6.1-6.3

Embed Size (px)

Citation preview

  • 7/30/2019 6.1-6.3

    1/10

    1

    Same sha e functions are used to inter olate nodal

    coordinates and displacements Shape functions are defined for an idealized mapped

    e emen e.g. square or any qua r a era e emen

    Advantages include more flexible shapes andcom a ibili

    We pay the price in complexity and require numericalintegration to calculate stiffness matrices and equivalent

    oa s

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

  • 7/30/2019 6.1-6.3

    2/10

    2

    Bar element example ree-no e ar examp e use on y or ustrat on

    Quadratic variation of both coordinate and displacement

    in terms of ideal element coordinate1 4

    2 2

    2 51 1x a and u a

    a a

    1

    1 1 1

    2

    2 2 2

    1 1 1 1 1 1

    1 0 0 1 1 0 0

    x a x

    x a hence x x

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

    3 3 31 1 1 1 1 1x a x

  • 7/30/2019 6.1-6.3

    3/10

    3

    1 2 3

    T

    T

    x N x x x

    u N u u u

    2 2 21 1

    12 2

    N

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

  • 7/30/2019 6.1-6.3

    4/10

    4

    Strains and stiffness matrix

    is more complicated

    dddu

    ddu 1

    Jacobian

    ddxdx

    w ere

    u

    uN

    dxdxx

    3

    2

    2 2

    3 3

    1 11 2 2 1 2

    2 2

    dx dJ N x x

    d dx x

    1 1 1 1

    1 2 2 1 22 2

    dB N

    J d J

    And stiffness matrix

    TL

    T1

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

    x

    10

  • 7/30/2019 6.1-6.3

    5/10

    5

    6.2: Bilinear quadrilateral We were limited to rectangles because of compatibility

    Now both displacement and coordinates are bi-linearfunctions of

    H w h r rv m i ili ?

    and

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

  • 7/30/2019 6.1-6.3

    6/10

    6

    Interpolation Mapping

    dNuNucNxNx iiii

    &vy iiii

    44332211 yxyxyxyxcT

    4321

    44332211

    0000 NNNN

    vuvuvuvudT

    Interpolation functions

    4321 0000 NNNN

    11

    )1)(1(41)1)(1(

    41

    21 NN

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

    4443

  • 7/30/2019 6.1-6.3

    7/10

    7

    Derivatives Chain rule of differentiation

    yx

    y

    xJoryx

    yx,

    ,

    ,

    ,

    yx

    iiii yNxNyx ,,,, iiii yNxNyx ,,,,

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

  • 7/30/2019 6.1-6.3

    8/10

    8

    -

    Usin sha e functins

    121122

    11

    )1()1()1()1(1 JJyxyx

    J

    Then

    2221

    44

    33

    yx

    1121

    12221

    2221

    1211 1

    ,

    ,

    ,

    ,

    JJ

    JJ

    JJwhere

    y

    x

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

  • 7/30/2019 6.1-6.3

    9/10

    9

    Strain and stiffness matrices

    yx

    y

    x u,10000001

    Where

    y

    x

    xyv,

    ,0110

    ,

    ,

    00

    00

    ,

    ,

    2221

    1211

    u

    u

    u

    u

    y

    x

    ,

    ,

    00

    00

    ,

    ,

    2221

    1211

    v

    v

    v

    v

    y

    x

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka

  • 7/30/2019 6.1-6.3

    10/10

    10

    Laboring to obtain B matrix Finally expressed in terms of nodal displacements

    1, 2, 3, 4,, 0 0 0 0u N N N N

    1, 2, 3, 4,

    1*81, 2, 3, 4,

    1, 2, 3, 4,

    , 0 0 0 0

    , 0 0 0 0

    , 0 0 0 0

    u N N N N

    dv N N N N

    v N N N N

    So B matrix obtained by multiplying these 3x4, 4x4 and4x8 matrices

    Stiffness matrix

    1

    1

    1

    18*33*33*88*33*33*88*8

    ddJtBEBdydxtEEBkTT

    University of FloridaEML5526 Finite Element AnalysisR.T. Haftka