3456_ftp

Embed Size (px)

Citation preview

  • 8/12/2019 3456_ftp

    1/6

    2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3456

    www.advmat.dewww.MaterialsViews.com

    wileyonlinelibrary.com

    Wenjing Zhang, Jing-Kai Huang, Chang-Hsiao Chen, Yung-Huang Chang,

    Yuh-Jen Cheng, and Lain-Jong Li*

    High-Gain Phototransistors Based on a CVD MoS2Monolayer

    DOI: 10.1002/adma.201301244

    Graphene, one of the most promising two-dimensional mate-rials, has great potential in various applications, includingnanoelectronics, optoelectronics, energy harvesting, and bio-sensing.[1] The linear dispersion of the Dirac electrons makesgraphene-based broadband optical modulators[2] and ultrafasthigh frequency photodetectors[3] possible. However, the zerobandgap of graphene limits its applications in nanoelectronicsand optoelectronics. With this consideration, the molybdenumdisulfide (MoS2) monolayer recently emerged with a directbandgap of 1.8 eV.[4] The large direct bandgap, high electronmobility (200 cm2 V1 s1), excellent current ON/OFF ratio(108), low subthreshold swing (74 mV dec1), and highquantum luminescence efficiency of monolayered MoS2makeit a new hot research topic,[57]especially in the field of optoelec-tronics.[810]A phototransistor made from a monolayer of MoS2has shown a high photoresponsivity (7.5 mA W1) and a shortresponse time (50 ms).[11] Also, the wavelength dependentphotosensitivity varies with the thickness of MoS2.

    [12]Moreover,the phototransistors based on multilayers of MoS2 exhibit abroad spectral response from ultraviolet to infrared.[13]All theseproperties indicate that the MoS2 layers are promising as newbuilding blocks for optoelectronic devices.[1419]

    With a high surface-to-volume ratio, the photoelectricalresponses of the ultrathin monolayer of MoS2could be affectedby the adsorbates in ambient air. It has been demonstrated thatthe electrical characteristics of a mechanically exfoliated MoS2monolayer can be remarkably changed after exposure to triethyl-amine or acetone.[20]Recently, we have successfully synthesizedlarge area mono- and few-layer MoS2by chemical vapor deposi-tion methods.[2123]The photoluminescence, electron mobility,and current ON/OFF ratio of chemical vapor deposited (CVD)MoS2are comparable with that of mechanically exfoliated MoS2flakes in a backgate transistor structure.[5,6,21,22] In this contri-bution, we find that the photoresponsivity and photogain wereup to 2200 A W1and 5000, respectively, for a CVD MoS2mon-olayer at room temperature in a high vacuum. The shallow

    trapped long-range Coulomb potentials, which could be fromthe charged impurities at the MoS2/substrate interface, drasti-cally affect the recombination of the photogenerated carriers,accounting for the observation of the persistent photocurrentat room temperature. The adsorbates from ambient air interactstrongly with MoS2, resulting in the change of the out-of-planeRaman A1g mode, the enhancement of carrier scattering, andthe decrease in mobility, photoresponsivity, and photogain. Thestudy of the photocurrent decay time reveals that the adsorp-tion/desorption processes of the adsorbates assist the recombi-nation of the photogenerated carriers, causing the decrease ofthe decay time.

    The large-area MoS2 monolayer was directly grown on a300 nm SiO2/Si substrate by the vapour-phase reaction of MoO3and sulfur powders in a hot-wall CVD system as described inour previous work.[22]Figure1a displays a typical Raman spec-trum taken for the CVD MoS2monolayer, where the energy dif-ference between the Raman A1gand E

    12gmodes (=A1g E12g)

    is 18.2 cm1, indicating that it is a monolayer.[21,22,24]Figure 1bshows the typical photoluminescence (PL) spectrum of a MoS2monolayer film, which consists of two peaks at 657 (1.89 eV)

    Figure 1. a) The Raman spectrum for the CVD MoS2monolayer on a300 nm SiO2/Si substrate. The frequency separation between A1g andE12gpeaks is 18.2 cm

    1. b) The photoluminescence spectrum for the CVDMoS2 monolayer. c) Schematic diagram of the phototransistor devicestructure based on a MoS2monolayer. The source/drain electrodes werecomposed of 10 nm of Ti and 80 nm of Au. d) The top-view optical micro-scopy of the device, where the source and drain metals are comb-shaped.

    370 380 390 400 410 420Ramanintensity(a.u.)

    Raman shift (cm-1

    )

    A1g

    E1

    2g

    (a)

    500 550 600 650 700 750

    B1

    PLintensity(a.u.)

    Wavelength (nm)

    A1

    Si Raman

    MoS2Raman

    (b)

    Dr. W. Zhang, J.-K. Huang, Dr. C.-H. Chen,Dr. Y.-H Chang, Dr. L.-J. LiInstitute of Atomic and Molecular SciencesAcademia SinicaTaipei 10617, TaiwanE-mail: [email protected]

    Dr. J.-Y. ChengResearch Center for Applied SciencesAcademia Sinica, Taipei, 11529, Taiwan

    Adv.Mater.2013, 25, 34563461

    http://doi.wiley.com/10.1002/adma.201301244
  • 8/12/2019 3456_ftp

    2/6

  • 8/12/2019 3456_ftp

    3/6

    3458

    www.advmat.dewww.MaterialsViews.com

    wileyonlinelibrary.com 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    As photoresponsivity (R) and photogain (G)are critical parameters to evaluate the per-formance of a phototransistor, the effectof the ambient air adsorption on the opto-electronic properties are demonstrated withthese two parameters. The R of a photo-

    transistor can be estimated by the equationR = Iph/P, where P is the absorbed laserpower, we find that the R is higher than2200 A W1 under vacuum at room tem-perature at P0= 1.3 W m

    2, VgVth=100 V,and Vds=1 V; however, the Ris decreased to780 A W1 in ambient air under the sameconditions. The Gis related to Rby the equa-tion R = Iph/P =Gq/h,

    [31] where is theexternal quantum efficiency, qis the electroncharge, h is Planck's constant, and is thefrequency of the incident laser. Assuming=100%, the Gin vacuum is estimated to behigher than 5000 at P0=1.3 W m

    2, Vg Vth=100 V, and Vds=1 V, while the Gis 1840 inambient air under the same conditions.

    Figure 3c and d shows the power densitydependence of the photocurrent at differentgate voltages in air and under vacuum. At alow gate voltage under vacuum, the photo-current increases linearly with light powerdensity (IphP

    , =1), demonstrating thatthe efficiency of photogenerated charge car-riers is proportional to the absorbed photonflux. However, the dependence becomessublinear (Iph P

    ,

  • 8/12/2019 3456_ftp

    4/6

  • 8/12/2019 3456_ftp

    5/6

    3460

    www.advmat.dewww.MaterialsViews.com

    wileyonlinelibrary.com 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    decrease of the electron mobility, photoresponsivity, and gain.On the other hand, the adsorbates assist photocurrent relaxa-tion and decrease the photocurrent decay times. In our experi-ments, a low contact resistance was realized between MoS2andthe Ti/Au electrodes, promising the operation of the transistorby modulation of the channel resistance. The ohmic-like con-

    tact makes the effects from disorders or extrinsic impuritiesmore pronounced on the optoelectronic properties of MoS2,causing an obvious PPC. The temperature dependence of thePPC shows that the shallow long-range Coulomb potentialsmay dominate the trap centers of the photogenerated carriers.Our findings suggest that a fast response and high gain CVDMoS2phototransistor could be realized by improving the MoS2/substrate interface, and the CVD MoS2has a great potential inoptoelectronic applications.

    Experimental Section

    Sample Preparation: Large-area MoS2films were synthesized on SiO2/Si

    substrates in a hot-wall furnace. Prior to the growth, the SiO2/Si substrateswere cleaned with standard Piranha solutions. High purity MoO3 (99%,Aldrich) and S powder (99.5%, Alfa) were placed in two separate Al 2O3crucibles, and the substrates were placed face down on the upper sideof the MoO3power. The MoS2 samples were fabricated by annealing at650 C for 15 min with a heating rate of 15 C min 1and under a N2flow(1 sccm) at ambient. Standard photolithography was used to define thedevices contacted by interdigitated Ti (10 nm)/Au (80 nm) electrodes.

    Characterizations: The AFM images were obtained using a VeecoDimension-Icon system. Raman and PL spectra were collected in aconfocal Raman/PL system (NT-MDT). The wavelength of the laser was473 nm (2.63 eV), and the spot size of the laser beam was 0.5 m. Thestep size of the Raman spatial mapping was 0.5 m, and the spectralresolution was 3 cm1 (obtained with a 600 grooves mm1 grating). Ahigh grating (1800 grooves mm1) was also used to obtain more detailsof the line shapes of the Raman band, and the spectral resolution was1 cm1. The Si peak at 520 cm1was used as a reference for wavenumbercalibration, and the peak frequency was extracted by fitting a Raman peakwith a Lorentz function. The electrical measurements were performedunder ambient or vacuum conditions using a Keithley semiconductorparameter analyzer, model 4200-SCS. A 532 nm laser was used tomeasure the photoresponse of the devices, and the spot size was 1 mm.

    Supporting Information

    Supporting Information is available from the Wiley Online Library orfrom the author.

    AcknowledgementsThis research was supported by Academia Sinica (IAMS and Nanoprogram) and National Science Council Taiwan (NSC-99-2112-M-001-021-MY3).

    Received: March 19, 2013Revised: April 13, 2013

    Published online: May 24, 2013

    [1] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab,K. Kim, Nature2012, 490, 192.

    [2] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang,X. Zhang, Nature2011, 474, 64.

    [3] F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nano-technol.2009, 4, 836.

    [4] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett.2010,105, 136805.

    [5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat.Nanotechnol.2011, 6, 147.

    [6] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli,

    F. Wang, Nano Lett. 2010, 10, 1271.[7] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla,

    Nano Lett.2011, 11, 5111.[8] H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Nat. Nanotechnol.2012, 7,

    490.[9] S. Wu, J. S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu,

    D. Xiao, W. Yao, D. Cobden, X. Xu, Nat. Phys.2013, 9, 149.[10] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, X. Xu,ACS

    Nano2013, 7, 2768.[11] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen,

    H. Zhang,ACS Nano2012, 6, 74.[12] H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim,

    J. H. Kim, S. Ryu, S. Im, Nano Lett.2012, 12, 3695.[13] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G.B. Cha, S. C. Hong,

    S. Kim, J. Kim, D. Jena, J. Joo,Adv. Mater.2012, 24, 5832.

    [14] M. Chhowalla, H. S. Shin, G. Eda, L. -J. Li, K. P. Loh, H. Zhang, Nat.Chem.2013, 5, 263.

    [15] X. Huang, Z. Zeng, Hua Zhang, Chem. Soc. Rev.2013, 42, 1934.[16] R. V. Kashid, D. J. Late, S. S. Chou, Y. Huang, M. De, D. S. Joag,

    M. A. More, V. P. Dravid, Small2013, DOI: 10.1002/smll.201300002.[17] D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson,

    C. N. R. Rao, V. P. Dravid,Adv. Mater.2012, 24, 49.[18] P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao,ACS Nano2012, 6, 5988.[19] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen,

    J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, K. Xiao, Nano Lett.2013,13, 1649.

    [20] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell,G. G. Jernigan, B. T. Jonker, Nano Lett.2013, 13, 668.

    [21] K. Liu, W. Zhang, Y. Lee, Y. Lin, M. Chang, C. Su, C. Chang, H. Li,Y. Shi, H. Zhang, C. S. Lai, L. J. Li, Nano Lett.2012, 12, 1538.

    [22] Y. Lee, X. Zhang, W. Zhang, M. Chang, C. Lin, K. Chang, Y. Yu,J. T. Wang, C. Chang, L.J. Li, T.W. Lin,Adv. Mater.2012, 24, 2320.

    [23] Y. Lin, W. Zhang, J. Huang, K. Liu, Y. Lee, C. Liang, C. Chu, L. Li,Nanoscale2012, 4, 6637.

    [24] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano2010, 4, 2695.

    [25] D. Xiao, G. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett.2012, 108,196802.

    [26] I. Popov, G. Seifert, D. Tomnek, Phys. Rev. Lett.2012, 108, 156802.[27] B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick,

    U. V. Waghmare, A. K. Sood, Phys. Rev. B2012, 85, 161403.[28] K. Kaasbjerg, K. S. Thygesen, K. W. Jacobsen, Phys. Rev. B2012, 85,

    115317.[29] S. Kim, A. Konar, W. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung,

    H. Kim, J. Yoo, J. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, K. Kim,Nat. Commun.2012, 3, 1011.[30] D. Lembke, A. Kis,ACS Nano2012, 6, 10070.[31] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang,

    ACS Nano2010, 4, 6285.[32] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park,

    X. Y. Bao, Y. H. Lo, D. Wang, Nano Lett.2007, 7, 1003.[33] F. Gonzlez-Posada, R. Songmuang, M. Den Hertog, E. Monroy,

    Nano Lett.2012, 12, 172.[34] A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y.-H. Lo,Appl. Phys. Lett.

    2008, 93, 121110.[35] J. Reemts, A. Kittel,J. Appl. Phys.2007, 101, 013709.[36] R. S. Aga Jr., D. Jowhar, A. Ueda, Z. Pan, W. E. Collins, R. Mu,

    K. D. Singer, J. Shen,Appl. Phys. Lett.2007, 91, 232108.

    Adv.Mater.2013, 25, 34563461

  • 8/12/2019 3456_ftp

    6/6

    3461

    www.advmat.dewww.MaterialsViews.com

    wileyonlinelibrary.com2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    [41] M. Lax, Phys. Rev.1960, 119, 1502.[42] D. V. Lang, R. A. Logan, Phys. Rev. Lett.1977, 39, 635.[43] D. V. Lang, C. H. Henry, Phys. Rev. Lett.1975, 35, 1525.[44] Z. Liao, Y. Lu, J. Xu, J. Zhang, D. Yu,Appl. Phys. A2009, 95, 363.[45] S. Ghatak, A. N. Pal, A. Ghosh,ACS Nano2011, 5, 7707.[46] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan,

    Nat. Mater.2013, 12, 207.

    [37] J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren,Nanoscale Res. Lett.2011, 6, 40.

    [38] K. Moazzami, T. E. Murphy, J. D. Phillips, M. C.-K. Cheung,A. N. Cartwright, Semicond. Sci. Technol.2006, 21, 717.

    [39] S. Lany, A. Zunger, Phys. Rev. B2005, 72, 035215.[40] D. Redfield, R. H. Bube, Photo-induced Defects in Semiconductors,

    Cambridge University Press, Cambrigde, UK 1996.

    Adv.Mater.2013, 25, 34563461