22
Hyperbolic Functions (Euler) e x + e -x 2 will be called the Hyperbolic Cosine, cosh x. e x - e -x 2 will be called the Hyperbolic Sine, sinh x. Symmetrically, sinh and cosh are derivatives, and also antiderivatives, of each other. The Hyperbolic Tangent is their quotient: tanh x sinh x cosh x = e x - e -x e x + e -x . We also have sech x 1 cosh x , cosech x 1 sinh x , cotanh x cosh x sinh x .

58 Hyperbolic

Embed Size (px)

Citation preview

Page 1: 58 Hyperbolic

Hyperbolic Functions (Euler)

ex + e−x

2will be called the Hyperbolic Cosine, cosh x.

ex − e−x

2will be called the Hyperbolic Sine, sinh x.

Symmetrically, sinh and cosh are derivatives,

and also antiderivatives, of each other.

The Hyperbolic Tangent is their quotient:

tanh x ≡sinh x

cosh x=

ex − e−x

ex + e−x.

We also have

sech x ≡1

cosh x, cosech x ≡

1

sinh x, cotanh x ≡

cosh x

sinh x.

Page 2: 58 Hyperbolic

cosh2x − sinh2x = 1.

Proof.(ex + e−x

2

)2

−(ex − e−x

2

)2

=(ex + e−x

2+

ex − e−x

2

)(ex + e−x

2−

ex − e−x

2

)

=(2 ex

2

)(2 e−x

2

)

= 1.

ddx

tanh x = sech2x.

Proof.d

dx

sinh x

cosh x=

(sinh x)′ cosh x − (cosh x)′ sinh x

cosh2x

=cosh2x − sinh2x

cosh2x=

1

cosh2x

Page 3: 58 Hyperbolic

0 10

1

y

x

(cos t, sin t)

x2 + y2 = 1

Area =t

2

Page 4: 58 Hyperbolic

0 10

1

y

x

(cosh t, sinh t)

x2 − y2 = 1

Area =t

2

Page 5: 58 Hyperbolic

0 10

1

y

x

(cos t, sin t)

x2 + y2 = 1

x =cos t

sin ty

Area =t

2

y = sin u

dy = cos u du

1 − y2 = cos u

Page 6: 58 Hyperbolic

∫ sin t

y=0

1 − y2 dy −∫ sin t

y=0

cos t

sin ty dy

=

∫ t

u=0

cos u cos u du −cos t

sin t

∫ sin t

y=0

y dy

=1

2

∫ t

u=0

1 + cos 2u du −cos t

sin t

[

y2

2

]sin t

y=0

=1

2

(

t +sin 2t

2

)

−cos t

sin t

sin2t

2

=t

2+

2 sin t cos t

4−

cos t sin t

2=

t

2

Page 7: 58 Hyperbolic

0 10

1

0 10

1

y

x

(cosh t, sinh t)

x2 − y2 = 1

Area =t

2

y = sinh u

dy = cosh u du√

1 + y2 = cosh u

x =cosh t

sinh ty

Page 8: 58 Hyperbolic

∫ sinh t

y=0

1 + y2 dy −∫ sinh t

y=0

cosh t

sinh ty dy

=

∫ t

u=0

cosh2u du −cosh t

sinh t

∫ sinh t

y=0

y dy

=

∫ t

u=0

1 + cosh 2u

2du −

cosh t

sinh t

[

y2

2

]sinh t

y=0

=1

2

(

t +sinh 2t

2

)

−cosh t

sinh t

sinh2t

2

=t

2+

2 sinh t cosh t

4−

cosh t sinh t

2=

t

2

Page 9: 58 Hyperbolic

sinh (s + t) = sinh s cosh t + cosh s sinh t

Proof.es − e−s

2

et + e−t

2+

es + e−s

2

et − e−t

2

=eset − e−set + ese−t − e−se−t

4

+eset + e−set − ese−t − e−se−t

4

=2 eset − 2 e−se−t

4

=e(s+t) − e−(s+t)

2

sinh 2s = 2 sinh s cosh s

Page 10: 58 Hyperbolic

cosh (s + t) = cosh s cosh t + sinh s sinh t

Proof.es + e−s

2

et + e−t

2+

es − e−s

2

et − e−t

2

=eset + e−set + ese−t + e−se−t

4

+eset − e−set − ese−t + e−se−t

4

=2 eset + 2 e−se−t

4=

e(s+t) + e−(s+t)

2

cosh 2s = cosh2s + sinh2s

= 2 cosh2s − 1, using sinh2s = cosh2s − 1,

= 1 + 2 sinh2s, using cosh2s = 1 + sinh2s.

Page 11: 58 Hyperbolic

ex = 1 + x +x2

2+

x3

6+

x4

24+

x5

120+ . . . =

∞∑

n=0

xn

n!

e−x = 1 − x +x2

2−

x3

6+

x4

24−

x5

120+ . . . =

∞∑

n=0

(−1)nxn

n!

ex + e−x

2=

cosh x = 1 +x2

2+

x4

24+ . . . =

∞∑

n=0

x2n

(2n)!

cos x = 1 −x2

2+

x4

24+ . . . =

∞∑

n=0

(−1)nx2n

(2n)!

ex − e−x

2=

sinh x = x +x3

6+

x5

120+ . . . =

∞∑

n=0

x2n+1

(2n + 1)!

sin x = x −x3

6+

x5

120+ . . . =

∞∑

n=0

(−1)nx2n+1

(2n + 1)!

Page 12: 58 Hyperbolic

Recall: i2 = −1, i3 = −i, i4 = 1, i5 = i, etc.

ex = 1 + x +x2

2+

x3

6+

x4

24+

x5

120+ . . . =

∞∑

n=0

xn

n!

eix = 1 + ix −x2

2−

ix3

6+

x4

24+

ix5

120+ . . . =

∞∑

n=0

inxn

n!

eix = 1 −x2

2+

x4

24+ . . .

+ i(

x −x3

6+

x5

120+ . . .

)

= cos x + i sin x

cos x = 1 −x2

2+

x4

24+ . . .

cos ix = 1 +x2

2+

x4

24+ . . . = cosh x

sin x = x −x3

6+

x5

120+ . . .

sin ix = ix +ix3

6+

ix5

120+ . . . = i sinh x

We also have cosh ix = cos x, sinh ix = i sin x,

tan ix = i tanh x, tanh ix = i tan x.

Page 13: 58 Hyperbolic

ex = cosh x + sinh x

eix = cos x + i sin x

e−ix = cos x − i sin x

cos x =eix + e−ix

2

sin x =eix − e−ix

2i

eiπ = cos π + i sin π = −1

eiπ + 1 = 0

Page 14: 58 Hyperbolic

If y equals arcsinh x, then x equals sinh y =ey − e−y

2.

2x = ey − e−y

ey − 2x − e−y = 0

e2y − 2xey − 1 = 0

ey =2x ±

√4x2 + 4

2= x +

x2 + 1

y = ln(

x +√

x2 + 1)

arcsinh x = ln(

x +√

x2 + 1)

(arcsinh x)′ =

1 +1

2

2x√

x2 + 1

x +√

x2 + 1=

√x2 + 1

√x2 + 1

+x

√x2 + 1

x +√

x2 + 1=

1√

1 + x2

Page 15: 58 Hyperbolic

If y equals arccosh x, then x equals cosh y =ey + e−y

2.

2x = ey + e−y

ey − 2x + e−y = 0

e2y − 2xey + 1 = 0

ey =2x ±

√4x2 − 4

2= x +

x2 − 1

y = ln(

x +√

x2 − 1)

arccosh x = ln(

x +√

x2 − 1)

for x ≥ 1

(arccosh x)′ =

1 +1

2

2x√

x2 − 1

x +√

x2 − 1=

√x2 − 1

√x2 − 1

+x

√x2 − 1

x +√

x2 − 1=

1√

x2 − 1

Page 16: 58 Hyperbolic

If y equals arctanh x, then x equals tanh y =ey − e−y

ey + e−y.

(

ey + e−y)

x = ey − e−y

xey + xe−y = ey − e−y

0 = (1 − x)ey − (1 + x)e−y

(1 + x)e−y = (1 − x)ey

1 + x

1 − x= e2y

2y = ln

(

1 + x

1 − x

)

y =1

2ln

(

1 + x

1 − x

)

arctanh x =1

2ln

(

1 + x

1 − x

)

for −1 < x < 1

Page 17: 58 Hyperbolic

(arctanh x)′ =

(

1

2ln

(

1 + x

1 − x

)

)′

=1

2

(

ln (1 + x) − ln (1 − x))′

=1

2

(

1

1 + x−

−1

1 − x

)

=1

2

(1 − x) + (1 + x)

(1 + x)(1 − x)

=1

2

2

(1 + x)(1 − x)

(arctanh x)′ =1

1 − x2

Page 18: 58 Hyperbolic

Integral Substitutions using

a2 cosh2t − a2 sinh2t = a2,

a2 tanh2t + a2 sech2t = a2

If x = a sinh t :

x2 + a2 =√

a2 sinh2t + a2

= a√

sinh2t + 1 = a cosh t

t = arcsinhx

a= ln

(

x

a+

√x2 + a2

a

)

= ln (x +√

x2 + a2) − ln a

Page 19: 58 Hyperbolic

If x = a cosh t :

x2 − a2 =√

a2 cosh2t − a2

= a√

cosh2t − 1 = a sinh t

t = arccoshx

a= ln

(

x

a+

√x2 − a2

a

)

= ln (x +√

x2 − a2) − ln a

Page 20: 58 Hyperbolic

If x = a tanh t :

a2 − x2 =√

a2 − a2 tanh2t

= a√

1 − tanh2t = a sech t

t = arctanhx

a=

1

2ln

(

a + x

a − x

)

Page 21: 58 Hyperbolic

Every nonzero complex number x + iy can be written as its

absolute value r =√

x2 + y2, which is real, times a number

with absolute value equal to 1, which lies on the unit circle and

which can be written as cos θ + i sin θ, where θ ± 2kπi is a

certain angle satisfying cos θ =x

rand sin θ =

x

r. Call θ the

argument of z : θ = arg (z). Let ρ equal ln r.

Since we have z = x + iy = r(cos θ + i sin θ) = eρeiθ = eρ+iθ,

we can define the complex logarithm as a (multi- or single-

valued) inverse of the complex exponential as follows:

ln z = ln x + iy = ρ + iθ =1

2ln (x2 + y2) + i arg (z)

Page 22: 58 Hyperbolic

With this complex logarithm, the inverses of the (circular) trigonometric

and hyperbolic functions can be listed:

arcsin z =1

iln(

z +√

1 − z2)

, arccos z =1

iln(

z +√

z2 − 1)

,

arctan z =1

2iln

(

1 + iz

1 − iz

)

, arc cot z =1

2iln

(

z + i

z − i

)

,

arcsec z =1

iln

(

1 +√

1 − z2

z

)

, arc csc z =1

iln

(

1 +√

z2 − 1

z

)

,

arc sinh z = ln(

z +√

z2 + 1)

, arccoshz = ln(

z +√

z2 − 1)

,

arctanhz =1

2ln

(

1 + z

1 − z

)

, arccothz =1

2ln

(

z + 1

z − 1

)

,

arcsechz = ln

(

1 +√

1 − z2

z

)

, arccosechz = ln

(

1 +√

z2 + 1

z

)

.