16
6. and 7. Continuous Random Variables and Special Continuous Distributions โ€ข Definition 6.1 on P.243: Let X be a random variable. Suppose that there exists a nonnegative real-values function : โ†’ 0, โˆž such that for any subset of real numbers A that can be constructed from intervals by a countable number of set operations, โˆˆ = . Then X is called absolutely continuous, or for simplicity, continuous. The f is called the probability density function (p.d.f., or pdf) of X. F(t)= โˆ’โˆž is called the (cumulative) distribution function (c.d.f., or cdf) of X. 6.1 Probability Density Function 6.2 Density Function of a Function of a Random Variable 6.3 Expectations and Variances 1

6. and 7. Continuous Random Variables and Special

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 6. and 7. Continuous Random Variables and Special

6. and 7. Continuous Random Variables and Special Continuous Distributions

โ€ข Definition 6.1 on P.243:

Let X be a random variable. Suppose that there exists a nonnegative real-values function ๐‘“: ๐‘… โ†’ 0,โˆž such that for any subset of real numbers A that can be constructed from intervals by a countable number of set operations,

๐‘ƒ ๐‘‹ โˆˆ ๐ด = ๐ด

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ.

Then X is called absolutely continuous, or for simplicity, continuous. The f is called the probability density function (p.d.f., or pdf) of X. F(t)= โˆ’โˆž

๐‘ก๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ is called the (cumulative)

distribution function (c.d.f., or cdf) of X.

6.1 Probability Density Function

6.2 Density Function of a Function of a Random Variable

6.3 Expectations and Variances

1

Page 2: 6. and 7. Continuous Random Variables and Special

6. Continuous Random Variables

โ€ข Properties of p.d.f. (pdf) and c.d.f. (cdf):

The probability density function (p.d.f.) f and its distribution function F of a continuous random variable X has the following properties.

(a) ๐น ๐‘ก = โˆ’โˆž๐‘ก๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ. ๐ด = (โˆ’โˆž, ๐‘ก], ๐น ๐‘ก = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ก = ๐‘ƒ ๐‘‹ โˆˆ ๐ด .

(b) ๐‘ƒ ๐‘‹ โˆˆ ๐‘… = โˆ’โˆžโˆž๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 1.

(c) If f is continuous, then ๐นโ€ฒ ๐‘ฅ = ๐‘“ ๐‘ฅ .

(d) For ๐‘Ž โ‰ค ๐‘, ๐‘ƒ ๐‘Ž โ‰ค ๐‘‹ โ‰ค ๐‘ = ๐‘Ž๐‘๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ.

(e) ๐‘ƒ ๐‘Ž < ๐‘‹ < ๐‘ = ๐‘ƒ ๐‘Ž โ‰ค ๐‘‹ < ๐‘ = ๐‘ƒ ๐‘Ž < ๐‘‹ โ‰ค ๐‘ = ๐‘ƒ ๐‘Ž โ‰ค ๐‘‹ โ‰ค ๐‘ .

2

Page 3: 6. and 7. Continuous Random Variables and Special

๐‘“ ๐‘ฅ =1

2๐‘’โˆ’๐‘ฅ/2 and ๐น ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’๐‘ฅ/2 (pdf vs. cdf)

Page 4: 6. and 7. Continuous Random Variables and Special

๐‘“ ๐‘ฅ =๐œ‹

2sin ๐œ‹๐‘ฅ vs. ๐น ๐‘ฅ =

1

2(1 โˆ’ cos(๐œ‹๐‘ฅ))

Page 5: 6. and 7. Continuous Random Variables and Special

Example 6.1 on P.245

Example 6.1 Experience has shown that while walking in a certain park, the time X, in minutes, between seeing two people smoking has a probability density function of the form

โ€ข f(x)= ๐œ†๐‘ฅ๐‘’โˆ’๐‘ฅ

0,

๐‘ฅ > 0๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

(a) Calculate the value ๐œ†. Ans: ๐œ† = 1.

(b) Find the distribution function of X. ๐น ๐‘ก = 1 โˆ’ ๐‘ก + 1 ๐‘’โˆ’๐‘ก ๐‘–๐‘“ ๐‘ก โ‰ฅ 0.

(c) What is the probability that Jeff, who has just seen a person smoking, will see another person smoking in 2 to 5 minutes? in at least 7 minutes? P(2<X<5)โ‰ˆ 0.37, ๐‘ƒ(๐‘‹ โ‰ฅ 7) โ‰ˆ 8๐‘’โˆ’7 โ‰ˆ 0.007.

5

Page 6: 6. and 7. Continuous Random Variables and Special

Example 6.2 on P.246

(6.2)(a) Sketch the graph of the function

๐‘“ ๐‘ฅ = 1

2โˆ’1

4๐‘ฅ โˆ’ 3 , 1 โ‰ค ๐‘ฅ โ‰ค 5

0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

and show that it is the probability density function of a r.v. X.

(b) Find F, the distribution function of X, and sketch its graph.

(c*) Show that F is continuous.

Remark 6.1 on P.249.

6

Page 7: 6. and 7. Continuous Random Variables and Special

Exercise 3 on P.250

3. The time it takes for a student to finish an aptitude test (in hours) has a probability density function of the form

๐‘“ ๐‘ฅ = ๐‘ ๐‘ฅ โˆ’ 1 2 โˆ’ ๐‘ฅ ๐‘–๐‘“ 1 < ๐‘ฅ < 2

(a) Determine the constant c. Ans: 12๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 1, ๐‘ ๐‘œ ๐‘ = 6.

(b) Calculate the distribution function of the time it takes for a randomly selected student to finish the aptitude test.

Ans: ๐น ๐‘ฅ = 1

๐‘ฅ๐‘“ ๐‘ก ๐‘‘๐‘ก = โˆ’2๐‘ฅ3 + 9๐‘ฅ2 โˆ’ 12๐‘ฅ + 5 ๐‘–๐‘“ 1 < ๐‘ฅ < 2,

๐‘Ž๐‘›๐‘‘ ๐น ๐‘ฅ = 1 ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 2.

(a) What is the probability that a student will finish the aptitude test in less that 75 minutes (i.e., 1.25 hours)? Between 1.5 and 2 hours?

2. ๐น ๐‘ฅ = 1 โˆ’16

๐‘ฅ2๐‘–๐‘“ ๐‘ฅ โ‰ฅ 4, ๐‘Ž๐‘›๐‘‘ 0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’. Then

(a) ๐‘“(๐‘ฅ) =32

๐‘ฅ3๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ฅ 4 ๐‘ ๐‘†๐‘˜๐‘’๐‘ก๐‘โ„Ž ๐น ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ฅ 4.

๐‘ ๐‘ƒ 5 < ๐‘‹ < 7 = ๐น 7 โˆ’ ๐น(5), d ๐‘ƒ ๐‘‹ โ‰ฅ 6 = 1 โˆ’ ๐น 6 =16

36=

4

9

7

Page 8: 6. and 7. Continuous Random Variables and Special

Density Function of A Function of A R.V. (P.253)

In probability applications, we may face that the probability density function f of X is known but the p.d.f. h(X) is need. One of the solutions is to find the distribution function G of Y=h(X) first and compute the p.d.f of h(X) by g(y)=Gโ€™(y).Example (6.3) Let X be a continuous r.v. with the probability density function

๐‘“ ๐‘ฅ = 2

๐‘ฅ2, ๐‘–๐‘“ 1 < ๐‘ฅ < 2

0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’.

The distribution function and p.d.f. of ๐‘Œ = ๐‘‹2 can be calculated as

๐บ ๐‘ฆ = ๐‘ƒ ๐‘Œ โ‰ค ๐‘ฆ = ๐‘ƒ ๐‘‹2 โ‰ค ๐‘ฆ = ๐‘ƒ 1 < ๐‘‹ โ‰ค ๐‘ฆ = 1๐‘ฆ 2

๐‘ฅ2๐‘‘๐‘ฅ = 2 โˆ’

2

๐‘ฆ,

๐‘” ๐‘ฆ = ๐บโ€ฒ ๐‘ฆ =1

๐‘ฆ ๐‘ฆfor 1 < ๐‘ฆ < 4

8

Page 9: 6. and 7. Continuous Random Variables and Special

Examples 6.4, 6.5 on P.254

(6.4) Let X be a continuous r.v. with p.d.f. f. In terms of f, find the distribution and probability density functions of ๐‘Œ = ๐‘‹3.

Hint: ๐บ ๐‘ก = ๐‘ƒ ๐‘Œ โ‰ค ๐‘ก = ๐‘ƒ ๐‘‹3 โ‰ค ๐‘ก = ๐‘ƒ ๐‘‹ โ‰ค 3 ๐‘ก = ๐น(3 ๐‘ก), ๐‘” ๐‘ก = ๐บโ€ฒ ๐‘ก .

(6.5) The error X of a measurement has the probability density function

๐‘“ ๐‘ฅ = 1

2๐‘–๐‘“ โˆ’ 1 < ๐‘ฅ < 1

0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Find the distribution and probability density functions of Y=|X|.

9

Page 10: 6. and 7. Continuous Random Variables and Special

Theorem 6.1 Method of Transformations P.255

Let X be a continuous random variable with probability density function ๐‘“๐‘‹ and the set of possible values A. For the invertible function

โ„Ž: ๐ด โ†’ ๐‘…, let ๐‘Œ = โ„Ž ๐‘‹ be a random variable with the set of possible values B=h(A)= โ„Ž ๐‘Ž : ๐‘Ž โˆˆ ๐ด . Suppose that the inverse of ๐‘ฆ = โ„Ž ๐‘ฅ is the function ๐‘ฅ = โ„Žโˆ’1 ๐‘ฆ , which is differentiable for all values of ๐‘ฆ โˆˆ ๐ต.Then ๐‘“๐‘Œ, the probability density function of Y, is given by

๐‘“๐‘Œ ๐‘ฆ = ๐‘“๐‘‹ โ„Žโˆ’1 ๐‘ฆ โ„Žโˆ’1 โ€ฒ ๐‘ฆ , ๐‘ฆ โˆˆ ๐ต.

See the Proof on P.255

Hint: Compute ๐น ๐‘ฆ = ๐‘ƒ ๐‘Œ = โ„Ž ๐‘‹ โ‰ค ๐‘ฆ , ๐‘กโ„Ž๐‘’๐‘› ๐‘“๐‘Œ ๐‘ฆ = ๐นโ€ฒ ๐‘ฆ .

10

Page 11: 6. and 7. Continuous Random Variables and Special

Example 6.6 on P.256

6.6 Let X be a random variable with the probability density function

๐‘“๐‘‹ ๐‘ฅ = 2๐‘’โˆ’2๐‘ฅ ๐‘–๐‘“ ๐‘ฅ > 0

0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

The probability density function of ๐‘Œ = ๐‘‹ is f y = 4y๐‘’โˆ’2๐‘ฆ2,๐‘ฆ > 0

Hint: ๐ด = 0,โˆž , ๐ต = โ„Ž ๐ด = (0,โˆž)

6.7 Let X be a random variable with the probability function

๐‘“๐‘‹ ๐‘ฅ = 4๐‘ฅ3 ๐‘–๐‘“ 0 < ๐‘ฅ < 10 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

The probability density function of ๐‘Œ = 1 โˆ’ 3๐‘‹2 is f y =2

91 โˆ’ ๐‘ฆ , ๐‘ฆ โˆˆ (โˆ’2,1)

Hint: A=(0,1), and B=h(A)=(-2,1).

11

Page 12: 6. and 7. Continuous Random Variables and Special

6.3 Expectations and Variances on P.259-264

Definition 6.2 If X is a continuous random variable with probability density function f, the expected value of X is defined as

๐ธ ๐‘‹ = โˆ’โˆžโˆž๐‘ฅ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ. ๐œ‡ or E[X] is an alternative notation.

Definition 6.3 If X is a continuous random variable with ๐ธ ๐‘‹ = ๐œ‡, then Var(X) and ๐œŽ๐‘‹, called variance and standard deviation of X, respectively, are defined by

Var ๐‘‹ = ๐ธ[ ๐‘‹ โˆ’ ๐œ‡)2 = โˆ’โˆžโˆž

๐‘ฅ โˆ’ ๐œ‡ 2๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ. ๐œŽ๐‘‹ = ๐‘‰๐‘Ž๐‘Ÿ ๐‘‹ .

12

Page 13: 6. and 7. Continuous Random Variables and Special

Examples of Expectation and Variance

(6.8) In a group of adult males, the difference between uric acid and 6, the standard value, is a random variable X with the following p.d.f.

๐‘“ ๐‘ฅ =27

4903๐‘ฅ2 โˆ’ 2๐‘ฅ ๐‘–๐‘“

2

3< ๐‘ฅ < 3, ๐‘“ ๐‘ฅ = 0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’.

Find the mean of these differences for the group, that is, E(X). Ans: 2.36

(6.9) A random variable X with the following p.d.f. is called a Cauchy r.v.

๐‘“ ๐‘ฅ =๐‘

1+๐‘ฅ2, โˆ’โˆž < ๐‘ฅ < โˆž

(a) Find c. c=1/๐œ‹.

(b) Show that E(X) does not exist.

13

Page 14: 6. and 7. Continuous Random Variables and Special

Theorems 6.2, 6.3, Corollary, P.261-264 (Skip)

Theorem 6.2 ๐ธ ๐‘‹ = 0โˆž[1 โˆ’ ๐น ๐‘ก ] ๐‘‘๐‘ก โˆ’ 0

โˆž๐น โˆ’๐‘ก ๐‘‘๐‘ก

Remark 6.4

Theorem 6.3 ๐ธ โ„Ž ๐‘‹ = โˆ’โˆžโˆžโ„Ž ๐‘ฅ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ

Example 6.10 A point X is selected from (0,๐œ‹/4) randomly. Calculate

E(cos2X)=2

๐œ‹, and E(๐‘๐‘œ๐‘ 2๐‘‹)=

1

2+

1

๐œ‹.

Remarks 6.5, 6.6., 6.7: About ๐ธ(๐‘‹๐‘›+1)

14

Page 15: 6. and 7. Continuous Random Variables and Special

๐ธ(๐‘‹๐‘›): The ๐‘›๐‘กโ„Ž ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‹

โ€ข Let X be a discrete r.v. with probability mass function f ๐‘ฅ , then

โ€ข ๐ธ ๐‘‹๐‘› = โˆ’โˆžโˆž๐‘ฅ๐‘›๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ is called the ๐‘›๐‘กโ„Ž moment of X if it exists.

โ€ข When ๐‘› = 1, ๐ธ ๐‘‹ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘Ÿ ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›.

โ€ข When ๐‘› = 2, ๐ธ ๐‘‹2 ๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘š๐‘œ๐‘š๐‘’๐‘›๐‘ก.

โ€ข Note that ๐‘‰๐‘Ž๐‘Ÿ ๐‘‹ = ๐ธ ๐‘‹2 โˆ’ (๐ธ[๐‘‹])2

โ€ข Remark: ๐ธ(๐‘‹๐‘›+1) exits implies that ๐ธ ๐‘‹๐‘› . See proof on p.184.

A6. Let X be a discrete r.v. with the set of possible values {๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘›}; X is called uniform if ๐‘ ๐‘‹ = ๐‘ฅ๐‘– =

1

๐‘›, 1 โ‰ค ๐‘– โ‰ค ๐‘›.

E(X)=(๐‘› + 1)/2 and Var(X)=(๐‘›2 โˆ’ 1)/12 for the case that ๐‘ฅ๐‘– = ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.

15

Page 16: 6. and 7. Continuous Random Variables and Special

Exercises A1,A6,A7,A10, B13,B14 on P.267-270

(A1) ๐น ๐‘ฅ = 1 โˆ’ 16/๐‘ฅ2 if ๐‘ฅ โ‰ฅ 4, ๐น ๐‘ฅ = 0 ๐‘–๐‘“ ๐‘ฅ < 4. Then

(a) E(X)=8, (b) Show that V(X) does not exist.

(A6) ๐‘“ ๐‘ฅ = 3๐‘’โˆ’3๐‘ฅ ๐‘–๐‘“ 0 โ‰ค ๐‘ฅ < โˆž. Then ๐ธ ๐‘’๐‘‹ =3

2.

(A7) ๐‘“ ๐‘ฅ =1

๐œ‹ 1โˆ’๐‘ฅ2๐‘–๐‘“ โˆ’ 1 < ๐‘ฅ < 1. Then E(X)=0.

(A10) ๐‘“ ๐‘ฅ =2

๐‘ฅ2๐‘–๐‘“ 1 < ๐‘ฅ < 2. Then E lnX = 1 โˆ’ ๐‘™๐‘›2.

(B13) ๐‘“ ๐‘ฅ =1

๐œ‹(1+๐‘ฅ2), ๐‘–๐‘“ โˆ’ โˆž < ๐‘ฅ < โˆž.

Prove that ๐ธ(|๐‘‹|๐›ผ) converges if 0 < ๐›ผ < 1 and diverges if ๐›ผ โ‰ฅ 1.

(B14) ๐‘ƒ ๐‘‹ > ๐‘ก = ๐›ผ๐‘’โˆ’๐œ†๐‘ก + ๐›ฝ๐‘’โˆ’๐œ‡๐‘ก , ๐‘ก โ‰ฅ 0, ๐›ผ + ๐›ฝ = 1. Then E(X)=๐›ผ

๐œ†+

๐›ฝ

๐œ‡.

16