3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

Embed Size (px)

Citation preview

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    1/16

    Current Methods for Obtaining Logging and Splitting

    Marine Sediment Cores

    P. P . E . W E A V E R a n d P . J . S C HU L T HE I S S

    Insititue of Oceanographic Sciences DL) Brook Road, Wormley, Godalming, Surrey GU8 SUB, UK

    (Received 27 April, 1989; accepted 1 September, 1989)

    Key words: coring devices, box corer, gravity corer, piston corer,

    giant piston corer, ' P' wave log, wholecore logging, kevlar, warp.

    Abstract. The main types of deep-sea sediment coring devices are

    described and their relative merits and drawbacks are discussed.

    These devices include box corers, gravity corers, piston corers,

    giant piston corers and vibrocorers. Recent utilisations of kevlar

    and polyester coring warps are also discussed, since these are the

    only warps capable of handling the large weights associated with

    the larger devices. Recent developments in wholeeore logging,

    including 'P' wave, density and magnetic sus~ptibility, are de-

    scribed as are methods of subcoring and core splitting to obtain

    the maximum amo unt o f detail on the split surfaces. T he

    wholecore logs together with a good colour photograph of the

    recently split sediment surface provide a lasting unambiguous

    record of the core.

    ntroduction

    Our knowledge o f the deep-sea f loor is buil t up from

    interpretations of a combination of imaging tech-

    niques (geophysical mapping and profil ing) and by

    direct sampling. A vast range of devices has been

    developed for sampling the seabed, and these fall

    into various categories, with each category being

    aimed at either particular depth penetrations, partic-

    ular sediment types or a specific use for the sample,

    The deepest and most complete record of deep-sea

    sediments and basement rocks has been provided by

    the Ocean Dril l ing Program (ODP), using a combi-

    nation of downhole hydraulic piston coring and

    rotar y drilling. The drilling capabilities of the OD P

    and its predecessor the Deep Sea Dril l ing Project

    (DSDP) have been well documented elsewhere (see,

    Storms, this volume) and are not considered further

    in this chapter. Smaller and less expensive research

    vessels than those used for drilling are capable of

    * Present address: Sch ultheiss Geotek, Fern Cottage, Ma rley Lane,

    Haslemere Surrey GU27 3RF, UK

    Marine Geophysical Researches 12: 85-100, 1990.

    9 1990 Kluwer Academic Publishers. Printed in the Netherlands.

    using a variety of devices to sample the upper 20-

    25 m of the sediment column. The largest o f these

    ships are also capable of handfing the relatively new

    giant piston corers which currently can sample to

    depths of 35 m be low the sea floor, and in the futur e

    may be able to sample as deep as 50 m.

    There are two important considerations to be

    taken into a ccount be fore taking a deep-sea core: (a)

    how hard is the substrate?; and (b) what is the core

    to be used for? In some circumstances i t may be

    prudent or necessary to use more than one type of

    corer to ensure that a complete record of a si te has

    been obtained to the depth o f interest or to a de pth

    limited by the available technology. This is often the

    case if a good-quality core o f the sediment surface is

    required together with a sediment record several

    metres long. Scientists wishing to make physical

    property measurements, and those interested in an

    accurate record of the thicknesses of all lithological

    units in a core, should be particularly careful and

    aware of problems arising from core disturbance and

    core mis-sampling. In some cases these are not easily

    detected and may lead to incorrect interpretations.

    Coring techniques have developed over the years

    with a lot of ingenuity but without any signif icant

    high technology . The success of a coring operation

    has all too often been judged by the cr i ter ia of how

    full or how long is it? . Attention has, more recently,

    been focused on the problems associated with core

    disturbance and ensuring the general quali ty and

    representativeness o f the core rather than solely that

    of maximizing the depth o f penetration. There has

    been a move towards the design of more sophisti-

    cated corers in recent years, often involving the

    mounting of monitoring equipm ent on the corer ,

    both to improve penetration and to produce a de-

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    2/16

    8 P P E WEAVER AND P J SCHULTHEISS

    t a il e d r e c o rd o f t h a t p e n e t r a ti o n . A l t h o u g h s o m e

    w o rk h a s b e e n c o m p l e t e d o n t h e d e s i g n a n d t e s t i n g

    of th is type o f equ ipmen t ( see Park er a nd S i ll s, th is

    vo lume) , there i s no opera t iona l co rer wh ich uses i t

    rout inely .

    S e v e ra l o t h e r m a j o r r e v ie w s o f c o r i n g e q u i p m e n t

    ( e .g . t h o s e o f B o u m a , 1 9 6 9 ; M o o re a n d H e a t h ,

    1978 ; Lee and Clausner , 1979) and o f co re hand l ing

    (B o u m a , 1 9 6 9 ) h a v e b e e n p u b l i s h e d i n t h e p a s t t w o

    decades . Deta i l s o f severa l co rers no t men t ioned

    in th i s chap ter wi l l be found in those papers .

    Th i s c h a p t e r s u m m a r i z e s t h e m a i n t y p e s o f c o r i ng

    equ ipmen t cu rren t ly in use , inc lud ing recen t ly

    d e v e l o p e d g i a n t p i s t o n c o re r s , a s w e l l a s m o d e m

    methods fo r hand l ing and descr ib ing co res . There i s

    n o w a g r e a t e r e m p h a s i s o n w h o l e c o re l o g g in g a n d

    h i g h -q u a l i t y c o re p h o t o g ra p h y , w h i c h c a n r e p l a c e

    a n d i m p ro v e m u c h o f t h e l a b o r i o u s c o re d e s c r ip t i o n

    w o rk f r e q u e n t l y c a r r i e d o u t b y i n e x p e r i e n c e d

    personnel .

    ox Corers

    Th e m a i n a d v a n t a g e o f b o x c o re r s is t h a t t h e y o b -

    ta in l a rge-vo lume co res o f su r face sed imen t wi th

    m i n i m u m d i s tu rb a n c e . Th e y c o n s i s t o f a s q u a re b o x

    (occas iona l ly a l a rge d iameter cy l inder) , a head-

    weigh t and a spade- typ e l ever a rm (F ig . l a ) . S om e

    des igns a l so inc lude a t r ipod suppor t f rame to en -

    su re ver t i ca l co r ing (F ig . lb ) . The c ross -sec t iona l

    a r e a o f t h e b o x m a y b e u p t o 0 .2 5 m 2, b u t t h e

    length is general ly less than 1 .2 m. T he sp ade leve r

    arm l i es ho r izon ta l ly du r ing dep loymen t and de-

    scen t , bu t on recovery i t i s pu l led in to i t s ver t i ca l

    p o s i ti o n , t h u s c l o s i n g th e b o t t o m o f t h e c o re b o x

    pr io r to pu l l -ou t . In m any o f the designs the spade

    lever a rm a l so c loses the top o f the box , thus ensu r-

    i n g a n u n d i s t u rb e d s e d i m e n t -w a t e r i n t e r f a c e . S o m e

    box co rers u t i li ze a sc is so r a r rangemen t o f two

    spade l ever a rms (F ig . l a ) wh ich ensu res tha t the

    box i s main ta ined in a ver t i ca l pos i t ion , thus e l imi -

    na t ing the need fo r a t r ipod f rame. I t has become

    apparen t , however , tha t s ing le-spade co rers a re o f -

    t e n m u c h b e t t e r a t c o r i n g s a n d y s e d i m e n t s . M o s t

    b o x c o re r s a c t i v a te t h e s p a d e c l o s u re b y m e a n s o f a

    no- load re lease . Al tho ugh th i s sys tem i s s imple , i t

    can l ead to p re- t r ipp ing , espec ia lly in rough seas .

    The lOS box co re r (F ig . l a ) has an acous t i ca l ly

    ac t iva ted re lease wh ich i s f i red a f te r the co rer has

    penet ra ted the sed imen t . Al though th i s sys tem po-

    ten t ia l ly a l lows the co rer to bounce on the sea f loo r ,

    n o p ro b l e m s h a v e b e e n e x p e r i e n c e d t o d a t e .

    Grav i ty Corers

    These co rers a re very s imple , bu t var iab le in des ign ,

    cons i s t ing o f a l a rge headweigh t , to w h ich i s a t -

    t ached a b ar re l o f var iab le l eng th wi th a co re cu t te r

    and ca tcher a t the lower end . The sh ip ' s warp i s

    a t t ached d i rec t ly to the co re head , excep t in the

    dev ice descr ibed by Hvors lev and S te t son (1946) , in

    which the co rer i s t r iggered by a t r igger weigh t .

    M o s t r o u n d b a r r e l c o r e rs o f t h is t y p e (F i g. l c )

    u t i l i ze co re l iners , bu t those wi th long box-shaped

    barre l s , such as the Kas ten lo t co rer (F ig . ld ) , do

    n o t . M o s t i n c o rp o ra t e a f l a p v a l v e a t t h e t o p t o

    a l l o w w a t e r t o e s c a p e d u r i n g c o r i n g b u t w h i c h i s

    c losed dur ing pu l lou t , ascen t and rec overy to p re-

    v e n t s e d i m e n t b e i n g w a s h e d o u t . P ro b l e m s w i t h

    washou t occur par t i cu la r ly a t the sea su r face du r ing

    re t r i eva l as a resu l t o f the lo ss o f buoyancy when

    the co re i s l i f t ed f rom the water .

    G ra v i t y c o re r s a r e i n e x p e n s i v e a n d e a s y t o u s e

    a n d c a n t a k e h i g h -q u a li t y c o re s o f th e u p p e r f e w

    met res o f the sea f loo r . They are , however , sub jec t

    to two m ajo r sou rces o f e r ro r . These a re (1 ) mis-

    sampl ing due to sed imen t p lugg ing in the co re bar -

    re l , and (2 ) repene t ra t ion caused b y vert i ca l

    osc i l la t ions o f the sh ip 's warp . Em ery and Die tz

    (1 9 4 1 ) s h o w e d t h a t o p e n b a r r e l g r a v i t y c o re r s w e re

    capab le o f t ak ing very shor tened sec t ions o f co re ,

    a n d H v o r s l e v a n d S t e t s o n (1 9 4 6 ) s h o w e d h o w t h e

    s e d i m e n t l a y e r s w o u l d b e s h o r t e n e d a h e a d o f t h e

    corer . Weaver and Schu l the i s s (1983b) were ab le to

    s h o w e v i de n c e o f g r a v i ty c o re r s b o u n c i n g o n th e

    sea floo r , enab l ing m ul t ip le sampl ing o f the uppe r

    s e d i m e n t s e c t i o n b y r e p e a t e d p e n e t r a t i o n s . Th e y

    a l s o s h o w e d h o w e a c h s u c c e s s i v e r e p e n e t r a t i o n w a s

    shor tened re la t ive to the p rev ious one , and how the

    s h o r t e n i n g w a s m o re p ro n o u n c e d i n t h e s o f t e r m o re

    p las t i c , sed imen t l ayers . Th is sugges t s tha t g rav i ty

    corers can be un re l i ab le in sed imen ts o f mixed com -

    pos i t ion , and p roduce increas ing ly un re l i ab le resu l t s

    wi th increas ing pene t ra t ion . The l eng th o f co re tha t

    c a n b e t a k e n w i t h a n o p e n b a r r e l g r a v i t y c o re r i s

    l imi ted by the increas ing f r i c t ion be tween the co red

    sed imen t and the in s ide o f the bar re l . At some s tage

    the fo rce requ i red to move the co re up the bar re l :

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    3/16

      1 0

    1 0 0 0 :

    MARINE SEDIMENTCORE METHODS

    b

    87

    e) d) e)

    100

    | . . m

    1 0 0 ]

    1

    a

    lOOcm

    5 0

    Fig. 1. Corers used for near-surface sedim ent samplin g: a) IOS box corer doub le spade) after Peters e t a l . 1980); b) box core with

    single-spade and tripod frame see Bouma, 1969); e) hydrostatic gravity corer Richards and Keller, 1961); d) square barrel Kastenlot

    core Kogl er, 1963); e) free-fall, pop- up boo me rang corer Moo re, 1961).

    exceeds the fo rce requ i red fo r the barre l and co re to

    ac t as a so l id rod fo r fu r ther pene t ra t ion . Th is i s

    k n o wn a s p l u g g i n g a n d c o m m o n l y o c c u r s b e -

    tween 3 and 6 m pen et ra t ion . In te rm i t ten t o r par t i a l

    p lugg ing i s the cause o f co re shor ten ing . A mor e

    deta i led s tudy o f thi s e f fec t has been m ade by

    Parker and S i l l s ( th i s vo lume) in one sed imen t type

    us ing a t echn ique to con t inuous ly moni to r the sed i -

    men t su rface bo th ins ide and ou ts ide the co re barre l

    d u r i n g p e n e t r a t i o n .

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    4/16

    8 8 P P E W E A V E R A N D P J S C H U L T H E I SS

    G r a v i t y c o r e s a r e f r e q u e n t l y u s e d a s t r i g g e r

    w e i g h t s f o r p i s t o n c o r e r s a n d o f t e n p r o d u c e a m o r e

    r e p r e s e n t a t i v e r e c o r d o f t h e s u r f a c e s e d i m e n t t h a n

    t h a t o b t a i n e d f r o m t h e p i s t o n c o r e . C a r e m u s t b e

    t a k e n , h o w e v e r , t o e n s u r e t h a t n o r e p e n e t r a t i o n o f

    t h e t r i g g e r c o r e r h a s o c c u r r e d s i n c e t h i s i s c o m m o n

    d u r i n g p i s t o n c o r i n g ( M c C o y , 1 9 8 0 ) .

    T h e K a s t e n l o t c o r e r ( F i g . l d ) b r i d g e s t h e g a p

    b e t w e e n g r a v i t y a n d b o x c o r e r s s i n c e i t h a s a r e l a -

    t i ve l y l a rge c ross - sec t i ona l a r ea (225 cm2), and ca n

    t a k e c o r e s u p t o 6 m l o n g ( K o g l e r , 1 96 3) . T h e b o x

    s p l it s l o n g i t u d i n a l l y i n t o t w o h a l v e s a n d s o i t m u s t

    b e l a id h o r i z o n t a l l y t o o p e n t h e c o r e , w h i c h o f t e n

    c a u s e s s o m e s l u m p i n g a n d d i s t u r b a n c e o f t h e s u r -

    f a c e s e d i m e n t . T h i s c o r e r d o e s n o t u s e a l i n e r a n d i s

    u s u a l l y s u b - s a m p l e d i m m e d i a t e l y a f t e r o p e n i n g . S e c -

    t i o n s o f t h e c o r e d m a t e r i a l c a n b e s t o r e d i n 1 m -

    l o n g b o x e s , w h i c h h a v e t h e s a m e c r o s s - s e c t i o n a s

    t h e c o r e r b u t w i t h c l o s e d e n d s f o r l a t e r e x a m i n a -

    t i o n . I t i s a l s o p o s s i b le t o r e m o v e o n e c o r n e r o f th e

    c o r e i n t o a V - s h a p e d t r o u g h w h i c h c a n b e s t o r e d i n

    a D t u b e a s a n a r c h i v e s e c t io n . T h e l a r g e c r o s s -

    s e c t i o n a l a r e a a l l o w s t h i s c o r e r t o p r o v i d e h i g h -

    q u a l i t y c o r e s w h i c h o f t e n s u f f e r l e s s d i s t u r b a n c e a n d

    c o r e s h o r t e n i n g t h a n t h o s e t a k e n b y o t h e r g r a v i t y

    c o r e r s . H o w e v e r , t h e K a s t e n l o t c o r e r i s s u s c e p t i b l e

    t o r e p e n e t r a t i o n ( W e a v e r a n d S c h u l t h e i s s , 1 9 8 3 b ) .

    T h e B o o m e r a n g c o r e r ( F i g . l e ) is a m o d i f i c a t i o n

    o f t h e o p e n - b a r r e l g r a v i t y c o r e r w h i c h o p e r a t e s a s a

    f r e e f a l l / p o p - u p c o r e r . I t c o n s i s t s o f a b a l l a s t s e c t i o n

    compr i s i ng a s t ee l bar r e l , wei gh t , s t ee l f l oa t p ro t ec-

    t i o n a n d l e a d p i l o t w e i g h t . T h e f l o a t s e c t i o n c o n s i s t s

    o f a co re l i ner , va l ve r e l ease and t wo g l ass spheres .

    T h e w h o l e s y s t e m i s r e l e a s e d f r o m t h e s h i p , a f t e r

    w h i c h i t q u i c k l y r i g h ts i t s e l f a n d a t t a i n s a t e r m i n a l

    v e l o c i ty o f a p p r o x i m a t e l y 7 m / s e c . A h o l l o w r u b b e r

    b a l l p r e v e n t s r e le a s e o f t h e f l o a t p o r t i o n d u r i n g

    d e p l o y m e n t , b u t t h i s i s c o m p r e s s e d a n d r e l e a s e d

    d u r i n g d e s c e n t . W h e n t h e c o r e r i m p a c t s w i t h t h e

    seabed t he p i l o t wei gh t s l i des up t he bar r e l , r e l eas -

    i n g t h e f l o a t s e c t i o n w h i c h t h e n a s c e n d s , c l o s i n g t h e

    v a l v e - re l e a s e a t t h e t o p o f t h e l i n e r a n d p u l l in g f r e e

    t h e l i n e r t u b e w i t h t h e c o r e i n s i d e . T h e f l o a t s e c t i o n

    a s c e n d s t h r o u g h t h e w a t e r c o l u m n a n d i s i d e n t i f i e d

    a t t h e s u r f a c e b y a n e l e c t r o n i c f l a s h i n o n e o f t h e

    s p h e r es . T h e a d v a n t a g e o f th i s s y s t e m is t h a t s e v e r a l

    c o r e s c a n b e o b t a i n e d r a p i d l y b y d e p l o y i n g t h e m a s

    a s e r i e s p r i o r t o r e c o v e r y . F u r t h e r m o r e , t h e c o r e s i t e

    i s l i k e l y t o b e d i r e c t l y b e n e a t h t h e s h i p s p o s i t i o n ,

    s i n c e t h e r o u n d - t r i p t i m e i s a b o u t 1 5 m i n / 1 0 0 0 m

    w a t e r d e p t h a n d h e n c e t h e r e i s l i t t l e t i m e f o r t h e

    e q u i p m e n t t o d r i f t d u r i n g t h e o p e r a t i o n . T h e d i s a d -

    v a n t a g e o f t h e s y s t e m i s t h a t o n l y s h o r t c o r e s

    ( < 1 .2 m ) c a n b e o b t a i n e d a n d i t c a n s o m e t i m e s b e

    d i f f i cu l t t o f i nd t he f l oa t i ng co re i n poo r v i s i b i li t y o r

    r o u g h w e a t h e r .

    Piston orers

    T h e p i s t o n c o r e r ( F i g . 2 ) w a s f i r s t d e v e l o p e d b y

    K u l l e n b e r g i n 1 9 4 7 t o o v e r c o m e t h e d e p t h p e n e t r a -

    t i o n l i m i t a t i o n , c a u s e d b y p l u g g i n g , o f g r a v i t y c o r -

    e r s . I t cons i s t s o f a se r i es o f conn ec t e d bar r e l s , a

    l a r g e , h e a v y b e a d w e i g h t , a t r i g g e r a r m a n d a t r i g g e r

    c o r e r . A p l a s t ic c o r e l i n e r is u s u a l l y e m p l o y e d , b u t

    t h e c o r e m a y b e e x t r u d e d o n d e c k a f t e r r e c o v e r y .

    T h e h e a d m a y b e d e s ig n e d w i t h r e m o v e a b l e w e i g h ts ,

    w i t h f i n s , o r w i t h h o u s i n g s f o r i n s t r u m e n t s s u c h a s

    c a m e r a s , f l a s h - g u n s o r p i n g e r s . M o s t t r i g g e r a r m s

    a r e f i t te d w i t h s a f e t y p i n s t o p r e v e n t a c c i d e n t s d u r -

    i n g d e p l o y m e n t . H y d r o s t a t i c p i n s u s u a l l y r e t r a c t i n

    t h e u p p e r o r m i d w a t e r c o l u m n , b u t a c o u s t i c r e -

    l e a s e s c a n b e u s e d , w h i c h c a n p r i m e t h e c o r e r b y

    c o m m a n d f r o m t h e s h ip a t a n y d e p t h . T h e s e o ff e r

    i n c r e a s e d s a f e t y i n r o u g h w e a t h e r o r o n l e s s s t a b l e

    s h i p s , w h e r e t e m p o r a r y r e d u c t i o n s i n l o a d o n t h e

    t r ig g e r a r m d u e t o s h ip s ' h e a v e c a n c a u s e p r e m a t u r e

    r e l ea s e o f t h e c o r e r .

    T h e a d v a n t a g e s o f th e p i s t o n c o r e r o v e r g r a v i ty

    c o r e r s i s t h e i n c r e a s e d d e p t h o f p e n e t r a t i o n a s a

    r e s u l t o f t h e p r e v e n t i o n o f p l u g g i n g . T h i s s h o u l d

    e n s u r e h i g h e r q u a l i t y c o r e s . T h e d e p t h o f p e n e t r a t i o n

    d e p e n d s o n s e d i m e n t t y p e , b u t i n r e l a t i v e l y s o f t

    m u d s , o v e r 2 0 m c a n b e o b t a i n e d ( K u i j p e r s

    e t a l .

    1 98 4) . T h e a c t i o n o f th e p i s t o n , w h i c h r e d u c e s t h e

    i n t e r n a l f r i c t i o n , e n a b l e s t h e s e c o r e r s t o g e n e r a l l y

    r e c o v e r m o r e c o m p l e t e , a n d l e s s d i s t u r b e d s e d i m e n t

    s e q u e n c e s t h a n o p e n - b a r r e l g r a v i t y c o r e r s . T h e a t -

    t a c h m e n t o f t h e m a i n w a r p t o t h e p i s t o n , h o w e v e r ,

    c a u s e s s h i p s ' h e a v e m o t i o n s a n d e l a s t i c r e b o u n d o f

    t h e w a r p a f t e r c o r e r r e l e a s e t o b e t r a n s m i t t e d t o t h e

    p i s t o n d u r i n g c o r i n g , w h i c h c a n r e s u l t i n c o r e s h o r t -

    e n i n g a n d / o r o t h e r s e d i m e n t d i s t u rb a n c e s ( M c C o y ,

    1980 , 1985) . Defo rmat i on i s o f t en par t i cu l a r l y severe

    i n t h e v i c i n i t y o f s a n d y l a y e r s w h i c h m a y b e t i l t e d ,

    b e n t d o w n w a r d s a t t h e s i d e s o f th e l i n e r o r t o t a l ly

    m i x e d b y t h e c o r i n g a c t i o n . I g a r a s h i

    e t a l .

    (1970)

    s h o w e d t h a t c o a r s e p a r t i c l e s c o u l d b e d r a g g e d f r o m

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    5/16

    MARINE SEDIMENT CORE METHODS 9

    cable to ship7

    cable running

    through barrel'

    piston>

    cutter>

    free f ll c ble

    i / /~ p t r igger arm

    e head

    piston stop

    barrel /chain

    < catcher

    trigger corer >

    o ed

    ~Xpiston stop

    ~c o i~

    :

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    6/16

    9 P P E WEAVER AND P J SCHULTHEISS

    broke at the barrel couplings on 30 -35 m deploy-

    ments. Further problems were encountered with sta-

    bilizing the piston and tripping the core. Driscoll and

    Hollister (1974) discussed several modifications to

    the system, including step tapered barrels, a re-

    designed head with provision for instrumentation

    and an acoustic release. In 1977 a m ajor redesign was

    proposed (Driscoll and Silva, 1977) to inco rporate

    these features into a technically sophisticated system

    for taking 50 m-long cores. Initially called the L ong

    Coring Facility, i t was later renamed the Advanced

    Piston Corer (APC). (This should not be confused

    with the Ocean Drilling Program's hydraulic

    APC . )

    The ins trumentat ion of the APC head includes an

    acoustic release, a ti l t alarm, a rotation recorder, a

    piston contro l system, an acoustic telemetry package

    and a power and control package. These instruments

    were designed to enable close contro l and moni toring

    of the system during the coring operation. A simpler

    version of this system (Fig. 3) was used on th e Gian t

    Piston Corer (Silva et al. 1977) and on the Marion

    Dufresne ESOPE expedition (Schuttenhelm, in

    press). In the simple version, a parachute is attached

    to the coring warp just above the core head, the warp

    continues down the barrels to a standard-type piston

    and is held in position at the core head by the

    release. The p arachu te takes some o f the core weight

    during lowering, but on approach to the seabed the

    winch payout is speeded up so that the parachute

    , I [ o

    1 m

    5 m

    Om

    p a r a c h u t e

    c o r e r h e a d

    w i th e lec t ron i cs

    r

    q~

    iston

    Fig. 3. The giant piston corer with parachute a) during descent; b) during penetration redrawn after Driscoll, 1981).

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    7/16

    M R I N E S E D I M E N T C O R E M E T H O D S

    91

    t a k e s t h e w h o l e w e i g h t o f t h e c o re r , t h u s p ro d u c i n g

    a q u a n t i t y o f l o o s e w a rp a n d e l im i n a ti n g a n y r e -

    bo und ef fec ts o f the warp whe n the load i s re leased .

    The co re i s t r ipped wi th min imal f reefa l l , and s l ides

    pas t the p i s ton which i s he ld a t the same pos i t ion by

    the s lowly descend ing parachu te .

    A v e ry c o m p l e x s y s t e m h a s b e e n c o n s i d e re d fo r

    s tab i l i z ing the p i s ton by decoup l ing i t f rom the main

    sh ip ' s warp (Dr i sco l l , 1981) . Al though th i s sys tem

    has n ever been bu i l t , i t i llu s t ra tes the ex ten t to w h ich

    techno logy can be u t i l i zed in co r ing equ ipmen t . I t i s

    k n o w n a s t h e H y d ro s t a t i c A c c u m u l a t o r P i s t o n

    (H A P ) , a n d u t il iz e s a p a r a c h u t e l o c a t e d j u s t a b o v e

    t h e c o re h e a d . Th e H A P p i s t o n c o n c e p t c o n s i s t s o f

    two long chambers , the upper one a i r - f i l l ed and

    connected to the lower oi l -f i l led one by a valve.

    There i s a l so an acce le rometer to as sess the p i s ton

    m o t i o n a n d a s o n a r t r a n s d u c e r a t t h e l o w e r e n d t o

    mo ni to r the po s i t ion o f the sed imen t su r face du r ing

    cor ing . The p i s ton i s connec ted to the parachu te as

    befo re , bu t a f t e r t r igger ing the va lve be tween the o i l

    and air f i l led chambers al lows oi l to pass , thus

    comp ress ing the l eng th o f the p i s ton . The ra te o f

    con t ra c t ion o f the p i s ton is des igned to keep the base

    of the p i s ton s tab le du r ing pene t ra t ion (wh ich t akes

    on ly a few seconds ) . The con t rac t ion ra te nee ded can

    b e c a l c u l a t e d f ro m t h e p a r a c h u t e s i n k r a t e , o r f r o m

    the acce le rometer wh ich mon i to rs the ver t i ca l mot ion

    o f t h e b o t t o m p a r t o f t h e p is t o n .

    Th e d r a w b a c k s o f th e A P C s y s te m a r e i ts g r e a t

    complex i ty and the very l imi ted numbers o f sh ips

    capa b le o f dea l ing wi th the l a rge loads exper ienced

    dur ing pu l l -ou t .

    S T C O R

    The on ly o ther co rer wh ich has t aken co res in excess

    o f 2 5 m is t h e S T A C O R ( s t a t i o n a ry p i s t o n c o re r ) ,

    d e v e l o p e d b y t h e In s t i t u t F r a n e a i s d u P & ro l e , E l f

    A q u i t a i n e a n d To t a l i n t h e m i d -1 9 7 0 s (M o n t a rg e s e t

    a l .

    1983, 1987). This corer u t i l izes a mechanical

    sys tem fo r main ta in ing a s ta t ionary p i s ton , an idea

    f i rs t sugges ted by Kul lenberg (1955) and la te r deve l -

    o p e d b y K e rm a b o n a n d C o r t i s (1 9 6 8) . Th e p r in c i p le

    of the s tat io nar y o r recoiUess pis ton is that i t is

    c o u p l e d t o a b a s e p l a t e o n t h e o u t s i d e o f t h e c o re r v ia

    a se r ies o f pu l leys and w i res (F ig . 4 ). The main sh ip ' s

    warp connec t s d i rec t ly wi th the co rer head and i s

    t h u s d e c o u p l e d f ro m t h e p i s t o n . Th e b a s e p l a t e a n d

    p i s t o n b e g in t h e c o r i n g o p e ra t i o n a t t h e c u t t e r e n d o f

    the barrel , a nd s ince the basepla te is 1.5 m ac ross , i t

    remains a t the sed imen t su r face and ho lds the p i s ton

    a t the same pos i t ion wh i le the co rer s l ides pas t . Th is

    co rer t akes co res wi th a 110 mm in te rna l d iam eter

    and , be cause o f the s ta t ionary p i s ton , genera l ly

    ach ieves recovery approa ch ing 100 wi th exce l len t

    co re qua l i ty .

    Th e S TA C O R s y s t e m d o e s n o t d e p e n d o n s o p h i s -

    t i ca ted t echno logy and has a h igh success ra te . I t has

    so fa r been launch ed in th ree d i f fe ren t ways : over the

    s te rn o f a sh ip , over the s ide ra i l and v ia a mo on

    p o o l ( M o n t a r g e s e t a l . 1987) . The long ba r re l - l eng th

    and the l a rge loads , par t i cu la r ly those assoc ia ted

    wi th pu l l -ou t (ab ou t 200 kN ) res t r i c t it s u se to the

    larger oceanographic vessels , or to vessels such as the

    N a d i r w h i c h h a v e a l a rg e f r e e d e c k fo r d e p l o y m e n t

    over the s te rn . The loads can be d ras t i ca l ly reduced

    by us ing Kev lar cab les wh ich a re a lmos t weigh t les s

    in wate r (Sch i ll ing e t a l . 1 98 8) . O n e o t h e r d r a w b a c k

    w i t h t h e c u r re n t S T A C O R s y s te m is th e l e n gt h o f

    t ime requ i red to comple te a co r ing opera t ion , wh ich

    c a n b e a s m u c h a s 1 6 h o u r s . A l a rg e p ro p o r t i o n o f

    th i s t ime i s spen t removing the co re f rom the bar re l ,

    wh ich de t rac t s f rom the co rer ' s u sefu lness fo r geo -

    c h e m i c a l w o rk w h e re c o re s o f t e n n e e d t o b e p l a c e d

    rap id ly under n i t rogen (Schu t tenhe lm e t a l . in

    p ress ). H owe ver , some redes ign fea tu res o f the sys -

    t e m c o u l d p ro b a b l y o v e rc o m e t h e s e d r a w b a c k s .

    Vibrocoring and ockd ri ll ing

    Th e v i b ro c o re r e x t e n ds t h e r a n g e o f s e d i m e n ts w h i c h

    c a n b e s a m p l e d t o i n c l u d e s t i ff a n d s t o n y d a y s , s o f t

    rock and sands , a l l o f wh ich a re d i f fi cu lt to pen e t ra te

    us ing conven t iona l g rav i ty o r p i s ton co rers . The

    Bri t i sh Geo log ica l Survey ' s v ib rocorer (F ig . 5 ) con-

    s is t s o f a t r i p o d f r a m e w i t h a b a s e -m o u n t e d ro t a ry

    dr ive t ab le w h ich d r ives a 6 m-long hexagona l d r i ll

    bar re l . The tw in v ib ra to r m oto r g ives a fo rce o f 6

    t o n n e s a t 5 0 H z a n d t h e c o re c a n b e w i t h d ra w n f ro m

    t h e s e d i m e n t b y a b a s e -m o u n t e d w i n c h c a p a b l e o f

    exer t ing 12 tonnes fo rce . Th is co re r t akes 83 mm

    diameter cores in plas t ic l iners . The system is electri -

    c a l l y p o w e re d f ro m t h e s h i p , f r o m w h e re t h e o p e ra -

    t i o n c a n b e m o n i t o r e d a n d c o n t ro l l e d (A rd u s e t a l .

    1982) . The p resen t sys tem has be en tes ted to 1800 m

    water dep th , wi th the main l imi t ing fac to r be ing the

    p o w e r s u p p l y c a b l e .

    The Br i t i sh Geo log ica l Survey ' s rockdr i l l i s

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    8/16

    9

    P.P.E. WEAVERAND P. J. SCHULTHEISS

    co r e r r e l e a se

    b a s e p l o t e

    t r i g g e r we i g h t

    w i r e co n n e c t i n g

    p i s to n to b o se p l o te

    b o s e p l a t e

    p i s to n

    ulrey

    Fig . 4 . The s ta t iona ry p is ton co re r , S tacor , showing the ope ra t ing p r inc ip le o f how the base -p la te and p is ton rem ain a t the sea- floor dur ing

    pene t ra t ion red rawn a fte r Monta rges

    e t a L

    1983).

    m o u n t e d i n t h e s a m e t r i p o d s t ru c t u re a s t h e v i b ro -

    c o re r P h e a s a n t , 1 98 4) . U p t o 6 m p e n e t r a t i o n is

    poss ib le wi th th i s sys tem and , as befo re , wi thd rawal

    o f the co re i s ach ieved by the 12 - tonne winch. B rook

    and Pe l le t i e r 1970) repor t a deep-sea rock d ri l l

    wh i c h wo rk s b y h y d ra u l i c p o we r , b u t wh i c h i s a l s o

    l imi ted to 1800 m wate r dep th . Th is sys tem u t i l izes

    t h r e e h e a v y -d u t y g a s c y l in d e r s wh i c h a l l o w wa t e r t o

    e n t e r b y h y d ro s t a t i c p r e s s u re wh i c h t u rn s a h y d ro -

    s ta t i c moto r fo r a 7 .5 -minu te cyc le . The f i rs t ha l f o f

    the cyc le dri l ls the core in and flushes the dri ll b i t and

    the second h a l f o f the cyc le wi thd ra ws the co re .

    inches and arps

    T h e m a x i m u m l o a d s e x p er i e n c ed d u r i n g c o r i n g o p e r -

    a t ions a re those assoc ia ted wi th pu l l ing the co rer ou t

    o f t h e s e d im e n t . F o r m o s t g r a v i ty , b o x a n d p i s t o n

    cor ing work the loads wi l l be genera l ly wi th in the

    c a p a b i l i ty o f m o s t o c e a n o g ra p h i c w i n c h es . T h e d e s ir e

    t o p ro d u c e p i s t o n c o re r s o f la rg e r d i a m e t e r, a n d

    g ian t p i s ton co rers has , however , increased the po -

    t e n t i a l m a x i m u m l o a d s t o s u c h a n e x t e n t t h a t c o n -

    ven t iona l s tee l warps a re no longer adequate . The

    prob lem wi th s tee l warps i s the i r l a rge weigh t in

    water , so tha t in deep water , beyond a cer ta in l imi t

    the increased s t reng th o f a warp i s l a rge ly used to

    o ffse t the increased weigh t o f the warp i t se l f .

    T w o n e w m a t e r ia l s h a v e b e e n u s e d i n r e c e n t y e a r s

    t o o v e rc o m e t h is p ro b l e m ; Ke v l a r a n d b ra i d e d

    po lyes te r . Bo th o f these mater ia l s hav e neg l ig ib le

    we i g h t i n wa t e r . T h e Ge o l o g i c a l S u rv e y o f t h e

    Ne t h e r l a n d s h a s e x p e r i m e n t e d w i t h Ke v l a r a n d

    found tha t i t g ives exce l len t resu l t s when used wi th

    p i s t o n c o re r s o f l arg e a n d s m a l l d ia m e t e r . T h e

    Kev lar i s encased in a po lye thy lene shea th to p reven t

    chaff ing and i s s to red on a d rum l ike s tee l warp

    Schil l ing

    e t a l .

    1988) . The po lyes te r cab le was

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    9/16

    MARINESEDIMENTCOREMETHODS

    9

    tic Vibrator Head

    tension lines

    tical guide

    embers

    300cm

    200

    100

    . Hydraulic rotary

    ~ N ~ f . / . , . . '~ dr* 11 tab 1

    ~

    ~ u s t i c penetration

    Y 2 , 7 . e . . . . e . t

    L Power Switching

    PLAN ~ ~ distribution

    pod

    Fig. 5. The British Geological Survey's vibrocorer/rotary drill (fr om Ph easant, 1984).

    chosen for the APC corer Dzwilewski and Driscoll,

    1980), even though this cable cannot be stored on a

    drum because it requires a long time for strain

    recovery after it has been loaded. This strain recov-

    ery would exert tremendous force on the drum and

    so the cable is stored loose in a container on deck

    Driscoll, 1981). Both types o f cable stretch signifi-

    cantly under load, which must be allowed for when

    calculating the length of wire required for the free-

    fall distances of piston corers. Both of these cables

    have considerable advantages over steel cables: they

    are light in water; they have smaller bending radiuses

    than steel; they do not corrode; they can be cut and

    spliced, and yet Kevlar is stronger than a steel cable

    of equivalent diameter and polyester has about half

    the strength of steel. Polyester has about the same

    cost as steel for equivalent strength cable, but it has

    the disadvantage of needing a long recovery time

    after it has been stressed, and it cannot, therefore be

    wound on a drum. Kevlar, by contrast, costs about

    three times as much as steel, but it can be stored on

    a drum.

    Many oceanographic cruises today use charter

    ships which may not have the necessary combination

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    10/16

    94 P p E WEAVER AND P J SCHULTHEISS

    of winch, warp and A f rame required for p is ton

    coring. Houbolt (1971) described a system

    combining all these features which could be trans-

    ferred from ship to ship. The Houbolt winch has

    been cons iderably improved and is now marketed by

    the Dutch company Seabed BV. The winch is com-

    pletely indep end ent of the ship, h aving its own diesel

    hydraulic pow er pack, 10 000 nm of Kevla r cable, a

    telescopic boom, a traction unit with 20-ton lif ting

    capacity, and two handling winches. The whole sys-

    tem has the dimensions and fitt ings of a s tandard

    container and can thus be f reighted around the world

    and bolted on to any ship with suitable container

    anchorage points .

    Whole ore Logging

    Having obtained a core in a plastic liner, there are a

    number of useful measurements that can be made

    prior to sectioning or splitting. These com e und er the

    general heading of whole-core logging. Whole-core

    logging is defined as non-destructive measurements

    that can be autom atically made o n cores within plas-

    tic core liners at frequen t intervals or on a contin uous

    basis. The m ost frequ ently used is gamm a ray atten-

    uation which essentially provides a log tha t is a func-

    tion o f the sediment density. This technique has been

    used on cores obtained from the Deep Sea Drilling

    Project for many years. Other non-destructive whole

    core logging techniques which are being more fre-

    quently used are P-wave velocity logs and magnetic

    susceptibility. It can be argued tha t m uch da ta is lost

    from m any sediment cores (especially those from the

    ocean drilling legs) because the time constraints on-

    board ship preclude many measurements being made

    at appropriately small sampling intervals . Perhaps

    any useful parameter that can be measured cont inu-

    ously and rapidly and does not require extra person-

    nel should be measured on a routine basis .

    The potential value of some whole-core logs is

    already clear (Schultheiss and Mienert, 1988); other

    non-destructive logging techniques may produce

    data of only limited intrinsic value, or of a value that

    is currently unclear. However, while any single

    logged parame ter may at wors t be o f marginal value,

    the combination of logs is almost certain to provide

    a valuable diagnostic data set in the same way that

    down-ho le logs are most useful when used as combi-

    nation logs.

    Continuous whole-core logging, with a range of

    different sensors would be of considerable scientific

    value for many reasons:

    (1) Comp lete continuous records of P-wave velocity

    and dens i ty ( f rom gamma ray at tenuat ion) are

    necessary to construct synthetic seismograms for

    comparison with seismic reflection profiling

    records a nd borehole velocity logs.

    (2) Con tinuous den sity logs are needed to evaluate

    the s ta te of compact ion of sedimentary se-

    quences.

    (3) Mag netic susceptibility logs provide rapid iden-

    tif ication of terrestrially derived sediments and

    can provide excellent, high resolution, interhole

    correlations.

    (4) An y logged param eter that is sensitive to subtle

    changes in sediment type or sediment structure

    can be invaluable as a guide for later detailed

    sampling. They may, for example, reveal cycli-

    city which is caused by climatic changes and

    could be u sed directly for climate spectral analy-

    sis.

    An example of the type of automated whole-core

    logging system that is required is the P-Wave-L ogger

    (PWL) developed at the Ins t i tu te of Oceangraphic

    Sciences Deacon Laboratory (Schultheiss and

    McPhail, in press) for measuring the compressional

    wave velocity of sediments. The PWL (Fig. 6) ace-

    urately measures and automatically records the

    P-wave velocity of soft sediments within a cylindrical

    plastic core liner and produces a very detailed velo-

    city log of the whole core,

    Veloci ty measurements are automatical ly taken at

    regular intervals along each core section as it travels

    between a pair of ultrasonic transducers. The PWL

    provides fine-scale velocity profiles that (a) enable

    accurate correlations of adjacent cores or holes to be

    made, (b) provide high-quality data for synthetic

    seismograms, (c) help in th e interp retation of seismic

    records and (d) indicate the nature of sedimentary

    features not easily detected by conventional means.

    The m echanical ar rangement of the t ransducers used

    on th e PWL is shown schematically as part of the

    overall system diagram in Fig. 6a. An e xample of the

    type of data obtained f rom very high resolut ion

    P-Wave logging is shown in Fig ure 6b which is taken

    from the ODP Leg 1 8 lnitial Report (Schultheiss

    and McPhail, in press), clearly illustrating the cyclic

    nature of the sedimentary sequence.

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    11/16

    M A R I N E S E D I M E N T C O R E M E T H O D S 9 ~

    >

    w) Hs

    NOI~ I I -dNS

    ~

    l

    O

    O

    O

    ~

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    12/16

    9

    P P E WEAVER AND P J SCHULTHEISS

    C u r re n t l y t h e r e i s s c o p e fo r t h e d e v e l o p m e n t o f

    a mul t i - senso r who le-co re logg ing appara tus tha t ,

    in add i t ion to p rov id ing a too l fo r the cu rren t ly

    e s t a b li s h e d t e c h n iq u e s g a m m a r a y a tt e n u a t i o n ,

    P-W ave ve loc i ty and magn et ic suscep t ib il i ty ) ,

    w o u l d i n c l u d e o t h e r n o n -d e s t ru c t i v e m e a s u re m e n t s

    such as e lec t r i ca l res i s t iv i ty , spec t ra l na tu ra l gamma,

    radar , u l t rason ic re f lec t ion and poss ib ly neu t ro n

    ac t iva t ion .

    Subcor ing

    Box co res re t r i eve l a rge vo lumes o f sed imen t wh ich

    a re o f t e n s u b c o re d a s s o o n a s t h e c o re a r r i v e s o n

    deck . The lOS box co rer i s f i t t ed wi th a ver t i ca l row

    of sample po r t s w h ich can be eas i ly opened , g iv ing

    access to a se r ies o f sed imen t l ayers wh ich can be

    sampled wi th sy r inges befo re the co re i s opened

    P e t e r s e t a l . 1980) . I f the upper c los ing spade o f

    the box co rer i s removed the sed imen t su r face wi l l

    be revea led wh ich can be sampled by push ing in

    leng ths o f co r e l iner. Bet te r co res wi l l be t aken i f a

    p i s ton i s u sed which can be he ld a t the sed imen t

    su rface wi th a smal l j ig wh ich i s a t t ached to the

    c o re r f r a m e . Th e b o x c o re r d e s c r i b e d b y P a p u c c i e t

    a l . 1986) has a cy l ind r ica l bar re l wi th a segmen ted

    l iner thus a l lowing the co re to be ser ia l ly sec t ioned .

    For geo log ica l inves t iga t ions i t i s o f ten impor tan t to

    t r a n s p o r t t h e w h o l e c o re t o t h e l a b o ra t o ry , a n d t h i s

    may be done by us ing a p las t i c l iner as descr ibed by

    Kar l 1976) , o r by us ing in te rchangeab le b oxes as

    d e s c r ib e d b y B o u m a 1 9 6 9) .

    C o r e

    Cut t ing

    Core l iners can be cu t wi th e i ther a saw o r a b lade .

    R o t a t i n g s a w s a r e n o i s y a n d p o t e n t i a l l y d a n g e ro u s

    a n d p ro d u c e l a rge a m o u n t s o f p la s t ic s w a r f w h i c h

    f r e q u e n t l y b e c o m e s e m b e d d e d i n t h e s e d i m e n t .

    O t h e r m e t h o d s h a v e t h e r e fo re b e e n s o u g h t w h i c h

    o v e rc o m e t h e s e p ro b l e m s . K a w o h l a n d K u d ra s s

    1987) repor t the use o f a v ib ra t ing saw w hich i s

    l es s dangerous than a ro ta t ing saw and p roduces a

    cu r led th read o f p las t ic in s tead o f swarf . In the i r

    s y s t e m t w o p a i r s o f s a w s a r e u s e d t o c u t a s l ic e o f

    s e d i m e n t F i g . 7 ) w h i c h c a n t h en b e X - r a y e d a n d

    sampled , l eav ing two in tac t s t r ip s o f co re fo r s to r -

    age . Th is sys tem has the advan tage tha t the co re

    d o e s n o t r e q u i r e s u c h h e a v y e q u i p m e n t t o h o l d

    i t in p lace du r ing cu t t ing as i t does wi th a b lade

    sys tem.

    C o re c u t t e r s w h i c h u s e b l a d e s o p e ra t e b y p u l l i n g

    t w o b l a d e s o n e o n e a c h s i d e o f th e c o re ) a l o n g t h e

    leng th o f the co re . I t has been found tha t sharp

    b l a d e s d o n o t w o rk b e c a u s e t h e y c a n n o t b e m a d e t o

    cu t abso lu te ly s t ra igh t , and once the cu t has gone

    off line i t i s imposs ib le to p reven t the b lade f rom

    break ing . The b lades a re therefo re f i l ed f l a t o r b ro -

    ken , and th i s b lun t edge i s u sed . The fo rce requ i red

    t o p u l l t w o b l a d e s t h ro u g h P V C o r p o l y c a rb o n a t e

    l iner i s cons iderab le , and read i ly bends the l iner i f i t

    i s no t he ld very r ig id ly . Th is requ i res very s t rong

    c o re h o l d i n g e q u i p m e n t a n d i t h a s b e e n fo u n d t h a t

    1 m-long co res a re much eas ie r to hand le than

    1 5

    m-long ones .

    C o r e Spli t t ing

    The open ing o f s to red co res i s ex tens ive ly d i scussed

    by Boum a 1969) . The t echn iques a re al l s imple ,

    us ing b lades o r wi res to cu t the sed imen t , a l though

    Bouma sugges t s app ly ing a DC e lec t r i c cu r ren t to

    ach ieve an e lec t ro -osmot ic e f fec t i f poss ib le . The

    p re s e n t a u t h o r s u s e a c o n s t a n t c u r r e n t D C p o w e r -

    supp ly cap ab le o f p rov id ing 0 .5 am p a t 30 vo l t s ,

    a n d a t t a c h t h e c a t h o d e t o t h e c u t t i n g b l a d e a n d t h e

    a n o d e t o a p l a t i n u m w i r e w h i c h i s k e p t i n c o n t a c t

    wi th the sed ime n t and in c lose p rox im i ty to the

    b lade du r ing cu t t ing W eave r and Schu l the is s ,

    1983b) . Sed imen t su r faces cu t in such a way are f ree

    o f smear ing , sho w burrow s and l i tho log ica l

    boun dar ies in minu te de ta il F ig . 8 ) and can revea l

    smal l -sca le sed imen t d i s tu rbances due to co r ing . A

    g o o d q u a l i t y c o l o u r p h o t o g ra p h o f a n o s m o t i c

    kn i fe -cu t su r face combined wi th a descr ip t ion p ro -

    d u c e s a m u c h b e t t e r r e c o rd o f a c o re t h a n a d e s c r i p -

    t i o n a l o n e . W e a l s o u s e t h e o s m o t i c k n i f e t o c u t o f f

    t h e a r c h i v e c o rn e r f ro m t h e K a s t e n l o t c o re s , a n d t o

    t r im samples fo r geo techn ica l t es t ing .

    One o ther m ethod o f co re sp l it t ing i s to f rac tu re

    the co re in a con t ro l l ed way . Frac tu red su r faces can

    revea l the max imum deta i l wi th in the sed imen ts be-

    cause the su r faces have no t been d i s to r ted due to

    loca l shear ing as wi th a cu t su r face . Th is method i s

    u n p o p u l a r b e c a u s e o f t h e s e m i - r a n d o m s p li t w h i ch i s

    a c h i ev e d a n d t h e p o o r v i su a l a p p e a ra n c e o f t h e

    s u r fa c e . I t m a y b e n e c e s s a ry t o p h o t o g ra p h t h e c o re ,

    thus p roduc ing a two-d imen s iona l image , befo re al l

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    13/16

    MARINE SEDIMENT CORE METHODS 97

    worm g ar

    /

    I

    G

    i

    | '1 I |

    .or,,g,,r I I

    I ~- h.die

    Fig. 7. Vibra t ing saw for spl i t t ing sediment cores into three sec t ions . The centre sec t ion is used for X-radiography (from Kawohl and

    Kudrass, 1987).

    t he fea tu res a re read i ly apparen t . An acc iden ta l lon-

    g i tud ina l core f rac tu re was p roduced in a Kas ten lo t

    core by We aver and S chul theiss 1983a) which re-

    vea led numerous minu te open burrows each abou t

    0 .5 mm across . S uch fea tu res would have been v i r tu-

    al ly impossible to see in a cut surface even with only

    smal l amounts o f smear ing .

    ore Description and Photography

    Cores are usual ly described immediately after spl i t -

    t ing before any de ter io ra t ion o f the sed iment

    sur face occurs . Trad i t iona l ly , the sed imento log i s t

    records al l vis ible features of the core, such as

    colour, texture, l i thological boundaries , burrows etc.

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    14/16

    9 P. P. E. WEAVER AND P. J. SCHULTHEISS

    Fig. 8. Examples o f heavi ly burrowe d sediment showing the clar i ty of detai l produced by a n electro osmotic knife cut surface.

    The combination of a good quality colour pho-

    tograph from an unsmeared osmotic knife-cut sur-

    face with a multiple whole core log of the core can

    provide much o f the information in a more objective

    way than from a simple description. Ideally the

    photographs and whole core logs should be backed-

    up by comments from an experienced sedimentolo-

    gist and the whole must be synthesized into

    diagramatic form for publication. One advantage of

    this method is that information can be interpreted

    directly from the core even if the core is not avail-

    able without having to also interpret the potentially

    poor core description with its mis-interpretations or

    omissions.

    onclusions

    The present range of available corers includes box

    corers gravity corers piston corers giant piston

    corers and vibrocorers. If:care is taken in selecting

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    15/16

    MARINE SEDIMENTCORE METHODS

    t he corer mos t appropr ia t e fo r the sed iment type and

    mos t app ropr ia t e fo r the ana lyses to be conducted a

    maximum of 20-30 m of co re shou ld be ob ta inab le .

    Box corers provide good qual i ty cores with large

    volumes from the upper 0 .5 m and often ret r ieve the

    sed iment -water in te r face . S ing le-spade box corers

    are more successful in obtaining cores in sandy sub-

    st rates . Gra vi ty corers should be avoided or cores

    f rom the m t rea ted wi th cau t ion fo r phys ica l p roper ty

    s tud ies o r any work which requ i res p rec i se da ta on

    the depths of boundaries within the sediment . This is

    because they are subject to errors of mis-sampling

    which cannot always be assessed. The one except ion

    ma y be the Kas ten lo t co rer which because o f i ts

    large cross-sect ional area gives relat ively undis tu rbed

    cores in soft sediments . Pis ton corers produce more

    representat ive resul ts than gravi ty corers but even

    these are subject to mis-sampling errors due to move-

    ment o f the p i s ton dur ing the cor ing opera t ion .

    These corers ca n pen etrate up to 20 m in sui table

    sed iments . Gia n t p i s ton corers a re capab le o f co r ing

    to 30-50 m. At present the ST AC OR i s opera t iona l

    and funct ion s wel l ret r ieving relat ively undis tu rbed

    cores . The GPC has no t comple ted i t s des ign phase

    and so i ts abi l i ty to recover long undis turbed cores is

    cur ren t ly unknown.

    New developments in corer hand l ing inc lude the

    use of Kevlar cables which al low more precise moni-

    to r ing o f opera t ions and the p roduct ion o f a con-

    tainerized winch which al lows access to a much

    larger number o f sh ips fo r runn ing cor ing opera-

    t ions .

    Whole-core logg ing t echn iques combined wi th

    co lour pho tographs o f osmot ic kn i fe-cu t su r faces o f

    spl i t cores provide excel lent and permanent records

    of the core which are o f more va lue than descr ip t ions

    on the i r own. The au thors s t rong ly com men d the

    adop t ion o f these t echn iques by o ther workers in the

    field.

    eferences

    Ardus, D. A., Skinner, A., Owens, R., and Pheasant, J., 1982,

    Improved Coring Techniques and Offshore Laboratory Pro-

    cedures in Sam pling and Shallow Dril ling, Oceanology Interna-

    tional

    2, 18 pp.

    Bouma, A. H., 1969, Methods for the Study of Sedimentary

    Structures.

    J. Wiley Sons, New York , 458.

    Brooke, J. a nd Pelletier, B. R., 1970, Sea Drilli ng Techn iques of

    the Bedford Institute, J. Underwater Sci. and Technol. 2, 165-

    167.

    Burns, R. E., 1962, A N ote on Some Possible Misi nformation

    from Cores O btained by Piston-Type Coring Devices,

    J. Sedim.

    Petrol. 33, 950-952.

    Driscoll, A . H. 1981, The L ong Coring Facility, New Techniques

    in Deep Ocean Coring, Oceans 81 1, New York, IEEE. Inc.,

    404-410.

    Driscoll, A. H. an d Hollister, C. D., 1974, The W.H .O.I. Chant

    Piston Corer; State of the Art, in

    Marine Technology Society

    10th An nua l Conference, 66 3-675 .

    DriscoU, A. H. and Silva, A. J., 1977, Report of the Engineering

    Workshop on Deep Sea Coring Vols 1 and 2. Wood's Hole

    Oceanographic Inst., Novemb er, 1977.

    Dzwilewzki, P. T. and Driscoll, A. H., 1980, Long Core Facility

    Winch and Cable System, American So ciety o f Mechanical

    Engineers Winter An nua l Meeting, 7 pp.

    Emery, K. O. and Dietz, R. S., 1941, Gravity Coring Instrument

    and Mechanics of Sediment Coring, Bull. GeoL Soc. Amer .

    52

    1685-1714.

    Hollister, C . D., Silva, A. J., and Driscoll, A. H., 1973, A Gi ant

    Piston Corer,

    Ocean Engineering

    2, 159-168.

    Houbolt, J. J. H. C., 1971, Transferable Deep-Sea Coring Gear,

    Marine Geol. 10, 121-131.

    Hvorslev, M . J. and Stetson, H. C., 1946, Free-fall Coring Tube:

    A New T ype of Gravity Bottom Sampler, Bull. Geol. Soc. Am er.

    57 935-950.

    Igarashi, Y., Ridlon, J. B., Campbell, J. R., and Allman, R. L.,

    1970, Note on a Mode of Piston Core Disturbance, J. Sedim.

    Petrol. 40 1351-1355.

    Karl, H. A., 1976, Box Core L iner System Developed at the

    Sedimentology Research Lab orato ry, Unive rsity of South ern

    California, Mar. Geol. 20, M1-M6.

    Kawohl, H. a nd Kudras, H. R ., 1987, The Use of a Multiple-disc

    Vibrating Saw for C utting the Liners of Sediment Cores, J. Sed.

    Pet. 57, 789-790.

    Kermabon, A. and Cortis, U., 1968, A Recoilless Piston for the

    SACLA NTCEN Sphincter Corer , Saclant A S W Research Cen-

    tre Technical Report No. 112

    22 pp.

    Kogler, F. C., 1963, Das K astenlot, Meyniana 13, I-7.

    Kuijp ers, A., Rispens, F. B., and Burger, A. W., 1984 , Late

    Quaternary Sedimentation and Sedimentary Processes of the

    Madeira Abyssal Plain, Eastern North Atlantic, Meded. Rijks

    Geol. Dienst 38-2, 91-118.

    Kullenberg, B., 1947, The Piston Core Sampler, Svenska Hydrogr.

    Biol. Kommn. Skr 1, 46 pp.

    KuUenberg, B., 1955, A New Core-Sampler, K. Vet. O. Vitterh.

    Samh. Handl. 6, 17 pp.

    Lee, H. J. and Clausner, J. E., 1979,

    Seafloor Soil Sampling and

    Geotechnical Parameter Dete rmin ation --Ha ndbo ok Technical

    Report Civil Engineering Laboratory Por t Hueneme California

    TR-873, 128 pp.

    McCoy, F. W., 1980, Photographic Analysis of Coring, Mar. Geol

    38, 263-282.

    McCoy, F. W., 1985, Mid-Core Flo w-In: Implications for

    Stretched Stratigraphi c Sections in Pist on Cores, J. Sedim. Pet.

    55 608-610.

    Montarges, R., Fay, J-B., and Le Tirant, P., 1987, Soil Reconnais-

    sance at Great Water Depth, 4th International Conference on

    Deep Offshore Technology

    2/18-2/29.

    Mont arges, R., Le Tira nt, P., Wanness on, J., Valery, P., and

    Berthon, J-L., 1983, Large-size Stationary Pisto n Corer, 2nd

    International Conference on Deep Offshore Technology 63-74.

    Moore, D. G., 1961, The Free Corer: Sedim ent Sampling without

    Wire and Winch, J. Sed. Petrol. 31, 627-630.

  • 8/20/2019 3b_Current Methods for Obtaining Logging and Spliting Marine Sediment Cores

    16/16

    10 0 p. P. E. WEAVER AND P. J. SCHULTHEISS

    Moore, T. C. an d Heat h, G . R., 1978, Sea-floor Sampling Tech-

    niques, in J. P. Riley and R. Ch ester eds.), Chemical Oceanog-

    raphy, 7, Academic Press London), 75-126.

    Papucci, C., Jennings, C. D., and Lavarello, O., 1986, A Mod ified

    Box Corer and Extruder for Marine Pollution Studies, Conti-

    nental S hel f Research 6, 671-675.

    Peters, R. D., Timmins, N. T., Calvert, S. E., and Morris, R. J.,

    1980, The IOS Box Corer: Its Design, Development, Operation

    and Sampling, LO.S. Report No. 106, 16 pp unpubli shed

    manuscript).

    Pheasant, J., 1984, A Microprocessor Controlled Seabed Rock-

    drill/Vibrocorer, Underwater Technology 10, 10-14.

    Richards, A. F . and Keller, G. H., 1961, A Plastic-B arrel Sedi-

    ment Corer, Deep-Sea Research 8, 306-312.

    Schilling, J., Van W~r in g, T. C. E., and Eisma, D., 1988,

    Advantages of Lightweight Kevlar Rope for Ocean Bottom

    Sampling with Piston Corer and Box Corer, Mar. Geol. 79,

    149-152.

    Schultheiss, P. J. and M ienert, J., 1988 , Whole Core P -Wave

    Velocity and G amm a Ray Attenuation Logs from ODP Leg 108

    Sites 657-668), in W. Ruddiman, M. samthein, J. saldauf et

    al., Proc., Init. Repts. Pt. A), ODP 108, 1015-1046.

    Schultheiss, P. J. and McPhail, S. D., 1989, An Automated

    P-Wave Logger for R ecording Fine Scale Compressional Wave

    Velocities in Sediments, in W. Ruddiman, M. sarnthein, J.

    Baldauf et al., Proc., lnit. Repts. Pt. B), ODP 108 in press).

    Sehuttenhelm, R. T. E., Autfret, G. A., Buckley, D. E., Cranston,

    R. E., Murray, C. N., Sheppard, L. E., and Spijkstra, A. E.

    eds). 1990, Geoscience Investigations of Tw o North Atla ntic

    Abyssal Plains-- the ESOPE International Expedition, Vols 1

    and 2, CEC-.Ioint Research Centre, JRC Re port in press).

    Silva, A. J., HoUister, C. D., Laine, E. P., and Beverly, B. E.,

    1977, Geotechnical Properties of Deep-Sea Sediments: Bermuda

    Rise, Mar. Geotechnol. 1, 195-232.

    Weaver, P. P. E. and Sehultheiss, P. J., 1983a, Vertical Open

    Burrows in D eep Sea Sedim ents 2 m in Length, Nature 301,

    329-331.

    Weaver, P. P. E. and Sehultheiss, P. J., 1983b, Detection of

    Repenetration and Sediment Disturbance in Open Barrel Grav-

    ity Cores, J. Sedim. Petrol 53, 649-654.