14
A 1 V RF front-end for both HIPERLAN2 and 802.11a T. Taris , JB. Begueret, H. Lapuyade, Y. Deval IXL laboratory, University of Bordeaux 1, 33405 Talence, France

A 1 V RF front -end for both HIPERLAN2 and 802.11a

  • Upload
    xander

  • View
    22

  • Download
    0

Embed Size (px)

DESCRIPTION

A 1 V RF front -end for both HIPERLAN2 and 802.11a. T. Taris , JB. Begueret, H. Lapuyade, Y. Deval IXL laboratory, University of Bordeaux 1, 33405 Talence, France. OUTLINE. HIPERLAN2 and 802.11a requirements Wireless mass market design constrains LNA MIXER RF Front -end - PowerPoint PPT Presentation

Citation preview

Page 1: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

A 1 V RF front-end for both HIPERLAN2 and

802.11a

A 1 V RF front-end for both HIPERLAN2 and

802.11a

T. Taris, JB. Begueret, H. Lapuyade, Y. Deval

IXL laboratory, University of Bordeaux 1, 33405 Talence, France

Page 2: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

OUTLINEOUTLINE

• HIPERLAN2 and 802.11a requirements

• Wireless mass market design constrains

• LNA

• MIXER

• RF Front-end

• Measurement results

• Conclusions

Page 3: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

HIPERLAN2 and 802.11a requirementsHIPERLAN2 and 802.11a requirements

LNA VGA

PBF PBF

Mixer

LO

Communication standard

HiperLAN2 and 802.11a

gain 10 dB

Noise Figure 10 dB

ICP1 -21 dBm

IIP3 -10 dBm

Frequency band 5.15-5.35 GHz

Page 4: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

Wireless mass market constrainsWireless mass market constrains

Wireless applications + Mass market

CMOS VLSI

analog design

Low Power / Low Voltage

Power aware systems

<10 mW / ~1V

Page 5: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

LNALNA

Gain

Input matching Low noise figure

Ftot = FLNA+(Fmixer-1)/GLNA

Maximum signal collected

Ftot = FLNA+(Fmixer-1)/GLNA

Low power

&

Low voltage

Page 6: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

LNALNA

RF

bias

out

MLNA

Lg

Ls

Inductive Degeneration

Tuned Load

50 input matchingLow Noise Figure

)²1.(...5

21 cF

T

sgs

m LC

gZin .

Good Linearity

Reduce Miller Effect

Page 7: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

MixerMixer

Gain

Linearity

Mixing

operation Low power

&

Low voltageVoltage dynamic range trade-off

Mixing principle brought into play

Principle efficiency

Page 8: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

MixerMixer

VLO

VFI

VRF

Low-pass filter

behavior

High-pass filter

behavior bias

)²(2

..TGS

oxnD VV

LWCµ

I )cos()cos( tVtVVV RFRFLOLObiasGS

tVVL

WCµi LORFLORF

oxnD )cos(...

2

..

In saturation region: Assuming:

Page 9: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

RF Front-EndRF Front-End

LNA Mixer

Mmix

MLNA

Rconv

Cd1

Cd2

RF

LO

FI

R R

Page 10: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

Measurement resultsMeasurement results

• Inductive degeneration matching

S11 = -26 dB Isolation LO>RF = -34 dB

• Due to closeness of RF and LO port

Page 11: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

Measurement resultsMeasurement results

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8Supply Voltage (V)

1

2

3

4

5

6

7

8

9

10

Gain (dB)

Gain = 10 dB @ 1 V ICP1=-9 dBm & IIP3=0 dBm

• Good input matching

• Architecture well suited to low voltage

• Efficiency of resistor load

• Bypass filter behavior

-20-25 -15 -10 Pin(dBm)

-15

-10

-5

0

Pout(dBm)

0

ICP1

IIP3

-20-25 -15 -10 Pin(dBm)

-15

-10

-5

0

Pout(dBm)

0

ICP1

IIP3

Page 12: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

Measurement resultsMeasurement results

Measurment results

Requirements

Frequency band

5.15-5.35 GHz 5.15-5.35 GHz

Supply 1 V NC

Gain 10 dB 10 dB

Noise Figure 8 dB 10 dB

Current consumption

6 mA NC

ICP1 -9 dBm -21 dBm

IIP3 0 dBm -10 dBm

Isolation LO>RF

-34 dBm > -30 dBm

Page 13: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

ConclusionsConclusions

Fulfill successfully both HIPERLAN2 and

802.11a requirements

Operating under 1V and consuming only 6

mA, it is well suited to low power/low voltage

applications

implemented in CMOS VLSI technologie its

weak bulkiness (750µm500µm ) dedicates it to

System On a Chip (SOC) applications

Page 14: A 1 V RF front -end  for both HIPERLAN2 and 802.11a

PerspectivesPerspectives

Improve isolation between LO and RF port

Architecture without inductance (matching

trade-off)

Enhance the conversion gain (linearity trade-

off)