14
Conceptual uP9616Q 1 uP9616Q-DS-C3000, Feb. 2017 www.upi-semi.com r e b m u N r e d r O e p y T e g a k c a P g n i k r a M p o T 8 C D Q 6 1 6 9 P u L 8 - 5 x 6 N F D V Q 6 1 6 9 P u 3.3A Charger Interface, Wide Input Sensorless CC/CV Synchronous-Rectified Buck Converter for QC2.0/QC3.0/PE+1.1/PE+2.0 And FCP Ordering Information The uP9616Q is a high-efficiency synchronous-rectified buck converter with an internal power switch. With internal low RDS(ON) switches, the high-efficiency buck converter is capable of delivering up to 3.3A output current for charger interface and a wide input voltage range from 8V to 32V. It operates in either CV (Constant Output Voltage) mode or CC (Constant Output Current) mode and provides a current limitation function. The uP9616Q has a constant output voltage 5.2V/9V/12V for Qualcomm ® Quick Charge TM 3.0/ 2.0(QC2.0/QC3.0) that is detected from D+ and D- line and automatically detects whether a connected Powered Device (PD) is Quick Charge (QC2.0/QC3.0) capable before enabling output voltage adjustment. If a PD not compliant to Quick Charge (QC2.0/QC3.0) is detected, the uP9616Q disables output voltage adjustment to ensure safe operation with legacy 5.2V only USB PDs. uP9616Q is a USB secondary side fast-charging converter, supporting Qualcomm ® Quick Charge TM 3.0 (QC 3.0) High Voltage Dedicated Charging Port (HVDCP) Class A specification. uP9616Q allows for selection of the output voltage of an AC/DC USB adapter based on commands from the Portable Device (PD) being powered. Selecting a higher charging voltage will reduce the charging current for a given power level resulting in reduced IR drops and increased system efficiency. Another advantage of QC3.0 is a decreased battery charging time and a reduced PD system cost thanks to the ability to select an optimum charging voltage. This eliminates the need for costly DC/DC converters within the PD. The USB-bus voltage can be controlled in discreet steps from 3.6 V up to 12.1V. The output current is limited not to exceed maximum allowable power level. Other features for the buck converter include internal soft- start, adjustable external CC (Constant Output Current) limit setting, built-in fixed line-compensation, short circuit protection, VIN/VOUT over voltage protection, and over temperature protection. It is available in a space-saving VDFN6x5-8L package. Note: (1) Please check the sample/production availability with uPI representatives. (2) uPI products are compatible with the current IPC/JEDEC J-STD-020 requirement. They are halogen-free, RoHS compliant and 100% matte tin (Sn) plating that are suitable for use in SnPb or Pb-free soldering processes. PDA Like Device Car Chargers Portable Charging Devices Applications D+ VIN D- VIN LX BOOT SENSE+ VDFN6x5-8L SENSE- 1 2 3 4 5 6 7 8 GND Pin Configuration General Description DRAFT ICQ:294 434 3362 唐云:13530452646 QQ:2944353362

3.3A Charger Interface, Wide Input Sensorless CC/CV … · 2019. 1. 10. · PDC8 1N,2 VI Power Supply Input. Input voltage that supplies current to the output voltage and powers the

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Conceptual uP9616Q

    1uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    rebmuNredrO epyTegakcaP gnikraMpoT

    8CDQ6169Pu L8-5x6NFDV Q6169Pu

    3.3A Charger Interface, Wide Input Sensorless CC/CVSynchronous-Rectified Buck Converter

    for QC2.0/QC3.0/PE+1.1/PE+2.0 And FCP

    Ordering Information

    The uP9616Q is a high-efficiency synchronous-rectifiedbuck converter with an internal power switch. With internallow RDS(ON) switches, the high-efficiency buck converteris capable of delivering up to 3.3A output current for chargerinterface and a wide input voltage range from 8V to 32V. Itoperates in either CV (Constant Output Voltage) mode orCC (Constant Output Current) mode and provides a currentlimitation function. The uP9616Q has a constant outputvoltage 5.2V/9V/12V for Qualcomm® Quick ChargeTM 3.0/2.0(QC2.0/QC3.0) that is detected from D+ and D- line andautomatically detects whether a connected Powered Device(PD) is Quick Charge (QC2.0/QC3.0) capable beforeenabling output voltage adjustment. If a PD not compliantto Quick Charge (QC2.0/QC3.0) is detected, the uP9616Qdisables output voltage adjustment to ensure safe operationwith legacy 5.2V only USB PDs.uP9616Q is a USB secondary side fast-charging converter,supporting Qualcomm® Quick ChargeTM 3.0 (QC 3.0) HighVoltage Dedicated Charging Port (HVDCP) Class Aspecification.uP9616Q allows for selection of the output voltage of anAC/DC USB adapter based on commands from the PortableDevice (PD) being powered. Selecting a higher chargingvoltage will reduce the charging current for a given powerlevel resulting in reduced IR drops and increased systemefficiency. Another advantage of QC3.0 is a decreasedbattery charging time and a reduced PD system cost thanksto the ability to select an optimum charging voltage. Thiseliminates the need for costly DC/DC converters within thePD. The USB-bus voltage can be controlled in discreetsteps from 3.6 V up to 12.1V. The output current is limitednot to exceed maximum allowable power level.Other features for the buck converter include internal soft-start, adjustable external CC (Constant Output Current)limit setting, built-in fixed line-compensation, short circuitprotection, VIN/VOUT over voltage protection, and overtemperature protection. It is available in a space-savingVDFN6x5-8L package.

    Note:(1) Please check the sample/production availability withuPI representatives.(2) uPI products are compatible with the current IPC/JEDECJ-STD-020 requirement. They are halogen-free, RoHScompliant and 100% matte tin (Sn) plating that are suitablefor use in SnPb or Pb-free soldering processes.

    PDA Like Device Car Chargers

    Portable Charging Devices

    Applications

    D+

    VIN

    D-

    VIN

    LX

    BOOT

    SENSE+

    VDFN6x5-8L

    SENSE-

    1

    2

    3

    4 5

    6

    7

    8

    GND

    Pin Configuration

    General Description

    DRAF

    T

    ICQ:294 434 3362

    唐云:13530452646

    QQ:2944353362

  • Conceptual uP9616Q

    2 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    BOOT

    SENSE+

    SENSE-

    VIN=8V~32V

    VOUT = 3.6V~12.1V

    VINL1

    22uH

    GND LX

    C30.1uF

    RSENSE39m ohm

    C50.1uF/16V

    C21uF/50V

    C1100uF/50V

    D-

    D+

    USB/FCP

    C63.3nF

    R13.3 ohm

    C422uFx4/16V/X7R/MLCC

    220uF/16V/ESR=90m ohm/EC220uF/16V/ESR=25m ohm/OSCON

    Typical Application Circuit

    Certification: uP9616Q is certified by Qualcomm®

    and UL. Please refer to the information below forverification:

    Qualcomm Quick Charge is a product ofQualcomm Technologies, Inc.

    UL Certificate No. 47876554328-2 for uP9616Series

    http://www.qualcomm.com/documents/quick-charge-device-list

    Wide Input Voltage Range : 8V to 32V

    Input Voltage Absolute Maximum Rating: 36V

    Up to 3.3A Output Current

    CV/CC Mode Control (Constant Voltage andConstant Current)

    Supports USB DCP Shorting D+ Line to D- LinePer USB Battery Charging Sepecification BC 1.2

    Supports USB DCP Applying 2.7V on D+ Lineand 2.7V on D- Line

    Supports USB DCP Applying 1.2V on D+ Lineand D- Line

    FeaturesCompliant with Apple® and Samsung Devices

    Internal QC2.0/QC3.0/PE+1.1/PE+2.0/FCPProtocol

    Wide Output Voltage Range: 3.6V to 12.1V

    Output Voltage Accuracy: +2%

    Fixed 125kHz Frequency Operation

    Up to 95% Conversion Efficiency

    Fixed Cable Compensation Voltage

    Adjustable External CC (Constant OutputCurrent) Limit Setting: Default = 3.3A

    CC (Constant Output Current) Limit Accurarcy:+3%

    Short Circuit Protection

    VIN/VOUT Over Voltage Protection and OverTemperature Protections

    VDFN6x5-8L Package

    RoHS Compliant and Halogen Free

    DRAF

    T

  • Conceptual uP9616Q

    3uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    .oNniPemaNniP noitcnuFniP

    8CDP

    2,1 NIVtupnIylppuSrewoP dnaegatlovtuptuoehtottnerrucseilppustahtegatlovtupnI.

    1xFu1muminimahtiwegatlovtupniehtssapyB.tiucriclortnoclanretniehtsrewop.roticapaccimarecR7XroR5X

    3 +D .noitcennoCtupnI+DtroPBSU tupnienilatad+DBSU .

    4 -D .noitcennoCtupnI-DtroPBSU .tupnienilatad-DBSU

    5 -ESNES .niP)-(tupnIesneStnerruCehT .egatlovnoitasnepmocelbacdnaenilelbatsujdA

    6 +ESNES .niP)+(tupnIesneStnerruCehT .egatlovnoitasnepmocelbacdnaenilelbatsujdA

    7 TOOB

    .revirDetaGreppUgnitaolFehtrofylppuSpartstooB partstoobehttcennoC.tiucricpartstoobamrofotnipXLehtdnanipTOOBneewtebTOOBCroticapac

    .TEFSOMreppuehtnonrutotegrahcehtsedivorproticapacpartstoobehTraendecalpsiTOOBCtahterusnE.retaergroFu1.0siTOOBCrofeulavlacipyT

    .CIeht

    8 XL .tuptuOsehctiwSlanretnI .rotcudnituptuoehtotnipsihttcennoC

    )DNG(daPdesopxE.dnuorG .retrevnockcubehtfodnuorG taehrofhtapniamehtsidapdesopxeehT

    .ecnamrofreplamrehttsebrofBCPehtotderedlos-llewebdluohsdnanoitcevnoc

    Functional Pin Description

    DRAF

    T

  • Conceptual uP9616Q

    4 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Functional Block Diagram

    Control &Protection Logic

    UG Driver

    Current Sense

    GND

    VIN

    LX

    BOOT

    InternalRegulator

    VAVCC

    VA

    UVP

    VREF

    OTP OTP

    EN

    PORPOR

    SENSE+

    SENSE-

    D+ D-

    Current Sense/CC (Constant Output Current) Limit Amplifier

    Line/Cable Compensation

    Set Current Limit

    OVP

    FB

    COMP_CC

    COMP_CV

    LG Driver

    VCC

    Diff Amplifier

    X1

    VREF_CC

    VREF_OVP

    VREF_UVP

    VREF_CV

    EN Logic

    BC1.2/QC2.0/ QC3.0/FCP

    PE+1.1/PE+2.0

    DRAF

    T

  • Conceptual uP9616Q

    5uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    0

    50

    100

    150

    200

    0 500 1000 1500 2000 2500 3000

    RCOMP = 60mV/A (Fixed)

    ILOAD

    (mA)

    Current Limit Protection

    The uP9616Q continuously monitors the inductor current,when the inductor current is higher than current limitthreshold, the current limit function activates and forcesthe upper switch turning off to limit inductor current cycleby cycle.

    Output Short Circuit Protection

    The uP9616Q provides output short circuit protection func-tion. Once the output loader short-circuits, the SCP willbe triggered then always hiccup, the hiccup cycle time isset by an internal counter. When the SCP condition isremoved or disappears, the converter will resume normaloperation and the hiccup status will terminate.

    Output Over Voltage Protection

    The uP9616Q provides output over voltage protection. Oncethe output voltage (measured the at SENSE- pin) gets higherthan OVP threshold, the OVP will be triggered to shut downthe converter. When the OVP condition disappears, theconverter will resume normal operation and resume thenormal state automatically.

    Over Temperature Protection

    The OTP is triggered and shuts down the uP9616Q if thejunction temperature is higher than 150oC The OTP is anon-latch type protection. The uP9616Q automaticallyinitiates another soft start cycle if the junction temperaturedrops below 130oC.

    Functional DescriptionCV/CC Mode Control

    The uP9616Q provides CV/CC function. It operates in eitherCV (Constant Output Voltage) mode or CC (Constant OutputCurrent) mode. The function provides a current limitationfunction and adjusts external current limit setting(Default=3.3A). In the CV mode, the output voltage iscontrolled within +1.5%. In the CC mode, the output currentvariation is less than +3% of the nominal value which canbe set up to 3.3A by the current sensing resistor.When Output current increase until it reaches the CC limitset by the R

    SENSE resistor. At this point, the device will

    transition from regulating output voltage to regulating outputcurrent, and the output voltage will drop with increasingload.

    The CC (Constant Output Current) limit is set at 3.3A bydefault with an external resistance R

    SENSE = 39mΩ, When

    the (SENSE1+) - (SENSE1-) voltage gets higher than130mV and reaches the current limit, the driver is turnedoff. The CC (Constant Output Current) limit is set accordingto the following equation:

    CC (Constant Output Current) Limit SENSER

    mV 130=

    Output Cable Resistance Compensation

    In charger applications, the large load will cause voltagedrop in the output cable. The uP9616Q has a built-in cablecompensation function. When the load increases, thecable compensator will increase an adjustable regulationof the error amplifier that can make the output voltageconstant. Use the curve and table to adjust internal thereference voltage values for fixed USB cable compensationby outside resistance R

    SENSE = 39mΩ (default), as shown in

    Figure 1 and Table 1.The fixed cable compensation iscalculated as follows:

    COMPLOADCOMP RIV x =

    R PMOC m( Ω) 06

    I DAOL )Am(egatloVnoitasnepmoCelbaCBSUdexiF

    )Vm(

    0 0

    005 0

    0001 06

    0051 09

    0002 021

    0052 051

    0003 081

    Table 1 USB Cable Compensation Application Table

    VC

    OM

    P (m

    V)

    Figure 1 USB Cable Compensation ata Fixed Resistor Divider Value

    DRAF

    T

  • Conceptual uP9616Q

    6 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    eciveDelbatroP AssalCPCDVH

    +D -D egatloVtuptuO

    V6.0 DNG V2.5

    V3.3 V6.0 V9

    V6.0 V6.0 V21

    V6.0 V3.3 edoMsuounitnoC

    3.3 3.3 egatloVsuoiverP

    Functional DescriptionHigh Voltage Dedicated Charging Port (HVDCP) Mode

    After power-up pins D+ and D- of uP9616Q are shortedwith impedance R

    DCP_DAT and internal reference voltage V

    REF

    is set to VBUS

    voltage 5.2V. The device is in a BC1.2compatible mode. If a portable device compatible with theQualcomm Quick Charge specification is connected, anegotiation between HVDCP and PD is executed. Oncethe negotiation is successful the uP9616Q opens D+ andD- short connection and D- is pulled down with a R

    DM_DWN.

    The uP9616Q enters HVDCP mode. It monitors D+ and D-inputs. Based on the specified control patterns, the internalvoltage reference value V

    REF is adjusted in order to increase

    or decrease output voltage to the required value.

    The uP9616Q is available in Class A version. Class A allowsto change the output voltage up to VBUS = 12V. If theunplug event is detected the decoder circuitry turns-on aninternal current sink, which discharges the output capacitorsto a safe voltage level. If the uP9616Q is set to aContinuous mode it responds to the PD requests in a Singlerequest mode. It does not support Group request mode.

    HVDCP Continuous ModeThe continuous mode of operation leverages the previouslyunused state in QC2.0. If the portable devices try and utilizethis mode, it applies voltages on D+ and D- per Table 2.Assuming the HVDCP supports this mode of operation, itwill glitch filter the request as it currently does, usingTGLITCH_V_CHANGE(40ms). Before the portable devicecan begin to increment or decrement the voltage, it mustwait TV_NEW_REQUEST_CONT before pulling D+ and D-high or low. Once this time has finished, the portable devicenow attempts to increment or decrement the voltage. Toincrement, the portable device sends a pulse of widthTACTIVE by pulling D+ to VDP_UP and then must returnD+ to VDP_SRC for TINACTIVE.

    Table2. HVDCP detection voltage coding and status

    Note: GND is not forced by the portable device. The portabledevice shall go High-Z and the HVDCP pulls D- low throughRdm_dwn. This is to prevent misdetection when currentflowing through GND causes the GND in the portable deviceto be at a higher voltage relative to HVDCP GND. Careshould be taken in the portable device as this can result ina negative relative voltage on D- as seen by the portabledevice.

    DRAF

    T

  • Conceptual uP9616Q

    7uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    (Note 1)

    Supply Input Voltage, VIN ------------------------------------------------------------------------------------------------------------- -0.3V to +36V

    LX Voltage to GND ------------------------------------------------------------------------------------------------------- -0.3V to + (VIN + -0.3V)

    D+/D- Pin Voltage -------------------------------------------------------------------------------------------------------------- -0.3V to +6.0V

    SENSE+/SENSE- Pin Voltage ---------------------------------------------------------------------------------------------------------- -0.3V to +14V

    Storage Temperature Range ------------------------------------------------------------------------------------------------------------- -65oC to +150oC

    Junction Temperature ------------------------------------------------------------------------------------------------------------------------------------ 150oC

    Lead Temperature (Soldering, 10 sec) ------------------------------------------------------------------------------------------------------------ 260oC

    ESD Rating (Note 2)

    D+/D-/Sense- Pin

    HBM (Human Body Mode) --------------------------------------------------------------------------------------------------------------------- 4kV

    MM (Machine Mode) ----------------------------------------------------------------------------------------------------------------------------- 400V

    Other Pins

    HBM (Human Body Mode) --------------------------------------------------------------------------------------------------------------------- 2kV

    MM (Machine Mode) ----------------------------------------------------------------------------------------------------------------------------- 200V

    (Note 4)

    Operating Junction Temperature Range ------------------------------------------------------------------------------------------ -40oC to +125oC

    Operating Ambient Temperature Range ------------------------------------------------------------------------------------------ -40oC to +85oC

    Supply Input Voltage, VIN ------------------------------------------------------------------------------------------------------------------- +8V to 32V

    Absolute Maximum Rating

    Thermal Information

    Recommended Operation Conditions

    Package Thermal Resistance (Note 3)

    VDFN6x5 - 8L θJA -------------------------------------------------------------------------------------------------------------------- 45oC/W

    VDFN6x5 - 8L θJC

    ------------------------------------------------------------------------------------------------------------------------- 4oC/W

    Power Dissipation, PD @ T

    A = 25oC

    VDFN6x5 - 8L --------------------------------------------------------------------------------------------------------------------------------------- 2.2W

    Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device.These are for stress ratings. Functional operation of the device at these or any other conditions beyond thoseindicated in the operational sections of the specifications is not implied. Exposure to absolute maximumrating conditions for extended periods may remain possibility to affect device reliability.

    Note 2. Devices are ESD sensitive. Handling precaution recommended.

    Note 3. θJA

    is measured in the natural convection at TA = 25oC on a low effective thermal conductivity test board of

    JEDEC 51-3 thermal measurement standard.

    Note 4. The device is not guaranteed to function outside its operating conditions.DRAF

    T

  • Conceptual uP9616Q

    8 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    (VIN = 12V, TA =25oC, unless otherwise specified)

    Electrical Characteristics

    retemaraP lobmyS snoitidnoCtseT niM pyT xaM stinU

    egatloVtupnIylppuS

    egnaRegatloVtupnI V NI 8 -- 23 V

    dlohserhTROPNIVgnisiRNIV -- 5.7 -- V

    gnillaFNIV -- 0.7 -- V

    dlohserhTPVOtupnI V PVO_NIV PVO_NI gnisiR 8.23 -- -- V

    V PVO_NI gnillaF 3.23 -- -- V

    tnerruCtupnIylppuS

    tnerruCtnecseiuQtupnI I 1Q gnihctiwsoN -- 1 05.1 Am

    sehctiwSrewoP

    ecnatsiseRnOhctiwSediS-iH R )NO(SD -- 08 -- mΩ

    ecnatsiseRnOhctiwSediS-woL R )NO(SD -- 05 -- mΩ

    ycneuqerFnoitallicsO f CSO -- 521 -- zHk

    elcyCytuDmumixaM D XAM 69 89 99 %

    tratStfoSdnaegatloVtuptuO

    ycaruccAegatloVtuptuO ∆V TUO

    V NI V,V21= TUO ,V2.5=PCF/0.3CQ/0.2Crofylno

    2- -- 2+

    %V NI V,V21= TUO 0.3CQ/0.2CQrofylno,V9= 2- -- 2+

    V NI V,V21= TUO PCFrofylno,V2.9= 2- -- 2+

    V NI V,V42= TUO 0.3CQ/0.2CQrofylno,V21= 2- -- 2+

    V NI V,V42= TUO PCFrofylno,V1.21= 2- -- 2+

    emiTtratStfoS T SS -- 01 -- sm

    reifilpmAesneStnerruC

    neewteBecnereffiDegatloVCCta-ESNESdna+ESNES

    noitarepOedoM∆V NES V TUO V2.5= 721 031 331 Vm

    noitasnepmoCecnatsiseRelbaCtuptuO

    noitasnepmoCeniLdexiF V TUO V TUO I,V2.5= O VtaderusaemA5.2= ESNES 011 051 091 Vm

    noitcetorP

    )tnerruCtuptuOtnatsnoC(CCtimiL

    I TUO R ESNES m93= Ω V, TUO V2.5= 652.3 33.3 014.3 A

    otsdeenegatloVtuptuOdlohserhtespalloc

    V TUOylnO.timiL)tnerruCtuptuOtnatsnoC(CCotnI

    KTMdna0.3/0.2CQrof058.2 001.3 053.3 V

    noitcetorPegatloVrevOtuptuO V PVO Vtaderusaem -ESNES -- 01 -- %

    noitcetorPegatloVrednUtuptuO V PVUV TUO PCFrofylno,V2.9= -- 7.6 --

    VV TUO PCFrofylno,V1.21= -- 01 --

    DRAF

    T

  • Conceptual uP9616Q

    9uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Electrical Characteristics

    retemaraP lobmyS snoitidnoCtseT niM pyT xaM stinU

    ).tnoC(noitcetorP

    erutarpmeTnwodtuhSlamrehT T DS -- 051 --oC

    siseretsyHnwodtuhSlamrehT T SYHDS -- 02 --oC

    )-D/+D(troPgnigrahCdetacideDegatloVhgiH

    egatloVtceteDataD V FER_TAD 52.0 523.0 04.0 V

    noitceleSetgatloVtuptuOecnerefeR

    V FER_LESPCDVHnoitceleSrofecnerefeRV0.2

    egatloV08.1 2 02.2 V

    taPCDVHroftimiLtnerruCegatloVtuptuOynA

    I NIM_PCDVHtatnerrucsihttuptuotsums'PCDVHllA

    muminim005 -- -- Am

    emiTretliFhctilGwoL-D T WOL_MD_PHCTILG

    sinwd_mdRdnanepoeraA-/+DretfAtcepxePCDVHdluohsgnolwoh,detressa

    .hgihdellupgnieberofebwolyatsot-D1 -- -- sm

    emiTretliFhctilGhgiH-D T HGIH_MD_PHCTILG

    sinwd_mdRdnanepoeraA-/+DretfAecivedelbatroparetfagnolwoh,detressa

    tsrifsekamtierofeb,wolog-Dsees.hgih-Dsllupdnatseuqeregatlov

    04 -- -- sm

    emiTretliFhctilGhgiH+D T enoD_CB_PHCTILG,etelpmocsinoitceteD2.1CBretfA

    PCDVH1 -- 05.1 s

    retliFhctilGegatloVtuptuOemiT

    T EGNAHC_V_PHCTILGerofebelggot-/+DretfaretlifhctilG

    egatlovtuptuoegnahcotstpmettaPCDVH02 04 06 sm

    egrahcsiDsubVgulpnU T GULPNU_VniV2.5otegrahcsidotsubVrofemiT

    gulpnunoPCDVH-- -- 005 sm

    emiTtrohSPCDVH-D/+D T TROHS_-D_+D PCDVHnotrohsot-D/+DrofemiT -- 01 02 sm

    ecnaticapaC-D+D C RWP_PCDot-Ddna+DnoecnaticapactnelaviuqE

    DNG-- -- 1 Fn

    egakaeLeniLataD R GKL_TAD 003 -- 0051 kΩ

    ecnatsiseRnwoDlluP-D R NWD_-D 21 51 81 kΩ

    )edoMtrohS(edoMPCD2.1CB

    gniruDecnatsiseR-Dot+DedoMPCD

    R TAD_PCD -- 02 04 Ω

    egatloVtuptuO+D V +V2.1_PD V21=NIV 21.1 02.1 82.1 V

    egatloVtuptuO-D V +V2.1_MD V21=NIV 21.1 02.1 82.1 V

    ecnadepmItuptuO+D R V2.1_PD Au5-=+DI 08 201 031 kΩ

    ecnadepmItuptuO-D V +V2.1_MD Au5-=-DI 08 201 031 kΩ

    )V7.2/V7.2(edoMrediviD

    egatloVtuptuO+D V V7.2_+D V21=NIV 75.2 07.2 48.2 V

    egatloVtuptuO-D V V7.2_-D V21=NIV 75.2 07.2 48.2 V

    ecnadepmItuptuO+D R V7.2_+D Au5-=+DI -- 63 -- kΩ

    ecnadepmItuptuO-D R V7.2_-D Au5-=-DI -- 63 -- kΩ

    DRAF

    T

  • Conceptual uP9616Q

    10 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Typical Operation Characteristics

    This page is intentionally left blank and will be updated when data is available.

    DRAF

    T

  • Conceptual uP9616Q

    11uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Application Information

    Output Inductor Selection

    Output inductor selection is usually based on theconsiderations of inductance, rated current value, sizerequirements and DC resistance (DCR).

    The inductance is chosen based on the desired ripplecurrent. Large value inductors result in lower ripple currentsand small value inductors result in higher ripple currents.Higher VIN or VOUT also increases the ripple current asshown in the equation below. A reasonable starting pointfor setting ripple current is ∆IL = 900mA (30% of 3000mA).

    )V

    V1(V

    Lf1

    IIN

    OUTOUT

    OUTOSCL −××

    =∆

    Maximum current ratings of the inductor are generallyspecified in two methods: permissible DC current andsaturation current. Permissible DC current is the allowableDC current that causes 40oC temperature raise. Thesaturation current is the allowable current that causes 10%inductance loss. Make sure that the inductor will notsaturate over the operation conditions including temperaturerange, input voltage range, and maximum output current. Ifpossible, choose an inductor with rated current higher than5A so that it will not saturate even under current limitcondition.

    The size requirements refer to the area and heightrequirement for a particular design. For better efficiency,choose a low DC resistance inductor. DCR is usuallyinversely proportional to size.

    Different core materials and shapes will change the size,current and price/current relationship of an inductor. Toroidor shielded pot cores in ferrite or permalloy materials aresmall and don’t radiate much energy, but generally costmore than powdered iron core inductors with similar electricalcharacteristics. The choice of which style inductor to useoften depends on the price vs. size requirements and anyradiated field/EMI requirements.

    Input Capacitor Selection

    The input capacitor needs to be carefully selected tomaintain sufficiently low ripple at the supply input of theconverter. A low ESR capacitor is highly recommended.Since large current flows in and out of this capacitor duringswitching, its ESR also affects efficiency.

    The input capacitance needs to be higher than 22uF. Thebest choice is he ceramic type and low ESR electrolytictypes may also be used provided that the RMS ripplecurrent rating is higher than 50% of the output current. Inthe case of the electrolytic types, they can be further awayif a small parallel 1uF ceramic capacitor is placed rightclose to the IC. A 100uF elecrolytic capacitor and 1uFceramic capacitor are recommended and placed close toVIN and GND pins, with the shortest traces possible.

    Output Capacitor Selection

    The ESR of the output capacitor determines the outputripple voltage and the initial voltage drop following a highslew rate load transient edge. The output ripple voltagecan be calculated as:

    )Cf8

    1ESR(IV

    TOUOSCCOUT ××

    +×∆=∆

    Where fOSC

    = operating frequency, COUT

    = outputcapacitance and ∆IC = ∆IL = ripple current in the inductor.The ceramic capacitor with low ESR value provides the lowoutput ripple and low size profile.In the case of electrolytic capacitors, the ripple is dominatedby RESR multiplied by the ripple current. Connect a 220uFelectrolytic capacitor at output SENSE+ terminal for goodperformance and low output ripple and place outputcapacitor5s as close as possible to the device.In the case of ceramic output capacitors, RESR is very smalland does not contribute to the output ripple. Connect a0.1uF ceramic capacitor at output SENSE- terminal for goodperformance and place output capacitors as close aspossible to the device.

    PCB Layout Consideration

    The PCB layout is an important step to maintain the highperformance of the uP9616Q. High switching frequenciesand relatively large peak currents make the PCB layout avery important part of all high frequency switching powersupply design. Both the high current and the fast switchingnodes demand full attention to the PCB layout to save therobustness of the uP9616Q through the PCB layout.Improper layout might show the symptoms of poor load orlineregulation, radiate excessive noise at ground or input,output voltage shifts, stability issues, unsatisfying EMIbehavior or worsened efficiency. Follow the PCB layoutguidelines for optiomal performances of uP9616Q.

    DRAF

    T

  • Conceptual uP9616Q

    12 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Application Information

    Layout Guidelines For uP9616QDC8:

    1. Arrange the power components to reduce the AC loop size consisting of CIN, VIN (Pin 1, 2) and LX (Pin 8)2. The input decoupling ceramic capacitor 1uF must be placed closest to the VIN (Pin 1, 2) and Exposed Pad GND plane through vias or a short and wide path.3. Return SENSE+ (PIN 6) to signal GND pin, and connect the signal GND to power GND at a single point for best noise immunity. Connect exposed pad to power ground opper area with copper and vias.4. Apply copper plane to Exposed Pad GND for best heat dissipation and noise immunity. The exposed pad is the main path for heat convection and should be well-soldered to the PCB for best thermal performance.5. Use a short trace connecting the bootstrap capacitor CBOOT to BOOT (Pin 7) and LX (Pin 8) to form a bootstrap circuit.6. Use a short trace connecting R-C to LX (Pin 8) and Exposed Pad GND Plane to form a Snubber Circuit.

    7. The LX (Pin 8) pad is the noise node switching from VIN (Pin 1, 2) to GND. LX node copper area should be

    minimized to reduce EMI and should be isolated from the rest of circuit for good EMI and low noise operation.8. The D+ (Pin 3) pad and D- (Pin 4) pad of the uP9616Q are the USB detect data line input node, the D+ and D- Pin of the via or trace area should be isolated using 0.96mm space to prevent direct contact with VIN area components which may cause voltage of D+ and D- pins to exceed maximum rating of 6V.

    uP9616QDC8

    VIN Plane

    SENSE+

    Plane+

    +

    5V

    D+

    D-

    GND

    USB Connector

    SENSE-

    Plane

    GND Plane

    GND Plane

    Via to D+

    Via to D-

    Via to GND Plan

    -

    -

    Exposed

    Pad (GND)

    1

    2

    3

    4 5

    6

    7

    8

    DRAF

    T

  • Conceptual uP9616Q

    13uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Package Information

    Note1.Package Outline Unit Description:

    BSC: Basic. Represents theoretical exact dimension or dimension targetMIN: Minimum dimension specified.MAX: Maximum dimension specified.REF: Reference. Represents dimension for reference use only. This value is not a device specification.TYP. Typical. Provided as a general value. This value is not a device specification.

    2.Dimensions in Millimeters.3.Drawing not to scale.4.These dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm.

    VDFN6x5 - 8L

    θ

    14

    5 8

    0.80

    - 1.

    000.31 - 0.511.27 BSC

    6.00

    BSC

    5.00 BSC

    3.25

    - 3.

    55

    0.50 - 0.803.85 - 4.15

    0.20 REF 0.00 - 0.05

    DRAF

    T

  • Conceptual uP9616Q

    14 uP9616Q-DS-C3000, Feb. 2017www.upi-semi.com

    Important Notice

    uPI and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and otherchanges to its products and services at any time and to discontinue any product or service without notice. Customersshould obtain the latest relevant information before placing orders and should verify that such information is current andcomplete.

    uPI products are sold subject to the taerms and conditions of sale supplied at the time of order acknowledgment.However, no responsibility is assumed by uPI or its subsidiaries for its use or application of any product or circuit; norfor any infringements of patents or other rights of third parties which may result from its use or application, including butnot limited to any consequential or incidental damages. No uPI components are designed, intended or authorized foruse in military, aerospace, automotive applications nor in systems for surgical implantation or life-sustaining. No licenseis granted by implication or otherwise under any patent or patent rights of uPI or its subsidiaries.

    COPYRIGHT (C) 2016, UPI SEMICONDUCTOR CORP.

    uPI Semiconductor Corp.Headquarter9F.,No.5, Taiyuan 1st St. Zhubei City,Hsinchu Taiwan, R.O.C.TEL : 886.3.560.1666 FAX : 886.3.560.1888

    uPI Semiconductor Corp.Sales Branch Office12F-5, No. 408, Ruiguang Rd. Neihu District,Taipei Taiwan, R.O.C.TEL : 886.2.8751.2062 FAX : 886.2.8751.5064

    DRAF

    T