46
4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari 3.320: Lecture 22 (4/28/05) Ab-Initio Thermodynamics and Structure Prediction: Time Coarse-graining, Effective Hamiltonians and Cluster Expansions

3.320: Lecture 22 (4/28/05) Ab-Initio Thermodynamics and ... · Ab-Initio Thermodynamics and Structure Prediction: Time Coarse-graining, Effective Hamiltonians and Cluster Expansions

Embed Size (px)

Citation preview

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

3.320: Lecture 22 (4/28/05)

Ab-Initio Thermodynamics and Structure Prediction: Time Coarse-graining, Effective

Hamiltonians and Cluster Expansions

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Methods with multiple time scales:Coarse-grain fast one away

Model Hamiltonians: Example of Relevant Lattice Models

Cu-Au: Cu and Au on fcc sublattice

Configurational Disorder in Fixed HostLiCoO2: Li and vacancies

Triangular lattice of Li and vacancies

Surface Adsorptione.g. O on Pt(111)

Possible “Hollow” sites form a triangular lattice

How to parameterize and equilibrate these models ?

A practical basis to expand H(σ) in

ϕα = σ ii∈α∏

Examples of cluster functions

Basis is complete

Cluster function basis is orthogonalf σ( ) g σ( ) =

12N f σ( )

σ ∑ g σ( )

12N

suitable scalar product

ϕα = 0σ ∑Note that for any basis function

ϕα ϕβ =1

2N ϕασ ∑ ϕβ

orthogonality proof

ϕα ϕβ = σ i2

i∈α∩β∏ σ i

i∈αi∉β

∏ σ ii∈βi∉α

∏ = δαβ

Expand any function of configuration in cluster function basis: e.g. Energy

E σ( ) = Vαϕαα∑

Coefficients V -> Effective Cluster Interactions

H σ ( ) = V0 + V1 σ i + 12

i

∑ Vi , jσ ii, j∑ σ j +

16

Vi, j ,kσ ii, j ,k∑ σ jσ k +

124

Vi, j ,k ,lσ ii , j, k,l∑ σ jσkσ l ...

expanding the cluster functions into their spin products makes the expansion look like a generalized Ising model

Now we are in a position to see what the formal definition of the interactions in the Ising-like model is

Definition of the InteractionsE σ( ) = Vαϕα

α∑

take scalar product with ϕβ

Vβ =1

2Nσ ∑ ϕβ E σ( ) =

12nβ

i= ±1i∈β

∑ ϕβ1

2N−nβσ −β∑ E σ( )

Work out example for pair interaction

Many direct and indirect methods have been developed for calculating the Vα

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Practical Approach is to Determine them by fitting to the calculated energy of a large number of configurations.

Truncate Hamiltonian Expansion

Calculate H(σ) for several configurations σ (= structures)

Fit Hamiltonian Expansion to the direct First Principles calculations

Ising-like model

Phase diagram and thermodynamic quantities

First Principlesmethod

Monte Carlosimulation

Effective Cluster Interactions

H σ ( ) = V0 + V1 σ i + 12

i

∑ Vi , jσ ii, j∑ σ j +

16

Vi, j ,kσ ii, j ,k∑ σ jσ k +

124

Vi, j ,k ,lσ ii , j, k,l∑ σ jσkσ l ...

CaO-MgOPhase Diagram

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Calculated Mixing Energies as Input

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Composition

Potentials

SCPIB

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Effective Cluster Interactions for CaO-MgO

1 2 3 4 5 6-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

SCPIB

Potentials

1 32 1 2

Pairs Triplets Quadruplets

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Calculated Phase Diagram

0 0.25 0.5 0.75 1

5000

4000

3000

2000

1000

0

Mole fraction MgO

T(K)

Potentials

SCPIB (no vibrations)

SCPIB (with vibrations)

Figure after P. D. Tepesch et al. J. Am. Ceram. Soc. 79 (1996): 2033-2040.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Calculating Metastable Phase in Li-Al

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Calculated

After M. Sluiter et al. Phys. Rev. B 42 (1990): 10460.

1000

800

600

400

200

0

1200

T (K

)

0 0.2 0.4 0.6 0.8 1

CLi

LIQUID

B32

L12 L10 DO3 bcc

(at+ %)AI

fcc

Li

Figure by MIT OCW.

More Complicated Things: YBa2Cu3Oz

Oxygen

Vacancy

Cu

Ba

Y

Chain Plane

0.2 0.3 0.4 0.50 0.1

6.0 6.2 6.4 6.6 6.8 7.0z

1000

500

0

T(K)

OII

T OI

OI

c

Figure after G. Ceder et al. Phys. Rev. B 41 (1990): 8698-8701.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

LixC

oO2

O

Co

Li

After A. Van der Ven et al. Phys. Rev. B 58, (1998) 2975-2987.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Surface adsorption: On on Pt(111) (similar to your lab assignment)

LDA/GGA calculations on slab geometry

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Adsorption energies for various O arrangements

0.0 0.2 0.4 0.6 0.8 1.0

-400

-300

-200

-100

0

form

atio

n en

ergy

[meV

]

oxygen composition

O-Pt system LDA GGA

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Cluster Expansion

0.0 0.2 0.4 0.6 0.8 1.0-400

-350

-300

-250

-200

-150

-100

-50

0

50

form

atio

n en

rgy

[meV

]

oxygen composition

O-Pt system vasp C.E

2 3 4 5 6 7-10

0

10

20

30

40

50

60

70

80

ECI [

meV

]

cluster

ECI Pt-O Ru-O

Effective Cluster Interactions

Monte Carlo Simulation

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Phase Diagram

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

More complicated: Combined segregation and Adsorption

Pt,Ru Ru segregatesto surface

Oxygen

Layer of surface adsorption sites

Pt bulk atoms

Top layer: Pt/Ru

Parameterize the system with respect to occupation of these sites with Pt/Ru(σi)or O/vacuum (δi)

Technique used: Coupled Cluster Expansion (P.D. Tepesch, G.D. Garbulsky and G. Ceder, A Model for the Configurational Thermodynamics in Ionic Systems, Phys. Rev. Lett, 74:2272-75 (1995)

E(σ1,σ 2,...,σ N ,δ1,δ2,...,δN ) =

V0 + Viσ ii

∑ + Viδii

∑ + Vi, jσ iσ ji, j∑ + Vi, jσ iδ j

i, j∑ + Vi, jδiδ j

i, j∑ + ...

δi is +1 when oxygen is adsorbed at site i

Top layer: σi = +1 or -1 if site is occupied by Pt(Ru)

Environment

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Oxidation drags Ru to the surface

More oxidation strength

1

0.8

0.6

0.4

0.2

0-1500 -1250 -1000 -750 -500 -250 0

Ru in the Surface

Oxygen Adsorbed

µo

CoCRu

Co,

CR

u

Figure by MIT OCW.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Oxidation drags Ru to the surface

More oxidation strength

Low oxidation

Figure by MIT OCW.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Oxidation drags Ru to the surface

More oxidation strength

Medium oxidation

Figure by MIT OCW.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Oxidation drags Ru to the surface

More oxidation strength

High oxidation

Figure by MIT OCW.

Equilibration of Structure and Chemistry also key in other problems: Hydrogen Modified Al Fracture

For slow separation impurities can flow in

Free energy of separation (and force displacement relation) depend on amount and arrangement of impurity

Need to equilibrate both amount and arrangement of H on Al(111) for each separation

Lattice model for H on separating Al(111) surfaces

Vβ Vγ

H in tetrahedral sites

Lattice model of tetrahedral sites on (111)

Interaction in-plane and between surfaces

ProcedureCalculate energy of different H configurations on surface at different plane separations.

Cluster expand H configuration energy at each plane separation

Monte Carlo simulation at each plane separation

Take derivatives of free energy (to get force)

Construct grand potentials and construct equilibrium “trajectory”

A. Van der Ven, G. Ceder, Acta Materialia 52, (2004) 1223-1235.

Calculate Energy versus separation for various H concentrations and configurations

Perform Monte Carlo at each separation

Cluster expand

Interactions

Inter-plane interaction

in-plane interaction

Apply force with constant H chemical potential

constant H concentration

First order transition: Separation at constant force due to impurity inflow

Ω(F,µH) = G − µHx − Fh

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Why is Ising – like model such a good approximation for the real system. Look back at coarse-graining ideas

ElectronicΨ

Ψ

Occupation

Magnetic (electron spin)

Molecular Dynamics: can not reach configurational excitations

Monte Carlo: too many energy evaluations required

Vibrational

Configurational

We can use lattice models for studying mixing and ordering or atoms in crystalline materials. But why is this a good approximation ?

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Coarse-graining: The concept

Can we integrate partition function over fast degrees of freedom to obtain an effective Hamiltonian for the slower degrees of freedom ?

e.g. for an alloy: Can we find an effective free energy function for the substitutional arrangement of an alloy that includes the entropic effect of vibrations and electronic excitations ?

YES

Use Monte Carlo, Molecular Dynamics, or analytical methods to integrate effect of temperature on fast degrees of freedom

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Change coordinates

ri i, ∆ri

σ = σ1, σ2,σ3, ...σΝConfigurationalarrangement

ν = Vibrational state∆ri

Coarse-graining by reduction of degrees of freedom

Q =σ∑ exp −βE(σ,υ(σ)( )

υ∑

Q = exp −βF(σ( )σ∑

σ = σ1, σ2,σ3, ...σΝν =Configurational

arrangementVibrational state

Partition Function of an Ising-like Model

Two approximations for F

F(σ = −kT ln exp −βE(υ(σ)( )υ∑⎡

⎣ ⎢

⎦ ⎥

F is Effective Hamiltonian for σ degree of freedom

G. Ceder, Computational Materials Science 1, (1993) 144-150.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Approximations to F(σ) determine which excitations (entropies) are included in the total free energy

F(σ = −kT ln exp −βE(υ(σ)( )υ∑⎡

⎣ ⎢

⎦ ⎥ 1. Approximate F(σ) by E(σ)

when doing Monte Carlo and free energy integration, only get configurational entropy

2. Approximate F(σ) by E(σ) -TSelectronic (σ)

when doing Monte Carlo and free energy integration, get configurational entropy and electronic

3. F(σ) = E(σ) –TSelectronic (σ) – TSvib (σ)

when doing Monte Carlo and free energy integration, get configurational entropy + electronic + vibrational

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Summary

The model on the time scale of the substitutional excitations is an Ising-like model (i.e. excitations are changes of occupation variables)

The Hamiltonian of the Ising-like model is the free energy of the faster excitations (e.g. vibrations, electronic excitations).

Only approximation is separation of time scales

Cluster Expansion is a practical form for the Ising-like Hamiltonian

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Can investigate effect of various approximations:Cd-Mg system

After from M. Asta et al. Physical Review B 48, (1993) 748-766.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Calculated

No vibrational entropy With vibrational entropy

After M. Asta et al. Physical Review B 48, (1993) 748-766.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

Systems as 1994

Table removed for copyright reasons.

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

After R. McCormack et al. Phys. Rev. B 51, (1995) 15808-15822.

Simple Ternaries

4/27/05 3.320 Atomistic Modeling of Materials G. Ceder and N Marzari

References

1. D. de Fontaine, in Solid State Physics H. Ehrenreich, D. Turnbull, Eds. (Academic Press, 1994), vol. 47, pp. 33-176.2. G. Ceder, A. Van der Ven, C. Marianetti, D. Morgan, Modeling and Simulation in Materials Science and Engineering 8, (2000) 311-321.3. A. Zunger, in Statics and Dynamics of Alloy Phase Transformations P. E. A. Turchi, A. Goniss, Eds., pp. 361-419 (1994).4. A. Van de Walle, G. Ceder, J. of Phase Equilibria 23, (2002) 348-359.5. J. M. Sanchez, D. de Fontaine, Phys. Rev. B 25, (1982) 1759-1765.6. J. M. Sanchez, F. Ducastelle, D. Gratias, Physica 128A, (1984) 334-350.