3_CSA_System_Modelling_Mechanical.pdf

Embed Size (px)

Citation preview

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    1/32

    System Modeling

    Chapter 2a

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    2/32

    echanical Systems2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    3/32

    Mechanical Systems

    In a translationalor linearmotion system, the

    variables involved include displacement, velocity,

    accelerationand force.

    Displacementrefers to the positional displacement of

    a system component with reference to a referencepoint.

    It is commonly denoted x(t). It is a function of time, t,

    because the displacement could change from time to

    time.

    3

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    4/32

    Mechanical Systems

    Velocityis the rate of change of displacement,

    commonly denoted v(t).

    Since it is the rate of change of displacement, we can

    express it as

    Accelerationis the rate of change of velocity,

    commonly denoted a(t). Mathematically, we could

    express it as

    dt

    tdx

    tv

    dt

    txd

    dt

    tdvta

    2

    4

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    5/32

    Mass

    Components of a linear motion system can be

    modeled into three categories of elements: mass,

    linear spring, and friction.

    All physical things have mass. It is the property that

    stores the kinetic energy of translational motion. It isoften denoted as M, and its unit is kg.

    M

    5

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    6/32

    Reaction Forces - Mass

    The reaction force in a mass is always in the opposite

    direction of the displacement of the mass.

    The magnitude of the reaction force in a mass moved

    a displacement ofx(t) is calculated with the well-

    known force equation.

    M

    Displacement,x(t)

    Force, 2

    2

    dt

    txdMMaf

    M

    6

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    7/32

    Dashpot

    Linear motion, is of course subject to friction, which

    hinders its motion.

    Frictionis the retarding force directly proportional to

    the linear velocity. It is often represented by the

    symbol of a dashpot. The coefficient of viscosity, or viscous frictional

    coefficient, is denoted B, and its unit is Nm-1s-1.

    B

    7

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    8/32

    Reaction Forces - Dashpot

    A dashpot can be extended, or compressed.

    x(t)

    Compress

    A pair of

    outward

    forces,

    extend

    A pair of

    inward

    forces,

    x(t)

    dttdxBfD

    dttdxBfD

    8

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    9/32

    Spring

    Linear springis used to model any component in thesystem that has elasticity.

    The coefficient of stiffnessis denoted as k, and it has

    a unit of Nm-1.

    k

    9

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    10/32

    Reaction Forces - Spring

    A spring can be extended, or compressed.

    x(t)

    compress

    A pair of

    outward

    forces,

    x(t)

    extend

    A pair of

    inward

    forces,

    tkxfS tkxfS

    10

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    11/32

    Mechanical Systems

    Let us assume that we have a mechanical system suchas the one below:

    How do we determine the transfer function thatrelates the output displacement,x(t), to the input

    force,f(t)?

    MInput force,f(t)

    Displacement,x(t)

    k

    B

    Fixed

    point

    11

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    12/32

    Mechanical Systems

    Since one end of the spring-and-dashpot section is

    connected to a fixed point, the compression of the

    section is equal to the movement of the other end,

    which isx(t).

    MInput force,f(t)

    Displacement,x(t)

    k

    B

    Compressed byx(t)

    12

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    13/32

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    14/32

    Mechanical Systems

    Cut across parallel sections of dashpots and springsto divide the system into several stand-aloneequilibrium of forces.

    Reaction

    force, r1(t)

    Reaction

    force, r2(t)kx(t)

    kB

    Section B

    dt

    tdxB

    BM

    Input force,

    f(t)

    k

    kx(t)

    Section A

    2

    2

    dt

    txdM

    dt

    tdx

    B

    14

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    15/32

    Mechanical Systems

    BM

    Input force,

    f(t)

    k

    kx(t)

    Section A

    2

    2

    dt

    txdM

    dt

    tdx

    B

    15

    tkxdt

    tdxB

    dt

    txdMtf

    2

    2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    16/32

    Mechanical Systems

    Reaction

    force, r1(t)

    Reaction

    force, r2(t)kx(t)

    kB

    Section B

    dt

    tdxB

    16

    tkxdt

    tdxBtrtr 21

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    17/32

    Mechanical Systems

    The last step involves Laplacetransforming the

    equations of forces obtained from Step 5 into the

    s-domainto form the required transfer function.

    [f(t)] =F(s) and [x(t)] =X(s)

    skXtkx

    0xssXBdt

    tdxB

    0

    2

    2

    2

    0tdt

    tdxsxsXsM

    dt

    txdM

    17

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    18/32

    Mechanical Systems

    Assuming initial conditions to be zero

    and

    This would reduce the last two equations to

    00 x

    00

    tdt

    tdx

    sXMs

    dt

    txdM 2

    2

    2

    sBsXdttdx

    B

    18

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    19/32

    Mechanical Systems

    So

    The transfer function is

    tkx

    dt

    tdxB

    dt

    txdMtf

    2

    2

    skXsBsXsXMssF 2

    sXkBsMssF 2

    kBsMssFsX

    2

    1

    19

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    20/32

    Exercise 1

    20

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    21/32

    Determine the transfer functions,

    and

    21

    f(t)

    x2(t)

    k1

    k2

    B

    x1(t)

    M1

    M2

    sFsX

    1

    sFsX2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    22/32

    22

    f(t)

    x2(t)

    k1 B

    x1(t)

    M1

    M2

    2

    21

    1

    dt

    txdM

    dt

    tdx

    B

    1

    2

    22

    2

    dt

    txdM

    k1x

    1(t)

    k2x2(t)

    k1x2(t)

    dt

    tdxB

    2

    k1x2(t)

    dt

    tdxB

    2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    23/32

    23

    f(t)

    x1(t)

    2

    21

    1

    dt

    txdM

    dt

    tdx

    B

    1k1x1

    k1x2

    txtxktxtxdtd

    Bdt

    txdMtf 2112121

    2

    1

    dt

    tdxB

    2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    24/32

    24

    x2(t)

    M2

    dt

    tdxB

    1

    2

    22

    2

    dt

    txdM

    k1x1(t)

    k2x2(t)

    dt

    tdxB

    2

    dt

    tdxB

    2

    k1x2(t)

    txtxktxtxdtdBtxk

    dttxdM 21121222

    2

    2

    2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    25/32

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    26/32

    Laplace Table

    sXMsdt

    txdM 2

    2

    2

    sBsXdttdx

    B

    26

    skXtkx

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    27/32

    27

    sXsXksXsXBssXsMsF 2112112

    1

    1212

    11 kBssXkBssMsXsF

    }{ 2112121

    2

    1 txtxktxtxdt

    dB

    dt

    txdMtfL

    txtxktxtxdtd

    Bdt

    txd

    Mtf 2112121

    2

    1

    sFsX

    1

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    28/32

    28

    11122

    22 kBssXkBsksMsX

    122

    2

    112

    kBsksM

    kBssXsX

    sXsXksXsXBssXksXsM 211212222

    2

    txtxktxtxdt

    dBtxkdt

    txdM 211212222

    2

    2

    }{ 211212222

    2

    2 txtxktxtxdt

    dBtxk

    dt

    txdML

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    29/32

    29

    112221

    11

    2

    11 kBskBsksM

    kBs

    sXkBssMsXsF

    12

    2

    2

    2

    112

    2

    21

    2

    11

    kBsksM

    kBskBsksMkBssMsXsF

    12

    2

    2

    2

    112

    2

    21

    2

    11

    kBsksM

    kBskBsksMkBssMsXsF

    12

    2

    2

    2

    2

    211

    2

    12

    2

    2

    2

    11

    kBsksM

    ksMkBskBssMksMsMsXsF

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    30/32

    30

    12

    2

    2

    2

    2

    2

    2

    112

    2

    2

    2

    11

    kBsksMksMsMkBsksMsMsXsF

    2222112222112

    2

    21

    ksMsMkBsksMsMkBsksM

    sFsX

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    31/32

    31

    sXsXksXsXBssXksXsM 211212222

    2

    11122

    22 kBssXkBsksMsX

    1

    122221

    kBskBsksMsXsX

    sFsX

    2

  • 8/13/2019 3_CSA_System_Modelling_Mechanical.pdf

    32/32

    32

    21121122112

    kBskBssMkBsksM

    kBs

    sF

    sX

    1212

    1

    1

    12

    2

    12 kBssXkBssM

    kBskBsksMsXsF

    1

    2

    11

    2

    112

    2

    1

    2

    kBs

    kBskBssMkBsksM

    sXsF