43
S Kanjanachuchai 2102-584 Intro to Nanoelectronics 1 5. Lithography 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen References: Semiconductor Devices: Physics and Technology. 2 nd Ed. SM Sze. Ch 12 Fundamental of Semiconductor Fabrication. GS May & SM Sze. Ch 4

5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

  • Upload
    others

  • View
    2

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

1

5. Lithography

1. photolithography• intro: overall, clean room

2. principle3. tools4. pattern transfer5. resolution6. next-gen

References:Semiconductor Devices: Physics and Technology. 2nd Ed. SM Sze. Ch 12 Fundamental of Semiconductor Fabrication. GS May & SM Sze. Ch 4

Page 2: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

2

Photolithography process

Page 3: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

3

Clean room:

lithography must be carried out in a clean-room environment [A] because the presence of dust particles [B] will lower yields.

[A] [B]

1. Pinhole2. Current constriction3. S/C or O/C

yield = # good chips / # total chips

Page 4: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

4

Figure 12.2.Particle-size distribution curve for

English (---) and metric (—) classes of clean rooms.4

ENGLISH SystemClass 100 = 100 particles/ft3

(particle size >= 0.5 µm)

or 100×103 particles / m3

(particle size >= 0.1 µm)

"clean" quantified:

cleanliness – cost trade-off

1 ft = 0.3048 m1 ft3 = 0.0283 m3

Page 5: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

5

Clean room & HEPA filter

HEPA = high efficiency particulate air.

Page 6: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

6

Lithography

1. photolithography2. principle

• shadow, projection3. tools4. pattern transfer5. resolution6. next-gen

Page 7: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

7

Shadow

λ

g

λ (µm) g (µm) CD (µm)

0.4 50 4.5

0.25 15 2

Contact: dust particles can be transferred between mask and wafer low yieldProximity: dust not transferred high yield (poor resolution due to diffraction) yield-resolution trade-off gCD λ≅

Page 8: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

8

Image partitioning techniques for projection printing: (a) annual-field wafer scan, (b) 1:1 step-and-repeat,

(c) M:1 reduction step-and-repeat, and (d) M:1 reduction step-and-scan.

Projection

Stepper(step-and-repeat system)

Page 9: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

9

Lithography

1. photolithography2. principle3. tools

• light source• mask• photoresist

4. pattern transfer5. resolution6. next-gen

Page 10: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

10

Pre-1990: high-pressure mercury-arc lamp

source λ(nm) resolution (nm)Hg 365 300KrF 248 180ArF 193 100F2 157 70

Mercury (Hg) sourceline λ(nm)G 436H 405I 365

Hg

Page 11: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

11

CMOS scaling necessitates the development of low-λ light source

Light source roadmap

Page 12: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

12

Lithography

1. photolithography2. principle3. tools

• light source• mask• photoresist

4. pattern transfer5. resolution6. next-gen

ITRS2009. Table LITH5A

Page 13: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

13

Mask

How to make masks?Mask blank electron-beam lithography IC Mask (reticle)[Cr / SiO2] [CAD]

info, alignment marks, test structures, etc.

alignment marks

test structures

Page 14: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

14

Yield for a 10-mask lithographic process with various defect densities per level.

In order to improve yield, masks are cleaned / inspected regularly

Yield

the yield of a lithographic step depends critically on mask cleanliness, or how many fatal defects are presence:

see fig. [B] slide #3

Page 15: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

15

Lithography

1. photolithography2. principle3. tools

• light source• mask• photoresist

4. pattern transfer5. resolution6. next-gen

source: ITRS2011, Table LITH3A

Page 16: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

16

Suppliers: AZ, Shipley, Sumitomo

There are two types of resists: positive and negative. The final pattern on wafer is the same as (+) or opposite to (–) those on mask.

It is called photo-resist because:photo – it responds to photonsresist – it resists etching / dopant atoms, protecting the layer underneath

Photoresist

photo

resist

Page 17: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

17

Figure 12.9. Exposure-response curve and cross section of the resist image after development.1 (a)

Positive photoresist; (b) negative photoresist.

The “quality” of the resist and the exposure / development process is measured by the steepness of the resist wall, or the contrast ratio:

source: ITRS2011, Table LITH3B

Page 18: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

18

Lithography

1. photolithography2. principle3. tools4. pattern transfer5. resolution6. next-gen

Page 19: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

19

Pattern transfertransfers the pattern which appears on the photoresist onto the substrate (Si). The transfer process can be subtractive [A], or additive [B] in nature.

[A] Subtractive: etching(for oxide removal, interconnect)

[B] Additive: metallization(S/D metal, via filling)

Some process (such as doping through photoresist) is neither subtractive nor additive.

Lift-Off process

Page 20: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

20source: ITRS2011, Fig. LITH1

Page 21: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

21

Lithography

1. photolithography2. principle3. tools4. pattern transfer5. resolution

• limit• enhancement (PSM, OPC, Immersion)

6. next-gen

Page 22: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

22

( )22

1

sin

NAkDOF

nNANA

klm

λθ

λ

=

=

=

NA: numerical apertureDOF: depth of focus

Q) How to improve resolution (lm)?A) ↓λ, ↑NA

Resolution of photolithographyminimum printed line / feature size / resolution(lm)

trigonometry:

Requirements:lm,↓, DOF↑

Page 23: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

23

Diffraction strong when L ~< λ

L

λ

Diffractiondiffraction is the limiting factor in printing two closely-spaced lines.

mask

wafer

λ>L λ≤L

Page 24: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

24

Lithography

1. photolithography2. principle3. tools4. pattern transfer5. resolution

• limit• enhancement (PSM, OPC, Immersion)

6. next-gen

Page 25: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

25source: ITRS2009, Table LITH1

Page 26: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

26

A schematic of an optical lithography system showing the methods that can improve the technique's performance. Key: λ is the wavelength of the illumination source; OAI is off-axis illumination; IIL is imaging interferometric illumination; OPC is optical proximity correction; and PSM is phase-shift masks.

Link

Resolution Enhancement Techniques

Page 27: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

27

Figure 12.12. The principle of phase-shift technology. (a) Conventional technology; (b) phase-shift technology.9

diffraction

intensity

d = λ/2(n-1)

Phase-Shift Mask (PSM)

Page 28: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

28

Page 29: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

29

Optical Proximity Correction (OPC)a purely mathematical process

The automated algorithmic link between DesignGauge, the application system for CD scanning electron microscopy (CD-SEM), and Proteus OPC for pre-processing OPC model building data allows Proteus customers to seamlessly obtain a large sampling of metrology data to account for process variations across the entire process window.

Page 30: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

30

Immersion

θ

λ

sin

1

nNANA

klm

=

=

use n > 1

Page 31: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

31sour

ce: IT

RS20

11, T

able

LITH2

Page 32: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

32

High-Index Lenses Push Immersion Beyond 32 nmAaron Hand -- Semiconductor International, 4/1/2006

water's refractive index (n) = 1.44high-index fluids n~1.65photoresist n = 1.7lens (n=1.56) becomes the limiter: calcium fluoride (CaF2) higher-index lens materials: lutetium aluminum garnet (LuAG), n = 2.1

Page 33: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

33

Page 34: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

34

Lithography

1. photolithography2. principle3. tools4. pattern transfer5. resolution6. next-gen

• EUV, XRL, EBL, IBL, NIL

Page 35: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

35

sour

ce: IT

RS20

11, F

ig. L

ITH3

Aso

urce

: ITRS

2011

, Fig.

LIT

H3B

Page 36: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

36

EUV: extreme-ultra violet lithography

In an laser produced plasma (LPP)-based system, EUV light is produced by bombarding a sliver of tin with a high-power laser. The light is then gathered by specially engineered EUV mirrors, which then focus an EUV beam in the EUV scanner to produce microchip patterns.

ITRS2009: Table LITH5C

Page 37: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

37

XRL: X-ray lithography

Page 38: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

38

Schematic of an electron-beam machine.

Direct-write (serial)

Figure 12.16. Schematic of positive and negative resists

used in electron-beam lithography.

EBL: electron-beam lithography

Page 39: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

39

RSiNx100-150nmsmall scattering angle

LCr/W30-60nmlarge scattering angle

RL

100 keV

Scattering with angular limitation projection electron beam lithography system

EBL: parallel

Basic SCALPEL principle of operation showing contrast generation by differentiating more- or less-scattered electrons.

Page 40: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

40

IBL: Trajectories of 60 keV H* ions traveling through PMMA into Au, Si, and PMMA.18

EBL: Proximity effect: (a) Simulated trajectories of 100

electrons in PMMA for a 20-keV electron beam.15 (b) Dose distribution for forward

scattering and backscattering at the resist-substrate interface.

IBL: ion-beam lithography

Page 41: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

41

NIL: Nano-imprint lithography

ITRS2009: Table LITH5D

Page 42: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

42

Page 43: 5. Lithographypioneer.netserv.chula.ac.th/~ksongpho/584/5.pdf · Intro to Nanoelectronics 1 5. Lithography 1. photolithography • intro: overall, clean room 2. principle 3. tools

S Kanjanachuchai

2102-584 Intro to Nanoelectronics

43

Conclusions• photolithography

– process, principle, tools– resolution limits– resolution-enhancement techniques

• PSM, OPC, Immersion, DP,…• future lithographic systems

– EUV, XRL, ML2 (EBL, IBL), NIL, ...

from ITRS2009:

... To continue as the dominant technique for leading-edge critical layer lithography, resolution enhancement techniques (RETs) such as off-axis illumination (OAI), phase shifting masks (PSMs), and optical proximity corrections (OPCs) are being used with imaging systems at the 193 nm wavelength. In addition to RETs, lenses with increasing numerical apertures and decreasing aberrations will be required to extend the life of optical lithography. Liquid immersion imaging with a fluid between the final lens element and the wafer is also being used to extend optical lithography.