ks +- as a sum of 2 body decays

Fit Dalitz plot witha, , as free parameters

a = 0.33±0.10±0.03±0.03 = 162° +20

-25 ±12°±24° = 95° +25

-20 ±13°±10°

90%CL: 61°< < 142° preliminary

Page 37: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 37

Belle:very, verypreliminary

Page 38: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 38

from B0

Asym t( ) = Aππ cos Δmd t( ) + Sππ sin Δmd t( )

0Bd

bW

d

uud

+

A = 0S = sin(2+2)= sin(2)

without penguin contributions:

Isospin analysis needed for the extraction of .Need to measure also B0 B+

d

b

W

tg

d

uu

d

0B

+

-

This is not the case: large"penguin pollution" expected(but intrinsically interesting..!)

Consider B0 first:

Page 39: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 39

B0

Phys Rev

from ~231 : A = +0.58 0.15 0.07 S = 1.00 ± 0.21 ± 0.07

charmless 3-body B decay

K

continuum

syst. primarily frombackground fraction

BABAR:

A = 0.30 ± 0.25 ± 0.04

S = .02 ± 0.34 ± 0.05

A0

hep-ex/0401029

Page 40: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 40

B0

Belle

BaBardirectCVP

Page 41: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 41

First signal from B0

Mbc [GeV/c2]

using 152 M BB: Br(B0 ) = (1.7 ± 0.6 ± 0.2)10-6

B+

continuum

BABAR: Br(B0 ) = (2.1 ± 0.6 ± 0.3)10-6

Phys. Rev. Lett. 91 (2003) 261801

(hep-ph/0306058 gives 74° < < 132°... )

Page 42: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 42

Global fit of data from all sources

Page 43: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 43

Test of SM in quark sector:check the triangle !

Does SM give a coherent picture of CP violation ?

Unitary triangle can be build using its sides

or the angles.

Other information comes form CPV with Kaons and B.

All the information must be consistent (else new physics ? or measurement error ? or bad supporting theory ?)

Page 44: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 44

Test of SM in quark sector

Summer 2004

sin(2) = 0.726 ± 0.037 from J/K0

sin(2) = 0.734 ± 0.043 from sides

(68% and 95% CL contours)

from sides

Summer 2005

sin(2) = 0.687 ± 0.032 from J/K0

sin(2) = 0.793 ± 0.033 from sides 2.3

2005 test not sogood...

Compare unitarity triangle from CP-violating processes K CPV in K sector and sin(2) CPV in B sector

with unitarity triangle measured from the sides only i.e.from

CP-conserving processes

(|Vub| and md, ms)

Page 45: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 45

Test of SM in quark sector .2

Measure unitarity triangle only from the angles in B decays: sin(2) from B0 (cc)K0 interference of bc amplitude with B0_B0 mixing (or +) from B , , interference of bu amplitude with B0 _B0 mixing from B D(*)K interference of bc and bu amplitudes

Test passed.

Compare again with trianglefrom (CP conserving) side measurements

Page 46: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 46

sin(2) from bs penguin

Naive average of all bs modesdeviated from B(cc)K0 modesby 3.8 in 2003, now only 2.6

sin(2)eff=0.43±0.07to be comparedwith all charmoniumresult 0.726±0.036

Page 47: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 47

Other topics (a few hep-ex)

• sin(2) from J/ hep-ex/0308053

• from BD* hep-ex/0308048

Rare B decays:•B hh {, K, KK, } hep-ex/0307077, hep-ex/0306007

•BKhh {K } hep-ex/0307082

•B pph, p hep-ex/0302024

•BK(*), K(*) K(*)ll hep-ex/0308044

•B K hep-ex/0305068

•B cp Phys. Rev . Lett. 90 (2003) 121802

CPV results:

EPR & Bell test of QM: hep-ex/0310192

Phys. Rev. Lett. 91 (2003) 262001New charmonium X(3871):

Page 48: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 48

down strange beauty up 0.1% 1% 5%charm 2% 2% 3% top 5% 5% 29%

CKM matrix 2007

* Vij)/Vij ~€

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

CDF + D0: 4 fb-1 eachBABAR + Belle: ~1000 fb-1

CLEO-C

(sin(2)) ≈ 0.03 from B0 J/ KS

* no precise measurement of other angles

Page 49: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 49

CKM triangle in 2007 (SM)

Picture will be already inconsistent ?

from m

from bc

from bu from B J/ Ks

Page 50: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 50

BEYOND 2007 QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 51: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 51

Landscapecancelledproposed

under constr.running

2000 2002 2004 2006 2008 2010 2012

BES II BES IIICLEO-ccharm factories

CLEO IIIBABAR

Belle Super-B

B factoriese+e–, √s = m(4S)

ATLASCMSLHCb

LHCpp, √s = 14 TeV We

are here

K experiments BNL E949

KOPIONA48/3CKM

KAMIKEK E391a

CDF IID0

BTeVTevatronpp, √s = 2 TeV

From O.SchneiderInternational WE Heraeus Summer School, Dresden

Page 52: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 52

Experiments in hadronic flavour physics

Physics Exp. Machine LaboratoryOperation

dates

B and charm

BABAR PEP-II, ee (4S) SLAC (USA) 1999–2008

Belle KEKB, ee (4S) KEK (Japan) 1999–2009

CDF IITevatron, pp √s = 2 TeV

Fermilab (USA)

2001–2009D0

charm CLEO-c CESR-c, ee (3770), …Cornell (USA)

2003–2008

K E391a 12 GeV PS KEK (Japan) 2004–2006

B

(and high pT)

ATLAS

LHC, pp √s = 14 TeV CERN 2007–CMS

B and charm LHCb

charm BES III BEPC II, ee (3770), … IHEP (China) 2007–B and charm

Super-Belle

Super-KEKB, ee (4S) KEK (Japan) 2011–

K NA48/3 SPS CERN 2009–

K (proposals expected end 2005) JPARC ?

Proposed

Coming soon

Running

Page 53: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 53

~Vub

from BXu+l

B0B0

B0

J Ks

W Wt

t

CP Asym ~ sin{ 2 }

t

d

b

tW W

b

d

~

~Vtd

SM view of the unitary triangle from m:

Page 54: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 54

~Vub

from BXu+l

new

B0B0

B0

J Ks

W Wt

t

CP Asym ~ sin{2(new)}

t

d

b

tW W

b

d

~

d

b

b

dNEWFCNC

Unchanged

rnew

NEW

Im

Re

~Vtd

SM + New FCNC from m:

Page 55: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 55

~Vub

from BXu+l

new

B0B0

B0

J Ks

W Wt

t

CP Asym ~ sin{2(new)}

t

d

b

tW W

b

d

~

d

b

b

dNEWFCNC

Unchanged

rnew

NEW

Im

Re

~Vtd

SM + New FCNC (bis) from m:

Page 56: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 56

and new physics from Bd D*n+, D*+n, etc.

Idem with Bs decays:Idem with Bs decays:

snew from CP in Bs J

snew from CP in Bs Ds

K, Ds

K

comparethe two determinations(then combinethem)

Bd D* n vs Bd D* n

Bd D* n vs Bd D* n

From 2( new) +

CP in BJ/ Ks ~ 2( + new)

need to trigger and select hadronic decay channels,

need to study the Bs system, have K/ separation, access to Br < 107….

Page 57: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 57

B physics at LHC(b)

• bb ~500 b, 1012 bb / year at L=21032 cm2s

• Bu (40%), Bd (40%), Bs (10%), Bc, and b-baryons (10%)• Many primary particles to determine b production vertex

bb / inelastic ~ 0.6% => triggering problem

Many particles not associated to b hadrons

No B0-B0 entangled states: mixing dilutes tagging

good things:

not so good:

Page 58: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 58

LHCb

Forward detector (1.9 4.9)~ 50% acceptance for bb pairs

3 2 1b [rad] 0 1 2 3

b [rad]

B shieldingremoved !

Page 59: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 59

LHCb

— RICH detectors for PID—vertex detectors inside beam vacuum

Page 60: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 60

VErtex LOcator (VELO)

21 stations, ~200k channels, analogue R/O (Beetle)r- and -measuring stations with Si “striplets”

IP= 14 + 35 /pT

From tracking: p/p = 0.35% – 0.55%

can observe 5 signal if ms < 68 ps1

ms = 25 ps1

BBss oscillation oscillation from Bs Ds

sample

0 1 2 3 4 5 6 [ps]

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 61: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 61

LHCbATLAS

0 20 40 60 80 GeV/c

ParticleID

B0 → π +π−

RICH1 RICH2

Aerogel& C4F10

CF4

prob ( K)

K efficiency

Page 62: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 62

Triggers

1 MHz

40 MHz

Detached vertex

+ IP of pT

candidate

Medium pT hadron,,e,

+ pileup veto

(12.4 MHz of inelastic interactions)

LHCb

40 kHz

L0

L1

B0 J/ KS Bs DsK+ B0

0.88 0.54 0.76 0.90 0.70 0.72

0.79 0.38 0.55

Efficiencies for signal eventsaccepted by offline selection

ln pT ln pT

ln

IP/

IP

ln

IP/

IP

L1L1Signal

Min.Bias

B0 Bs DsK+

Final statereconstruction

~2 kHz

HLT

Page 63: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 63

LHCb after 107 seconds

Parameter Channels N untagged

Bd+ 20k @P/T = 30°, |P/T|=0.200.02, =90° 2-5

Bd0 4k @ =50° 5

2+ Bd D* 200k @2+=0 12

BdJ/Ks 200k <0.6

-2 Bs DsK 5400 @ ms=20ps-1 14

Bd D(KK)K* 600 =55°-105° <8

Bs J/ 120k 0.6

Bd + / K+K- 20k/30k @=55°-105° <6 BdKs 0.8k <20 ? ms Bs Ds 80k s/b~3, up to 68 ps-1 (5)

A few penguins : Bs 1.2k Bd K+- 135k Bs K+K- 37k Bd K*0 35k

Bs 9.3k Bd K*0 4.4k(Using PDG branching ratios or SM predictions)

not possibleat B factory

Page 64: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 64

CKM triangle in 2007+107 s ?

from B J/ Ks

from md, ms

from bu

from LHCb

Re

Im

Page 65: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 65

Key contributions expected from charm factories

• Improve determination of from BDK tree processes:– Measure more precisely D0KS+– Dalitz plot

– Measure D meson strong phase differences appearing in ADS analyses of B+DK+

• Improve extraction of right side of UT from B oscillations measurements:– Measure decay constants fD+ and fDs

from purely leptonic decays:

– Compare with lattice QCD calculations: reduce uncertainty on theory predictions for fB0 and fBs (e.g. rely on LQCD only to predict ratio between B and D constants) reduce theory error in extraction of |Vtd|/|Vts| from md/ms

new,50 evts

new,201±3±17 MeV

Γ(D+ → l +ν) =GF

2

8πVcd

2fD+

2 ml2M

D+ 1−ml

2

MD+2

⎝ ⎜

⎠ ⎟

2

Page 66: A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

A. Bay LPHE EPF Lausanne 66

Charm factories

• CLEO-c experiment (Cornell):– Taking data above charm threshold since 2003:

• e+e– (3770) D+D– or D0D0 (281 pb–1 so far)– Plan to go also above Ds threshold (s=4.1 GeV):

• e+e– (…) Ds+Ds

–, …

– May still spend one year on J/ or (2S)– End in 2008

• BES III experiment (Beijing):– BES II stopped in 2004

• 27.7 pb–1 recorded at (3770)– Old BEPC storage ring dismantled this summer to install a new double-

ring machine, BEPCII • design luminosity 1033 cm–2s–1 at (3770) (= 100 times BEPC)

– Major detector upgrade: BESII BESIII – Start of physics commissioning in 2007– Will run on J/, (2S), (3770), etc …