36
From Model Checking to Proof Checking ... and Back Kedar Namjoshi Bell Labs April 29, 2005

5 oshi absemc/15817-s05/slides-kedar.pdf · em m M set S nsition on R y (Q, ˆF) e te q: • An e, φ q ⊆ S and • ial ion, ρ q: S → N any of M ing q ” set φ q hing is 0

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Fro

    mM

    odelCheckin

    gto

    Pro

    of

    Checkin

    g...

    and

    Back

    Kedar

    Nam

    josh

    iBell

    Labs

    April29,2005

  • Abstr

    action◦

    ModelCheckin

    g=

    Deductive

    Pro

    of

    Cer

    tifyi

    ng M

    odel

    Che

    cker

    MO

    DE

    L C

    HE

    CK

    ING

    PR

    OO

    F C

    HE

    CK

    ING

    Abs

    trac

    tion

    Proo

    f Lif

    ting

    Com

    plet

    enes

    s

    M`φ

    M|=φ

    M`φ

    M|=φ

  • I.Fro

    mM

    odelCheckin

    gto

    Pro

    ofCheckin

    g

    We

    show

    how

    tobuild

    a“cert

    ifyin

    g”

    modelchecker,

    one

    that

    genera

    tes

    apro

    of

    toju

    stify

    its

    resu

    lt.

    Why

    both

    er?

    •Pro

    ofs

    genera

    lize

    counte

    rexam

    ple

    traces

    for

    failure

    •A

    pro

    of

    isan

    independently-c

    heckable

    cert

    ificate

    for

    success

    (thin

    kPCC

    for

    tem

    pora

    lpro

    pert

    ies)

    •A

    pro

    of

    isa

    convenie

    nt

    data

    stru

    ctu

    refo

    rin

    tera

    ctive

    explo

    ration

    and

    incre

    menta

    lm

    odelcheckin

    g

  • CT

    LBasics

    The

    CT

    Llo

    gic

    isbuiltoutofato

    mic

    pro

    positions,

    boole

    an

    opera

    tors

    ,and

    the

    tem

    pora

    lopera

    tors

    EX(φ

    )(“φ

    hold

    sof

    som

    esu

    ccess

    or”

    ),E(φ

    Wψ)

    (“φ

    unle

    ssψ”),

    and

    E(φ

    Uψ)

    (“φ

    untilψ”).

    Som

    ederived

    opera

    tors

    :

    EF(φ

    )(“φ

    isre

    achable

    ”)

    =E(t

    rueUφ)

    AX(φ

    )(“

    all

    success

    ors

    satisf

    yφ)

    EX(¬φ)

    AG(φ

    )(“φ

    isin

    variant”

    )=

    ¬EF(¬φ)

  • CT

    Lvia

    fixpoin

    ts

    The

    basic

    CT

    Lopera

    tors

    can

    be

    defined

    as

    fixpoin

    tsof

    EX-form

    ula

    s.

    •EF(φ

    )=

    (minZ

    :φ∨

    EX(Z

    ))

    •E(φ

    Wψ)=

    (max

    Z:ψ∨

    (φ∧

    EX(Z

    )))

    Fix

    poin

    tfo

    rmula

    scan

    be

    re-w

    ork

    ed

    into

    ast

    ructu

    rally

    sim

    -

    ple

    nota

    tion:

    altern

    ating

    auto

    mata

    .

  • Sim

    ple

    Altern

    ating

    Auto

    mata

    (SAA)

    ASAA

    isju

    stlike

    an

    NFA,exceptth

    atth

    etr

    ansition

    func-

    tionδ

    maps

    ast

    ate

    toa

    boole

    an

    form

    ula

    over

    ato

    mic

    pro

    positions

    and

    EX.

    E.g

    .,EF(P

    )has

    a3-s

    tate

    auto

    mato

    n,w

    ith

    initia

    lst

    ate

    q 0

    δ(q

    0)=q 1

    ∨q 2

    ;δ(q

    1)=P;δ(q

    2)=

    EX(q

    0)

    This

    isju

    stth

    epars

    egra

    ph

    of(m

    inZ

    :P

    ∨EX(Z

    )).

    The

    (Büchi)

    accepta

    nce

    set,F,is

    em

    pty

    .

    Theore

    m0

    Every

    CT

    Lfo

    rmula

    can

    be

    repre

    sente

    dby

    an

    SAA

    ofpro

    port

    ionalsize.

  • An

    Auto

    mato

    n-b

    ased

    pro

    ofsyste

    m

    To

    show

    thata

    pro

    gra

    mM

    with

    state

    setS

    and

    transition

    rela

    tionR

    satisfi

    es

    an

    auto

    mato

    npro

    pert

    y(Q,q̂,δ,F

    )we

    need,fo

    reach

    auto

    mato

    nst

    ate

    q:

    •An

    invariance

    pre

    dic

    ate

    ,φq⊆S,and

    •A

    part

    ialra

    nk

    function,ρq:S→

    N

    Roughly

    speakin

    g,th

    ein

    variance

    ass

    ert

    ions

    state

    that

    any

    (reachable

    )st

    ate

    ofM

    satisf

    yin

    gq

    falls

    within

    the

    “sa

    fe”

    setφq.

    The

    rank

    function

    mark

    sth

    e“dista

    nce”

    tore

    achin

    g

    aBüchist

    ate

    ;it

    isre

    -set

    when

    the

    dista

    nce

    is0.

  • Conditio

    ns

    fora

    valid

    Pro

    of

    �Consist

    ency:ρq

    isdefined

    for

    every

    state

    inφq

    �In

    itia

    lity

    :Every

    initia

    lst

    ate

    ofM

    satisfi

    esφq̂

    �Safe

    tyand

    Pro

    gre

    ss:

    Base

    donδ(q

    )

    •l(a

    lite

    ral):φq(s

    )⇒

    l(s)

    ,fo

    ralls.

    •(∨j:q j

    ):(s

    imilarly

    for∧

    )φq(s

    )⇒

    (∃j:φq j(s

    )∧

    (ρq j(s

    )<qρq(s

    )))

    •EX(r

    ):(s

    imilarly

    for

    AX)

    φq(s

    )⇒

    (∃t:sRt:φr(t

    )∧

    (ρr(t

    )<qρq(s

    )))

    The

    rela

    tiona<qb=

    ifq6∈F

    thena<bels

    etr

    ue

    Pro

    gre

    ssand

    safe

    tyhave

    tobe

    checked

    togeth

    er

    because

    ofth

    eEX

    and∨

    opera

    tors

    .

  • Genera

    ting

    aPro

    of-I

    Key:

    modelcheck

    with

    auto

    mata

    inst

    ead

    ofCT

    L

    1.

    Turn

    CT

    Lsp

    ecifi

    cation

    into

    asim

    ple

    auto

    mato

    n

    2.

    Form

    an

    AND

    -OR

    pro

    duct

    gra

    ph

    of

    the

    pro

    gra

    mM

    and

    auto

    mato

    nA

    3.

    Check

    the

    canonic

    al

    pro

    pert

    y:

    does

    Pla

    yer

    Ihave

    a

    win

    nin

    gst

    rate

    gy?

    WI

    =m

    axZ;m

    inY

    :

    tt∨

    (OR∧

    (F⇒

    EX(Z

    ))∧

    (¬F

    ⇒EX(Y

    )))∨

    (AND

    ∧(F

    ⇒AX(Z

    ))∧

    (¬F

    ⇒AX(Y

    )))

  • Genera

    ting

    aPro

    of-II

    Now

    set:

    1.

    the

    invariantφq

    tobe{s

    :(s,q

    )∈WI}

    2.

    the

    rankρq(s

    )to

    the

    index

    of

    the

    earlie

    stst

    age

    forY

    where

    (s,q

    )is

    added,during

    the

    last

    Zitera

    tion.

    This

    work

    s!

    Theore

    m1

    The

    pro

    of

    syst

    em

    isso

    und

    and

    (rela

    tively

    )

    com

    ple

    te.

  • Genera

    ting

    Pro

    ofs

    -IV

    Pro

    ble

    m:

    we

    do

    not

    know

    befo

    re-h

    and

    wheth

    erth

    echeck

    succeeds

    or

    fails.

    Imm

    edia

    teSolu

    tion:

    Genera

    tepro

    ofs

    aft

    er

    norm

    alm

    odel

    checkin

    g.

    (this

    requires

    two

    runs

    ofth

    em

    odelchecker)

    Bett

    er

    Solu

    tion?

    Explo

    itduality

    .IfWI

    fails

    tohold

    of

    all

    initia

    lst

    ate

    s,th

    en

    its

    dual,WII,

    hold

    sof

    som

    ein

    itia

    l

    state

    .So

    keep

    appro

    xim

    ations

    for

    both

    YandZ,and

    use

    whic

    hever

    isappro

    priate

    at

    the

    end.

  • ASim

    ple

    Exam

    ple

    2-p

    rocess

    ,Ato

    mic

    Bakery

    Pro

    tocol

    varst

    1,st 2

    :{N

    ,W,C}

    (*N

    =“Non-c

    ritical”

    ,W

    =“W

    aitin

    g”,C=

    “Critical”

    *)

    vary1,y

    2:natu

    ral

    init

    ially

    (st 1

    =N

    )∧

    (y1=

    0)∧

    (st 2

    =N

    )∧

    (y2=

    0)

    wai

    t 1st

    1=N

    ↪→st

    1,y

    1:=

    W,y

    2+

    1en

    ter 1

    st1=W

    ∧(y

    2=

    0∨y1≤y2)↪→

    st1

    :=C

    releas

    e 1st

    1=C

    ↪→st

    1,y

    1:=

    N,0

    wai

    t 2st

    2=N

    ↪→st

    2,y

    2:=

    W,y

    1+

    1en

    ter 2

    st2=W

    ∧(y

    1=

    0∨y2<y1)↪→

    st2

    :=C

    releas

    e 2st

    2=C

    ↪→st

    2,y

    2:=

    N,0

  • The

    Abstr

    acte

    dPro

    tocol

    Abst

    raction:b 1

    =(y

    1=

    0);b 2

    =(y

    2=

    0);b 3

    =(y

    1≤y2)

    varst

    1,st 2

    :{N

    ,W,C}

    varb 1,b

    2,b

    3:boole

    an

    initia

    lly

    (st 1

    =N

    )∧b 1

    ∧(st 2

    =N

    )∧b 2

    ∧b 3

    wai

    t 1st

    1=N

    ↪→st

    1,b

    1,b

    2,b

    3:=

    W,f

    alse,b

    2,f

    alse

    ente

    r 1st

    1=W

    ∧(b

    2∨b 3

    )↪→

    st1,b

    1,b

    2,b

    3:=

    C,b

    1,b

    2,b

    3

    releas

    e 1st

    1=C

    ↪→st

    1,b

    1,b

    2,b

    3:=

    N,t

    rue,b

    2,t

    rue

    wai

    t 2st

    2=N

    ↪→st

    2,b

    1,b

    2,b

    3:=

    W,b

    1,f

    alse,t

    rue

    ente

    r 2st

    2=W

    ∧(b

    1∨¬b 3

    )↪→

    st2,b

    1,b

    2,b

    3:=

    C,b

    1,b

    2,b

    3

    releas

    e 2st

    2=C

    ↪→st

    2,b

    1,b

    2,b

    3:=

    N,b

    1,t

    rue,b

    1

  • Abstr

    act

    Pro

    of

    (W C

    ff

    ff f

    f)

    (N N

    tt tt

    tt)

    (W N

    ff

    tt ff

    )

    (N W

    tt f

    f tt)

    (C N

    ff

    tt ff

    )(W

    W f

    f ff

    tt) (W

    W f

    f ff

    ff)

    (N C

    tt f

    f tt)

    (C W

    ff

    ff tt

    )

    For

    the

    mutu

    alexclu

    sion

    pro

    pert

    =AG(¬

    (C1∧

    C2))

    ,

    the

    invariants

    are

    just

    the

    set

    ofre

    achable

    state

    s.

  • Concre

    tizin

    gth

    isPro

    of

    Letξ

    be

    asim

    ula

    tion

    rela

    tion

    fromM

    toM

    .A

    pro

    of(φ,ρ

    )

    onM

    can

    be

    concre

    tized

    toa

    pro

    of(φ′ ,ρ′ )

    onM

    by

    lett

    ing

    φ′ q(s)

    ≡(∃t:sξt:φq(t

    )),and

    ρ′ q(s)

    =(m

    int:sξt∧φq(t

    ):ρq(t

    ))

    So:

    φ′ q(st

    1,st 2,y

    1,y

    2)

    =(b

    ydefinitio

    n)

    (∃b 1,b

    2,b

    3:b 1≡

    (y1

    =0)∧b 2≡

    (y2

    =0)∧b 3

    =(y

    1≤y2)∧

    φq(st 1,st 2,b

    1,b

    2,b

    3))

    =(s

    implify

    ing)

    φq(st 1,st 2,(y1

    =0),

    (y2

    =0),

    (y1≤y2))

  • Sum

    mary

    :Pro

    ofG

    enera

    tion

    •It

    isposs

    ible

    todesign

    am

    odelcheckerw

    hic

    hgenera

    tes

    an

    independently

    checkable

    pro

    ofofits

    resu

    lts.

    •T

    his

    can

    be

    done

    quite

    easily

    :CO

    SPAN

    modifi

    cation

    (experim

    enta

    l)about

    200

    lines

    ofC.

    •G

    enera

    ted

    pro

    ofs

    have

    severa

    lapplications

    ...

    and

    per-

    haps

    som

    eas-

    yet-

    unknow

    nones!

  • Abstr

    action◦

    ModelCheckin

    g=

    Deductive

    Pro

    of

    Cer

    tifyi

    ng M

    odel

    Che

    cker

    MO

    DE

    L C

    HE

    CK

    ING

    PR

    OO

    F C

    HE

    CK

    ING

    Abs

    trac

    tion

    Proo

    f Lif

    ting

    Com

    plet

    enes

    s

    M`φ

    M|=φ

    M`φ

    M|=φ

  • II.Com

    ple

    teness

    ofVerification

    via

    Abstr

    action

    (jo

    int

    work

    with

    Dennis

    Dam

    s)

    Giv

    en:

    Pro

    gra

    mM

    ,pro

    pert

    yφ;to

    checkM

    |=φ

    Const

    ruct

    Abst

    raction:

    afinite

    pro

    gra

    mM

    ModelCheck:

    wheth

    erM

    |=φ

    An

    Abst

    raction

    Fra

    mework

    specifi

    es

    the

    pre

    cise

    rela

    tion-

    ship

    betw

    eenM

    andM

    .

    Soundness

    :fo

    ranyM,φ

    :ifM

    |=φ,th

    enM

    |=φ

    Com

    ple

    teness

    :fo

    ranyM,φ

    :ifM

    |=φ,

    there

    exists

    an

    abst

    ractionM

    such

    thatM

    |=φ

  • Sum

    mary

    ofNew

    Results

    Forpro

    pert

    ies

    expre

    ssed

    inbra

    nchin

    gtim

    ete

    mpora

    llo

    gic

    s

    (e.g

    .,CT

    L,CT

    L∗ ,

    or

    theµ-c

    alc

    ulu

    s)

    *Negative:

    Severa

    lwell-s

    tudie

    dabst

    raction

    fram

    ework

    s

    are

    incom

    ple

    te.

    Exam

    ple

    s:bisim

    ula

    tion

    [Milner7

    1],

    modal

    transition

    syst

    em

    refinem

    ent

    [Lars

    en-T

    hom

    sen88].

    This

    hold

    s

    even

    with

    enhancem

    ents

    such

    as

    fairness

    or

    stutt

    ering.

    *Positive:

    Asim

    ple

    exte

    nsion

    of

    modaltr

    ansition

    sys-

    tem

    sw

    ith

    new

    focus

    opera

    tions

    giv

    es

    rise

    toa

    com

    ple

    te

    fram

    ework

    .

    This

    isin

    tim

    ate

    lyconnecte

    dto

    the

    repre

    senta

    tion

    ofpro

    p-

    ert

    ies

    by

    finite

    tree

    auto

    mata

    .

  • Com

    ple

    teness

    and

    “Sm

    all

    Model”

    Theore

    ms

    Sm

    all

    ModelT

    heore

    m[H

    oss

    ley-R

    ackoff

    72,Em

    ers

    on85]:

    Any

    satisfi

    able

    pro

    pert

    yofth

    eµ-c

    alc

    ulu

    shas

    afinite

    model.

    Why

    doesn

    ’tth

    isse

    ttle

    the

    quest

    ion?

    ...

    because

    the

    small

    modelneed

    not

    abst

    ractM

    .

    Exam

    ple

    :{Q}

    NM

    {Q}

    Nis

    asm

    all

    modelfo

    rth

    epro

    pert

    y“th

    ere

    isa

    reachable

    Q-s

    tate

    BuN

    andM

    are

    unre

    late

    dby,

    say,

    sim

    ula

    tion

    or

    modal

    refinem

    ent.

  • ModalTra

    nsitio

    nSyste

    ms

    [Lars

    en-T

    hom

    sen

    1988]

    A(K

    ripke)

    MT

    Sis

    atr

    ansition

    syst

    em

    with

    •tw

    otr

    ansition

    rela

    tions:

    may

    (over-

    appro

    xim

    ate

    )and

    must

    (under-

    appro

    xim

    ate

    )tr

    ansitions,

    with

    must⊆

    may

    •a3-v

    alu

    ed

    (tru

    e,f

    alse,⊥

    )pro

    positionalvalu

    ation

    atst

    ate

    s

    For

    tem

    pora

    llo

    gic

    s,existe

    ntialpath

    modalities

    (e.g

    .,EX)

    are

    inte

    rpre

    ted

    overm

    ust

    -tra

    nsitions;

    univ

    ers

    alpath

    modal-

    itie

    s(e

    .g.,

    AX)

    over

    may-t

    ransitions.

    The

    outc

    om

    eofm

    odelcheckin

    gis

    also

    3-v

    alu

    ed.

  • Abstr

    action

    with

    MT

    S’s

    Ifcva

    then:

    –∀c′ :

    c−→

    c′⇒

    (∃a′ :

    amay

    −→a′∧c′va′ )

    –∀a

    ′ :amust

    −→a′⇒

    (∃c′

    :c−→

    c′∧c′va′ )

    Program

    M

    integer

    x;

    L1:

    {x

    is

    even}

    L2:

    if

    (*)

    then

    x:=

    x+2

    else

    x:=

    x+4;

    L3:

    mus

    t tra

    nsiti

    on

    may

    tran

    sitio

    n

    {L2,e

    ven(x

    )}

    {L3,e

    ven(x

    )}{L

    3,d

    iv3(x

    )}

  • Incom

    ple

    teness

    ProgramM

    L0:initially

    even(x)

    L1:while

    (x>

    0)

    do

    x:=x-2od;

    L2:x

    :=-1

    . . .

    2n

    L1:L0:

    L2:

    20

    4

    −1

    . . .

    Letφ=

    E(e

    ven(x

    )W(x<

    0))

    .

    Theore

    m2

    No

    finite

    MT

    Sabst

    ractsM

    and

    satisfi

    esφ.

    Pro

    of

    by

    contr

    adic

    tion.

    The

    pro

    pert

    yhold

    sfo

    rm

    ust

    -path

    sin

    M;

    soeither

    (i)

    even

    (x)

    hold

    sfo

    rever,

    or

    (ii)

    by

    finiteness

    ,x

    isnegative

    within

    abounded

    num

    ber

    of

    steps.

    The

    must

    -abst

    raction

    enfo

    rces

    these

    pro

    pert

    ies

    at

    every

    initia

    lst

    ate

    ofM

    ,a

    contr

    adic

    ation!

  • Consequences

    and

    Variations

    (Bi-)s

    imula

    tion

    isa

    specia

    lcase

    ofM

    TS

    refinem

    ent.

    Hence,

    Coro

    llary

    0Abst

    raction

    with

    revers

    esim

    ula

    tion

    or

    bisim

    -

    ula

    tion

    isin

    com

    ple

    tefo

    rexiste

    ntialCT

    Lpro

    pert

    ies.

    With

    aslig

    ht

    modifi

    cation

    toth

    eexam

    ple

    :

    Theore

    m3

    Abst

    raction

    by

    MT

    S’s

    with

    fairness

    or

    stut-

    tering

    isalso

    incom

    ple

    tefo

    rexiste

    ntialCT

    Lpro

    pert

    ies.

    Am

    ore

    ela

    bora

    tepro

    pert

    ysh

    ow

    sth

    atth

    esa

    me

    resu

    ltscan

    be

    obta

    ined

    even

    ifM

    has

    asingle

    initia

    lst

    ate

    .

  • Sta

    te-o

    f-th

    e-a

    rtfo

    rCom

    ple

    teness

    *M

    odelAbstr

    action:

    abst

    ract

    the

    model,

    pre

    serv

    eth

    e

    pro

    pert

    y

    –ACT

    L,A

    CT

    L∗ :

    fair

    sim

    ula

    tion

    [Gru

    mberg

    -Long

    1994,K

    upfe

    rman-

    Vard

    i1997]

    –µ-c

    alc

    ulu

    s:fa

    irFocuse

    dTra

    nsition

    Syst

    em

    abst

    raction

    *G

    am

    eAbstr

    action:

    abst

    ractth

    em

    odel-checkin

    ggam

    e,

    pre

    serv

    eth

    ew

    innin

    gconditio

    n.

    –linear-

    tim

    e:

    fair

    sim

    ula

    tion

    [Uribe

    1999,K

    est

    en-P

    nueli

    2000,

    Kest

    en-P

    nueli-V

    ard

    i2001]

    –µ-c

    alc

    ulu

    s:fa

    iraltern

    ating

    refinem

    ent+

    choic

    e[N

    am

    josh

    i

    2003]

  • The

    Need

    forFocus

    Opera

    tions

    Tra

    nsitionamust

    −→b

    exists

    only

    ifevery

    c:cva

    has

    atr

    an-

    sition

    toa

    state

    abst

    racte

    dbyb.

    This

    forc

    es

    any

    abst

    ract

    MT

    Sfo

    rour

    exam

    ple

    tobe

    in-

    finite.

    E.g

    .,L1

    :ev

    en(x

    )must

    6−→L2

    :(x<

    0);

    soth

    eso

    urc

    e

    must

    be

    split;

    say

    toL1

    :(x<

    0),L1

    :(x

    ≥0)∧

    even

    (x).

    But

    againL1

    :(x

    ≥0)∧

    even

    (x)must

    6−→(x<

    0).

    Can

    one

    som

    ehow

    rela

    xth

    em

    ust

    -tra

    nsition

    definitio

    n?

    (Such

    are

    laxation

    must

    pre

    serv

    eso

    undness

    .)

  • Altern

    ating

    Auto

    mata

    An

    altern

    ating

    auto

    mato

    nfo

    rE(e

    ven(x

    )W(x<

    0))

    OK

    OK

    EX

    q 1

    q 3

    q 2

    q 4

    q 0

    (x<

    0)

    even

    (x)

    During

    modelcheckin

    g,

    each

    auto

    mato

    nst

    ate

    isass

    oci-

    ate

    dw

    ith

    ase

    tofpro

    gra

    mst

    ate

    s.

    Can

    an

    auto

    mato

    nbe

    vie

    wed

    asan

    abst

    racttr

    ansition

    sys-

    tem

    ?

  • Focus

    Ste

    ps

    Afo

    cus

    step

    splits

    an

    abst

    ract

    state

    into

    ase

    tof

    more

    pre

    cise

    abst

    ract

    state

    s(c

    ase

    -splitt

    ing).

    AFocuse

    dTra

    nsition

    Syst

    em

    (FT

    S)is

    an

    MT

    Sw

    ith

    focus

    and

    (dual)

    de-focus

    steps.

    For

    our

    exam

    ple

    :

    a4

    FO

    CUS

    MUST

    DEFO

    CUS

    {eve

    n(x

    )}

    {(x<

    0)}

    a0

    a1

    a2

    a3

    a0

    :L0,L

    1:ev

    en(x

    ),L2

    :(x<

    0)

    a1

    :L2

    :(x<

    0)

    a2

    :L0,L

    1:ev

    en(x

    )

    a3

    :L0,L

    1:ev

    en(x

    )

    a4

    :L0,L

    1:ev

    en(x

    )

    Note

    the

    sim

    ilarity

    toth

    eauto

    mato

    n—

    this

    isno

    accid

    ent.

  • Com

    ple

    teness

    via

    Auto

    mata

    Theore

    m4

    For

    anyM

    and

    anyµ-c

    alc

    ulu

    spro

    pert

    yφ,if

    M|=φ,th

    ere

    isa

    finite

    FT

    SM

    such

    thatM

    both

    abst

    racts

    Mand

    satisfi

    esφ.

    The

    FT

    SM

    may

    be

    obta

    ined

    by:

    (i)

    convert

    ingφ

    toa

    finite

    altern

    ating

    tree

    auto

    mato

    nAφ,th

    en

    (ii)

    convert

    ing

    toan

    FT

    SÂφ

    (roughly

    )as

    follow

    s.

    AX-m

    ove⇒

    may

    transition

    EX-m

    ove⇒

    must

    transition

    ∨-m

    ove⇒

    focus

    transition

    ∧-m

    ove⇒

    de-focus

    transition

    accepta

    nce

    conditio

    n⇒

    fairness

    conditio

    n

  • Maxim

    alM

    odels

    Notice

    thatM

    =Âφ

    isin

    dependent

    ofM

    !T

    hus,Âφ

    isa

    maxim

    alm

    odelfo

    By

    resu

    lts

    of

    [Em

    ers

    on-J

    utla

    1991],

    this

    maxim

    alm

    odelhas

    size

    linear

    inth

    esize

    ofφ.

    Maxim

    al

    model

    resu

    lts

    for

    ACT

    L,

    ACT

    L∗

    [Gru

    mberg

    -Long

    1994,K

    upfe

    rman-V

    ard

    i1997]re

    quire

    exponential-size

    models.

    Maxim

    alm

    odels

    reduce

    modelcheckin

    gto

    sim

    ula

    tion-c

    heckin

    g.

  • Com

    ple

    teness:

    Sum

    mary

    •M

    ay-M

    ust

    abst

    raction

    does

    not

    guara

    nte

    eth

    eexis-

    tence

    offinite

    abst

    ractionsfo

    rexiste

    ntialte

    mpora

    lpro

    p-

    ert

    ies.

    •T

    he

    key

    toobta

    inin

    gcom

    ple

    teness

    seem

    sto

    be

    ano-

    tion

    of�-

    state

    -splitt

    ing

    we

    call

    afo

    cus

    step.

    •FT

    S’s

    are

    intim

    ate

    lyconnecte

    dto

    altern

    ating

    tree

    au-

    tom

    ata

    .It

    turn

    sout

    [Dam

    s-Nam

    josh

    i,VM

    CAI2005]th

    at

    non-d

    ete

    rmin

    istic

    auto

    mata

    suffi

    ce.

    Ineffect:

    transi-

    tion

    syst

    em

    s+

    fairness

    +choic

    e

    •FT

    S’s

    also

    ensu

    rem

    ore

    pre

    cisio

    nin

    must

    -abst

    ractions.

    (cf.

    [de

    Alfaro

    -Godefroid

    -Jagadeesa

    n,LIC

    S2004])

  • To

    sum

    up

    Model

    Checkin

    gand

    Pro

    of

    Checkin

    gare

    clo

    sely

    linked,

    with

    Abst

    raction

    as

    the

    “glu

    e”.

  • (Part

    ial)

    Refe

    rence

    List

    I.Fro

    mM

    odelCheckin

    gto

    Pro

    ofCheckin

    g

    [Ste

    vens-

    Stirlin

    g,TACAS

    1998]Pra

    cticalM

    odel-Checkin

    gUsing

    Gam

    es

    [Nam

    josh

    i,CAV

    2001]Cert

    ifyin

    gM

    odelCheckers

    [Pele

    d-Z

    uck,SPIN

    2001]Fro

    mM

    odelCheckin

    gto

    aTem

    pora

    lPro

    of

    [Pele

    d-P

    nueli-Z

    uck,FST

    TCS

    2001]Fro

    mFalsifi

    cation

    toVerification

    [Cla

    rke-J

    ha-L

    u-V

    eith,LIC

    S2002]Tre

    e-lik

    eCounte

    rexam

    ple

    sin

    Model

    Checkin

    g

    [Tan-C

    leavela

    nd,CAV

    2002]Evid

    ence-B

    ase

    dM

    odelCheckin

    g

    [Henzin

    ger-

    Jhala

    -Maju

    mdar-

    Necula

    -Sutr

    e-W

    eim

    er,

    CAV

    2002]Tem

    pora

    l-

    Safe

    tyPro

    ofs

    for

    Syst

    em

    sCode

    [Gurfi

    nkel-Chechik

    ,TACAS

    2003]Pro

    of-like

    counte

    rexam

    ple

    s

    [Nam

    josh

    i,VM

    CAI

    2003]Lifting

    Tem

    pora

    lPro

    ofs

    thro

    ugh

    Abst

    rac-

    tions

    [Nam

    josh

    i,CAV

    2004]An

    Effi

    cie

    ntly

    Checkable

    ,Pro

    of-Base

    dForm

    u-

    lation

    ofVacuity

    inM

    odelCheckin

    g

  • Refe

    rence

    List-

    II

    II....

    and

    Back

    [Uribe,T

    hesis

    2000]Abst

    raction-B

    ase

    dD

    eductive-A

    lgorith

    mic

    Verifi-

    cation

    ofReactive

    Syst

    em

    s

    [Kest

    en-P

    nueli,

    Inf.

    Com

    p.

    2000]Verification

    by

    augm

    ente

    dfinitary

    abst

    raction

    [Nam

    josh

    i,CAV

    2003]Bra

    nchin

    g-T

    ime

    Abst

    raction

    [Dam

    s-Nam

    josh

    i,LIC

    S2004]T

    he

    Existe

    nce

    ofFin

    ite

    Abst

    ractionsfo

    r

    Bra

    nchin

    gT

    ime

    ModelCheckin

    g

    [Dam

    s-Nam

    josh

    i,VM

    CAI2005]Auto

    mata

    as

    Abst

    ractions

  • ...

    Additio

    nalSlides

    ...

  • FT

    S’s

    and

    Disju

    nctive

    MT

    S’s

    [Lars

    en-X

    inxin

    1990]

    DM

    TS’s

    intr

    oduced

    toguara

    nte

    ea

    solu

    tion

    toCCS

    equa-

    tions

    ofth

    efo

    rm{C

    i(X

    )=Ei}

    DM

    TS’s

    splita

    must

    -tra

    nsition

    into

    case

    s:in

    stead

    ofamust

    −→b,

    allowamust

    −→{B

    0,B

    1,...}

    where

    theBiare

    sets

    ofabst

    ract

    state

    s.

    Re-d

    iscovere

    din

    [Shoham

    -Gru

    mberg

    2004,

    de

    Alfaro

    -Godefroid

    -

    Jagadeesa

    n2004]fo

    rin

    cre

    asing

    the

    pre

    cisio

    nofabst

    ractions.

    FT

    S’s

    are

    diff

    ere

    nt

    inth

    at

    one

    firs

    tsp

    lits

    state

    ,th

    en

    con-

    stru

    cts

    ord

    inary

    must

    transitions.