14
6.012 - Electronic Devices and Circuits Lecture 19 - Differential Amplifier Stages - Outline Announcements Handouts - Lecture Outline and Summary Design Problem - out tomorrow in recitation Review - Single-transistor building block stages Common emitter/source: general purpose gain stage, workhorse Common base/gate: small R in , large R out , unity A i , same A v as CE/S Emitter/source follower: large R in , small R out , unity A v , same A i as CE/S Series and Shunt feedback: we'll see in special situations Differential Amplifier Stages - Large signal behavior General features: symmetry, inputs, outputs, biasing (Symmetry is the key!) Large signal transfer characteristic Difference- and common-mode signals Decomposing and reconstructing general signals Half-circuit incremental analysis techniques Linear equivalent half-circuits Difference- and common-mode analysis Example: analysis of emitter-coupled pair Clif Fonstad, 11/03 Lecture 19 - Slide 1

6.012 - Electronic Devices and Circuits Lecture 19 ... · 6.012 - Electronic Devices and Circuits Lecture 19 - Differential Amplifier Stages - Outline •Announcements Handouts -

  • Upload
    others

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

6.012 - Electronic Devices and CircuitsLecture 19 - Differential Amplifier Stages - Outline

• AnnouncementsHandouts - Lecture Outline and SummaryDesign Problem - out tomorrow in recitation

• Review - Single-transistor building block stagesCommon emitter/source: general purpose gain stage, workhorseCommon base/gate: small Rin, large Rout, unity Ai, same Av as CE/SEmitter/source follower: large Rin, small Rout, unity Av, same Ai as CE/SSeries and Shunt feedback: we'll see in special situations

• Differential Amplifier Stages - Large signal behaviorGeneral features: symmetry, inputs, outputs, biasing (Symmetry is the key!)Large signal transfer characteristic

• Difference- and common-mode signalsDecomposing and reconstructing general signals

• Half-circuit incremental analysis techniquesLinear equivalent half-circuitsDifference- and common-mode analysisExample: analysis of emitter-coupled pair

Clif Fonstad, 11/03 Lecture 19 - Slide 1

IBIAS

V-

V+

vout+

-vin+-

CE

CO

• The "mid-band"concept: frequency range of constant gain and phase

Commonemitter

LEC for common emitter stagewith all the capacitors

Common emitter LEC for in mid-band range Note: gl = gLOAD + gnext

Biasing capacitors: typically in mF range(CO, CE, etc.) effectively shorts above wLODevice capacitors: typically in pF range (Cp, Cm, etc.) effectively open until wHI

Mid-band frequencies defined as wLO < w < wHI

Clif Fonstad, 11/03 Lecture 19 - Slide 2

gp

+

-vp

+

-

v in

v t+-

rt gmvp go

+

-

voutgLOAD

rIBIAS CE

COCm

Cp gnext

gp

+

-vp gmvp go gl

+

-v in

+

-voutv t

+-

rt

• Summary of the stages (bipolar)

Clif Fonstad, 11/03 Lecture 19 - Slide 3

Voltagegain, Av

Currentgain, Ai

Inputresistance, Ri

Outputresistance, Ro

Common emitter -gm

go + gl[ ]= -gmrl '( ) -

b gl

go + gl[ ]rp ro =

1go

Ê

Ë Á

ˆ

¯ ˜

Common base gm

go + gl[ ]= gmrl '( ) ª1 ª

rp

b +1[ ]ª b +1[ ] ro

Emitter follower gm + gp[ ]gm + gp + go + gl[ ]

ª1 bgl

go + gl[ ]ª b rp + b +1[ ]rl ' ª

rt + rp

b +1[ ]Emitter degeneration

(series feedback) ª - rl

RF

ª b ª rp + b +1[ ]RF ª ro

Shunt feedback -gm - GF[ ]go + GF[ ]

ª -gmRF -gl

GF

1gp + GF 1- Av[ ]

ro RF =1

go + GF[ ]

Ê

Ë Á

ˆ

¯ ˜

• Summary of the stages (MOSFET)

Clif Fonstad, 11/03 Lecture 19 - Slide 4

Voltagegain, Av

Currentgain, Ai

Inputresistance, Ri

Outputresistance, Ro

Common source -gm rl ' • • ro =1go

Ê

Ë Á

ˆ

¯ ˜

Common gate ª gm + gmb[ ] rl ' ª1 ª1

gm + gmb[ ]ª ro 1+

gm + gmb + go[ ]gt

Ï Ì Ó

¸ ˝ ˛

Source follower gm

gm + go + gl[ ]ª1 • •

1gm + go + gl[ ]

ª1gm

Source degeneration(series feedback) ª - rl

RF

• • ª ro

Shunt feedback -gm - GF[ ]go + GF[ ]

ª -gmRF -gl

GF

RF

GF 1- Av[ ]ro RF =

1go + GF[ ]

Ê

Ë Á

ˆ

¯ ˜

Differential Amplifiers: emitter- and source-coupled pairs

V+

vIN1

vOUT1+-

vOUT2+-+

-vIN2+-

IBIAS

V-V-

V+

vIN1+-

vOUT1+-

vOUT2+-

vIN2+-

IBIAS

Emitter-coupled pair Source-coupled pair

Clif Fonstad, 11/03 Lecture 19 - Slide 5

Emitter-coupled pair: large signal analysis

Above: Circuit with large signal,FAR BJT model in place

Right: Transfer characteristic

Clif Fonstad, 11/03 Lecture 19 - Slide 6

Analysis: 3 KVL loops (see text)Result: Outputs only depend on difference

between the two inputs, (vI1-vI2)

Transfer characteristic is symmetrical

vO1 = VCC -aF RC IBIAS

1 + e -q v I 1 -v I 2[ ] kT{ }vO2 = VCC -

aF RC IBIAS

1 + e q v I 1 -v I 2[ ] kT{ }

vO = -aF RC IBIAS tanh q vI1 - vI 2[ ]2kT

Slope near origin = -gmRC

Clif Fonstad, 11/03 Lecture 19 - Slide 7

Above: Circuit with largesignal, MOSFET modelfor saturation in place

Right: Transfer characteristic

Source-coupled pair: large signal analysis

Analysis: 3 KVL loops (see text)Result: Outputs only depend on difference

between the two inputs, (vI1-vI2)

Transfer characteristic is symmetrical†

vO1 = VDD -RD

2

K vIN1 - vIN 2[ ]2+ IBIAS

+K2

vIN1 - vIN 2[ ] 4IBIAS

K- vIN1 - vIN 2[ ]2

Ï

Ì Ô

Ó Ô

¸

˝ Ô

˛ Ô

vO2 = VDD -RD

2

K vIN1 - vIN 2[ ]2+ IBIAS

-K2

vIN1 - vIN 2[ ] 4IBIAS

K- vIN1 - vIN 2[ ]2

Ï

Ì Ô

Ó Ô

¸

˝ Ô

˛ Ô

vO = -RDK

2vIN1 - vIN 2[ ] 4IBIAS

K- vIN1 - vIN 2[ ]2

Slope near origin = -gmRD

Differential Amplifier Analysis -difference- and common-mode signals

Any pair of signals can be decomposed into a portion that is theidentical in both, and a portion that is equal, but opposite in both. Forexample, if we have two voltages, v1 and v2, we can define a common-mode signal, vC, and a difference-mode signal, vD, as:

In terms of these two voltages, we can write v1 and v2 as:

In incremental analysis of linear amplifiers we will decom-pose ourinputs into difference- and common-mode inputs:

We will apply vid to the circuit and get vod (= Avdvid), and then applyvic to the circuit to get voc (= Avcvic). Then we will reconstruct ouroutputs:

Clif Fonstad, 11/03 Lecture 19 - Slide 8

vC ≡ v1 + v2[ ] 2 vD ≡ v1 - v2[ ]

v1 = vC + vD 2 v2 = vC - vD 2

vic ≡ vin1 + vin2[ ] 2 vid ≡ vin1 - vin2[ ]

vout1 = voc + vod 2 = Avcvic + Avd vid 2vout2 = voc - vod 2 = Avcvic - Avd vid 2

vin1+- vin2

+-

vout1+- vout2

+-

Linear equivalentcircuit

(symmetrical)

vin2+-

vout2+-

vin1+-

vout1+-

a LEHC: one halfof sym.

LEC

a LEHC: one halfof sym.

LEC

Differential Amplifier Analysis -incremental analysis exploiting symmetry and superposition

Clif Fonstad, 11/03 Lecture 19 - Slide 9

-vid+-

-vod+-

a LEHC: one halfof sym.

LEC vid+-

vod+-

a LEHC: one halfof sym.

LEC

No voltage on common links, so incrementally they

are grounded.

vid+-

vod = Avdvid+-

a LEHC: one halfof sym.

LEC

vic+-

voc+-

a LEHC: one halfof sym.

LEC vic+-

voc+-

a LEHC: one halfof sym.

LEC

No current in common links, so incrementally they

are open.

vic+-

voc = Avcvic+-

a LEHC: one halfof sym.

LEC

Differential Amplifier Analysis -incremental analysis exploiting symmetry and superposition

Clif Fonstad, 11/03 Lecture 19 - Slide 10

Q1

A

BQ18

R1

Q5Q4Q3Q2

Q9

vIN2

+ 1.5 V

- 1.5 V

B

vIN1+-

Q6+-

Q7

Q19 B

Q12 Q13

Q21B B

Q11Q10Q8

Q20 Q22 Q24

Q15

Q16

Q17vOUT+-

B

A

Q14

Q23

R2 R3

• Looking at a complicated circuit: Lesson IFind the biasing circuitry and represent it symbolically

Consider the following example:

Clif Fonstad, 11/03 Lecture 18 - Slide 11

Circuitryprovidingthe VREF's

IBIAS1 IBIAS2 IBIAS3 IBIAS4

IBIAS5

IBIAS6

8 of the 24 transistors are "only" used for biasingthe other 16 transistors! If we get them out ofthe picture for awhile, the circuit looks simpler:

• Looking at a complicated circuit: Lesson I, cont.segregating out the biasing circuitry

Indicating the current sources symbolically lets youfocus on the action:

Clif Fonstad, 11/03 Lecture 18 - Slide 12

IBIAS1 IBIAS2 IBIAS3 IBIAS4IBIAS6

Q5Q4Q3Q2

Q9

vIN2

+ 1.5 V

- 1.5 V

vIN1+-

Q6+-

Q7Q12 Q13

Q11Q10Q8

Q15

Q16

Q17vOUT+-

Q14

R2 R3

IBIAS5

16 transistors left. In Lessons II and III we reduce thenumber to 5! Stay tuned…

Clif Fonstad, 11/03 Lecture 19 - Slide 13

IBIAS1 IBIAS2 IBIAS3 IBIAS4IBIAS6

Q5Q4Q3Q2

Q9

vIN2

+ 1.5 V

- 1.5 V

vIN1+-

Q6+-

Q7Q12 Q13

Q11Q10Q8

Q15

Q16

Q17vOUT+-

Q14

R2 R3

IBIAS5Current mirror load

Lee load

Differential Amplifier Analysis - an example of half circuitreduction

Difference-mode half circuit Common-mode half circuit

vod+

-vid/2+

-

Q6 Q12

Q16

Q9

Q14

R3

roQ22

roQ23reLLdm reCMdm

voc+

-vic

+

-

Q6 Q12

Q16

Q9

Q14

R3

roQ22

roQ23reLLcm reCMcm

2roQ19 2roQ21

6.012 - Electronic Devices and CircuitsLecture 19 - Differential Amplifier Stages - Summary

• Differential Amplifier Stages - Large signal behaviorGeneral features: two transistors (an emitter-coupled, or source-coupled, pair)

highly symmetricaltwo inputs, two outputs (however, one input can be zero)biased by single current source

Large signal transfer characteristics: only depends on vIN1 - vIN2

• Difference- and common-mode signalsDifference-mode: vID = vIN1 - vIN2Common-mode: vIC = (vIN1 + vIN2)/2Reconstruction: vIN1 = vIC + vID/2, vIN2 = vIC - vID/2

• Half-circuit incremental analysis techniquesExploiting symmetry and superpositionDifference-mode lin. equiv. half-circuit: links are groundedCommon-mode lin. equiv. half circuit: links are cut, open circuitedApproach: 1. identify common- and difference-mode half circuits

2. calculate common- and difference-mode signals3. analyze difference-mode half-circuit (each half-circuit is one of4. analyze common-mode half-circuit our known building-blocks)5. reconstruct signals

Clif Fonstad, 11/03 Lecture 19 - Slide 14