4 -- Formal Structure of Thermodynamics

Embed Size (px)

Citation preview

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    1/29

    MSEG 803Equilibria in Material Systems

    4: Formal Structure of TD

    Prof. ue!un "# $u

    %u!ue!un&u'el.e'u

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    2/29

    (st la) an' *n' la) in a sim+le system

    (st la):

    *n' la):

    T%e functions U(S, V, N) an' S(U,V, N) are calle'

    fundamental equations of a system. Eac% one of t%em

    contains full information about a system.

    Generally ener,y re+resentation

    entro+y re+resentation

    dU Q PdV  δ = −

    Q TdS  δ    =

    dU TdS PdV  = −1   P 

    dS dU dV  T T 

    = +

    i i

    i

    dU TdS y dx= + ∑1 i

    i

    i

     ydS dU dx

    T T = − ∑

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    3/29

    Equations of state

    T%e intensi-e -ariables in t%e fun'amental

    equations )ritten as functions of t%e etensi-e

    -ariables "for fie' mole numbers#:

    Generally

    dU TdS PdV  = −

    1   P dS dU dV  

    T T 

    = +

    ( , )T T S V  =   ( , ) P P S V − = −

    1 1( , )S V 

    T T 

    =   ( , ) P P 

    S V 

    T T 

    =

    1 2( , ,..., ,...)i i i y y x x x=

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    4/29

    /%emical +otential an' +artial molar quantities

    /%emical +otential µ i  for t%e com+onent i

    uasi1static c%emical )or2

    T%e +artial molar quantity x  " x  is an etensi-e function#

    associate' )it% t%e com+onent i ")%en T P are constant#

    +artial molar -olume

    , ,...

    i

    i S V 

     N  µ 

     ∂= ÷∂     , ,...

    i

    i S V 

     N T 

     µ   ∂= − ÷∂  

    c i i

    i

    W dN δ µ = ∑   i ii

    dU TdS PdV dN   µ = − + ∑

    °

    , , ( ) j

    i

    i T P N j i

     x x

     N ≠

     ∂= ÷∂  

    °

    , , ( ) j

    i

    i T P N j i

    V V 

     N ≠

     ∂= ÷∂  

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    5/29

    Euler relation

    U  an' S are bot% %omo,eneous first or'er

    functions of etensi-e +arameters

    λ  is a constant

    et λ  = 1

    Sim+le systems

    1 2 1 2( , ,..., ,...) ( , ,..., ,...)i iU X X X U X X X  λ λ λ λ  =

    1 2 1 2( , , ..., ,...) ( , ,..., ,...)i iU x x x U x x xλ λ λ λ  

    λ λ 

    ∂ ∂=∂ ∂

    1 2 1 2( , ,..., ,...) ( ) ( , ,..., ,...)

    ( ) ( )

    i i ii

    i ii i

    U x x x x U x x xU x

     x x

    λ λ λ λ λ λ λ  

    λ λ λ 

    ∂ ∂ ∂= × = ×

    ∂ ∂ ∂∑ ∑

    1 2( , ,..., ,...)

    ( )

    ii i i

    i ii

    U x x xU x y x

     x

    ∂= × = ×

    ∂∑ ∑

    i i

    i

    U TS PV N   µ = − + ∑   1 i ii

     P S U V N  

    T T T 

     µ = + − ∑

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    6/29

    Gibbs1Du%em relation

    (st la) of TD:

    in sim+le systems

    5n a sin,le com+onent sim+le system:

    i i

    i

    U TS PV N   µ = − + ∑   ( ) ( ) ( )i ii

    dU d TS d PV d N   µ = − + ∑⇒

    i i

    i

    dU TdS PdV dN   µ = − + ∑

    ( ) ( ) ( )i i i ii i

    TdS PdV dN d TS d PV d N   µ µ − + = − +∑ ∑

    0i i

    i

    SdT VdP N d   µ − + =∑1

    ( ) ( ) ( ) 0iii

     P Ud Vd N d  

    T T T 

     µ + − =∑

    d sdT vdP   µ  = − +

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    7/29

    Summary of t%e formal structure of TD

    T%e fun'amental equation by itself contains full 

    information about t%e system

    6 of con!u,ate -ariables: N 

    6 of ,enerali7e' )or2 terms: N - 1 6 of -ariables: 2N 

    6 of in'e+en'ent -ariables "t%ermo'ynamic 'e,ree of

    free'om#: N - 1

    6 of equations of state: N   n in'i-i'ual equation of state 'oes not com+letely

    c%aracteri7e t%e system

     ll equations of state to,et%er contain full information about

    t%e system "Euler relation#

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    8/29

    Eam+le: i'eal ,as

    9ot a fun'amental equation

    9ot an eq. of state in t%e ener,y re+resentation

    Gibbs1Du%am eq. in t%e

    entro+y re+resentation

    /ombine all 3 equations of state:

    0 0

    0 0

    ( ) ln( ) ln( ) P V u v

     s c s c RT u v

     µ = − = + +

     PV NRT =

    V U Nc T  =

    1 V c

    T u=

     P R

    T v=  1( ) ( ) ( )

     P d u d v d  

    T T T 

     µ = × + ×

    ( ) ( )V du dv

    c Ru v

    = − −

    1( ) ( ) ( ) P S U V N  T T T 

     µ = + −

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    9/29

    Ener,y minimum +rinci+le

    Entro+y maimum +rinci+le: in an isolate' system

    equilibrium is reac%e' if S is maimi7e' %en dU = 0  "isolate' system# S is maimi7e' in equilibrium

    Ener,y minimum +rinci+le: for a ,i-en -alue of total

    entro+y of a system equilibrium is reac%e' if U isminimi7e' %en dS = 0  U is minimi7e' in equilibrium

    0U 

    S  x

    ∂   = ÷∂  

    2

    2  0

    S  x

     ∂ ÷

    ∂  

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    10/29

    Ener,y minimum +rinci+le

     t state S ta2es t%e maimum -alue if U  is ta2en as a constant;

    similarly U  ta2es t%e minimum -alue if S is ta2en as a constant.

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    11/29

    Ener,y minimum +rinci+le

    Start )it%

    See /allen section

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    12/29

    T 1 T 2 

    Eam+le (: equilibrium in an isolate'

    system after remo-al of an a'iabatic

    +artition "i.e. only allo)s %eat flo)

    bet)een sub1systems#

    is a constant/onstraint:

    t%ermal equilibrium

    9o) instea' of t%e enclosure con'ition "dU = 0 # let=s start from

    t%e ne) constraint t%at dStot  = dS1 + dS2  = 0 

    t%ermal equilibrium: t%e same equilibrium state results>

    1 21 2 1 2 1

    1 2 1 2

    1 1( ) 0tot 

    S S dS dS dS dU dU Q

    U U T T  δ 

     ∂ ∂= + = × + × =   × − =

    ÷ ÷∂ ∂  

    1 2tot U U U = +   ⇒   2 1Q Qδ δ = −

    1 2T T =⇒

    1 21 2 1 2 1 1 2

    1 2

    ( ) 0tot U U 

    dU dU dU dS dS dS T T  S S 

     ∂ ∂= + = × + × = × − = ÷ ÷∂ ∂  

    1 2

    T T =⇒

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    13/29

    Sim+le mec%anical systems

    Entro+y remains constant in a

    +urely mec%anical system

    )%ere

    k  is t%e s+rin, constant

    ( )U mgx F x dx= − + ∫    F kx=

    0dU mgdx Fdx= − + =

    mg F kx= =⇒

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    14/29

    e,en're transformations

    ?ot% S an' U  are functions of etensi-e -ariables; %o)e-er in+ractical e+eriments ty+ically t%e controlle' -ariables

    "constraints# are t%e intensi-e ones>

    e,en're transformations: fun'amental relations e+resse'

    as functions of intensi-e -ariables

    e,en're transformations +reser-e t%e informational content

    e,en're transform of a fun'amental equation is also a

    fun'amental equation

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    15/29

    Ent%al+y H(S, P, N) = U + PV = TS + µ N 

    Partial e,en're transform of U : re+laces t%e etensi-e +arameter V  )it% t%e intensi-e +arameter P 

    For a com+osite system in mec%anical contact )it% a +ressure

    reser-oir t%e equilibrium state minimi7es t%e ent%al+y o-er t%e mani1

    fol' of states of constant +ressure "equal to t%at of t%e reser-oir#.

    Ent%al+y c%an,e in an isobaric +rocess is equal to %eat ta2en in or

    ,i-en out from t%e sim+le system

    Differential:   ( )dH d U PV TdS VdP dN   µ = + = + + ∑

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    16/29

    Ent%al+y minimi7ation +rinci+le

    /onsi'er a com+osite system )%ere all sub1systems

    are in contact )it% a common +ressure reser-oir

    t%rou,% )alls non1restricti-e )it% res+ect to -olume

     ++ly U  minimum +rinci+le to reser-oir @ system:

    T%e system is in mec%anical equilibrium )it% t%e

    reser-oir:

    0r r r r  tot sys sys sys sysdU dU dU dU P dV dU P dV  = + = − = + =

     P P =⇒   ( ) 0tot sys sys sys sys sys sys sysdU dU P dV d U P V dH  = + = + = =

    2 2 2( , ) ( ) 0r  sys sys sys sys sys sysd U S V d U P V d H  = + = >

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    17/29

    $elm%olt7 +otential F(T, V, N) = U - TS = - PV + µ N 

    Partial e,en're transform of U : re+laces t%e etensi-e

    +arameter S )it% t%e intensi-e +arameter T 

    For a com+osite system in t%ermal contact )it% a

    t%ermal reser-oir t%e equilibrium state minimi7es t%e

    $elm%olt7 +otential o-er t%e manifol' of states ofconstant tem+erature "equal to t%at of t%e reser-oir#.

    Differential:   ( )dF d U TS SdT PdV dN   µ = − = − + ∑

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    18/29

    $elm%olt7 free ener,y

    System in t%ermal contact )it% a

    %eat reser-oir 

    T%e )or2 'eli-ere' in a re-ersible

    +rocess by a system in contact )it%

    a t%ermal reser-oir is equal to t%e

    'ecrease in t%e $elm%olt7 +otential

    of t%e system

    $elm%olt7 Afree ener,yB: a-ailable

    )or2 at constant tem+erature

    System

    δ Q

    δ W 

    State → ?: dF 

    $eat

    reser-oir at T 

    ( )

    r r W dU Q dU T dS  

    d U TS dF  

    δ δ = − = +

    = − =

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    19/29

    or2 +erforme' by a system in contact )it%

    %eat reser-oir    cylin'er contains an internal +iston on eac% si'e of

    )%ic% is one mole of a monatomic i'eal ,as. T%e cylin'er

    )alls are 'iat%ermal an' t%e system is immerse' in a

    %eat reser-oir at tem+erature 0C/. T%e initial -olumes oft%e t)o ,aseous subsystems "on eit%er si'e of t%e

    +iston# are (0 an' ( res+ecti-ely. T%e +iston is no)

    mo-e' re-ersibly so t%at t%e final -olumes are an' <

    res+ecti-ely. $o) muc% )or2 is 'eli-ere' Solution (: 'irect inte,ration of PdV  "isot%ermal +rocess#

    Solution *: ∆W = ∆F 

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    20/29

    $elm%olt7 +otential minimi7ation +rinci+le

    /onsi'er a com+osite system )%ere all sub1systems

    are in t%ermal contact )it% a common %eat reser-oir

    t%rou,% )alls non1restricti-e )it% res+ect to %eat flo)

     ++ly U  minimum +rinci+le to reser-oir @ system:

    T%e system is in t%ermal equilibrium )it% t%e reser-oir:

    0r r r r  tot sys sys sys sysdU dU dU dU T dS dU T dS  = + = + = − =

    r T T =   ⇒   ( ) 0tot sys sys sys sysdU d U T S dF  = − = =2 2 2( ) ( , ) 0 sys sys sys sys sys sys sysd F d U T S d U S V  = − = >

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    21/29

    Gibbs +otential G(T, P, N) = U - TS + PV = µ N 

    e,en're transform of U : re+laces bot% S an' V  )it% t%eintensi-e +arameters T  an' P 

    For a com+osite system in contact )it% a t%ermal

    reser-oir an' a +ressure reser-oir t%e equilibrium state

    minimi7es t%e Gibbs +otential o-er t%e manifol' of statesof constant tem+erature an' +ressure.

    Differential:   ( )dG d U TS PV SdT VdP dN   µ = − + = + + ∑

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    22/29

    Gibbs free ener,y an' c%emical +otential

    Sim+le systems:

    Sin,le com+onent systems:

    Multi1com+onent systems:

    molar Gibbs +otential

    +artial molarGibbs +otential

    /onsi'er a c%emical reaction:

    c%emical equilibrium con'ition

    i i

    i

    G U TS PV N   µ = − + = ∑G

     N  µ  =

    i i

    i

    G  x N 

     µ = ∑0i i

    i

    v A∑   ƒ °i

    i

    dN 

    const d N  dv = =  °

    0i i i ii i

    dG SdT VdP dN v d N   µ µ = + + = =∑ ∑⇒0i i

    i

    v µ   =∑

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    23/29

    First or'er +%ase transition

     t T m  0 C/ an' ( atm liqui' )ater an' ice can

    coeist dGwate-i!e = d(H - TS) = 0  at T m  0 C/ ( atm

     ∆Swate-i!e = ∆H wate-i!e "T m  ∆U wate-i!e "T m at T m  0 C/ (atm

    T%e 'iscontinuity of H  an' U  are c%aracteristic of

    first or'er +%ase transition

     t T  H 0 C/ an' ( atm ice s+ontaneously melts dGwate-i!e = d(H - TS) # 0  at T  H 0 C/ ( atm

     ∆Swate-i!e # ∆H wate-i!e "T = ∆Qwate-i!e "T : irre-ersible

    +rocess

    Th d i E t

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    24/29

    Constraints  Thermodynamic

    potentialExtremumprinciple

      Example

    U  V constant

    dU = 0, dV = 0 

    S (U, V, N) = U"T + PV"T -

     µ N"T 

    dS = 1"T$dU + P"T$dV - µ  "T$dN 

    S ma

    dS = 0, d 

    S % 0 

    5solate' systems

    S V constantdS = 0, dV = 0 

    U (S, V, N) = TS - PV + µ N 

    dU = TdS - PdV + µ dN 

    U  mindU = 0, d 2 U # 0 

    Sim+le mec%anicalsystems consistin, of

    ri,i' bo'ies

    S P constantdS = 0, dP = 0 

    H (S, P, N) = TS + µ N 

    dH = TdS + VdP + µ dN 

    H  mindH = 0, d 2 H # 0 

    Systems in contact )it%a +ressure reser-oir'urin, a re-ersiblea'iabatic +rocess

    T  V constantdT = 0, dV = 0 

    F (S, V, N) = - PV + µ N dF = - SdT - PdV + µ dN 

    F  mindF = 0, d 2 F # 0 

    Ieactions in a ri,i''iat%ermal container at

    room tem+erature

    T  P constantdT = 0, dP = 0 

    G (T, P, N) = µ N 

    dG = - SdT + VdP + µ dN 

    G mindG = 0, d 2 G # 0 

    E+eriments +erforme'at room tem+erature an'

    atmos+%eric +ressure

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    25/29

    Generali7e' Massieu functions

    e,en're transforms of entro+y S

    Maimum +rinci+les of Massieu functions a++ly

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    26/29

    General case

    e,en're transform re+laces a -ariable )it% its con!u,ate

    For a t%ermo'ynamic system its TD function )ill be t%e

    e,en're transform )%ere t%e -ariables are constraine'

    /ontrolle' -ariables: ε && , σ  xx , σ '' 

      is t%e TD +otential t%at

    is minimi7e' in equilibrium

    ?eam

    )all )all

    7

    y

    0, ,

    ii iii x y z  dU TdS dN V d   µ σ ε == + + ∑

    0 0

    0 0 0

    ( ) xx xx yy yy

     zz zz xx xx yy yy

    d d U TS V V  

    SdT dN V d V d V d  

    φ σ ε σ ε  

     µ σ ε ε σ ε σ 

    = − − −

    = − + + − −

    ( , , , , ) xx yy zz T N φ σ σ ε  

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    27/29

    Deri-in, equilibrium con'itions

    T, N 1 T ,N 2 P   P  

    Equilibrium in a system surroun'e'by 'iat%ermal im+ermeable )alls in

    contact )it% a +ressure reser-oir after

    remo-al of an im+ermeable +artition

    "i.e. allo)s mass flo) bet)een sub1

    systems#.are constants/onstraints:

    is a constant

    c%emical equilibrium

    Gibbs +otential minimi7ation:

    ,T P 

    1 2tot  N N N = +   ⇒   2 1dN dN  = −

    1 21 2

    1 2

    1 1 2( ) 0

    tot 

    G GdG dN dN  

     N N 

    dN    µ µ 

     ∂ ∂= × + × ÷ ÷∂ ∂  

    = × − =

    ⇒   1 2 µ µ =

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    28/29

    /ou+le' equilibrium@

    @

    @@

    @

    @

    @

    @

     

    V e

      bo of an electrically con'ucti-e solutioncontainin, a +ositi-ely c%ar,e' ion "+e#

    s+ecies is se+arate' into t)o +arts by an

    im+ermeable electrically insulatin, internal

    +artition. -olta,e ∆V  is a++lie' across

    +   -

    t%e t)o +arts. 5f t%e +artition becomes +ermeable to t%e ion but still remains

    insulatin, )%at is t%e equilibrium con'ition )it% res+ect to t%e ion "assumin,constant tem+erature an' +ressure#

    Fun'amental equation:

    /onstraints:

    dG SdT VdP dN Vd! µ = − + + +

    1 1 1 11 2 1 2

    1 2 1 2

    1 1 2 1 ,1 , 2 1 1 2 1( ) ( ) ( )

    tot 

    " " "

    G G G GdG dN dN d! d!

     N N ! !

    dN d! V V dN d! V   µ µ µ µ ∆

     ∂ ∂ ∂ ∂= × + × + × + ×

      ÷ ÷ ÷ ÷∂ ∂ ∂ ∂  = × − + × − = × − + ×

    1 2dN dN  = −

      1 2d! d!= −   1 1d! #" dN  = ×

    1

      ( ) 0tot "

    dG dN #" V  ∆µ ∆= × + =   ⇒   1 ,1 2 ,2" " #"V #"V  µ µ + = +

  • 8/18/2019 4 -- Formal Structure of Thermodynamics

    29/29

    Electroc%emical +otential

    Describes t%e equilibrium con'ition of c%ar,e'

    c%emical s+ecies "ions electrons#

    /%emical +otential: Electroc%emical +otential:

    )%ere   is t%e -alence numberof t%e ion "'imensionless# e is

    t%e elementary c%ar,e an' V  

    is t%e local electrical +otential

    Eam+le: ion 'iffusion across

    cell membrane

    " #"V  µ µ = + µ