3.3 Exercise

Embed Size (px)

Citation preview

  • 8/11/2019 3.3 Exercise

    1/47

    MATRIX AND DETERMINANTS

    1. If a matrix has 28 elements, what are the possible orders it can have? What if it

    has 13 elements?

    2. In the matrix

    =

    5

    250

    32

    1

    2 yx

    xa

    A , write

    !i" #he order of the matrixA

    !ii" #he n$mber of elements

    !iii" Write elements 123123 ,, aaa

    3. %onstr$ct 22a matrix where

    !i" ( )

    2

    2 2ji

    aij

    =

    !ii" jiaij 32 +=

    &. %onstr$ct a !3 2" matrix whose elements are 'iven b( jxea xi

    ij sin.

    = .

    5. )ind the val$es of aand bif BA = , where

    +=

    *8

    3& baA ,

    ++=

    bb

    baB

    58

    222

    2

    2

  • 8/11/2019 3.3 Exercise

    2/47

    *. If possible, find the s$m of the matricesAandB, where

    =

    32

    13A , and

    =

    *ba

    zyxB .

    +. If

    =

    325

    113X and

    =

    &2+

    112Y , find

    !i" YX + !ii" YX 32

    !iii" matrixZs$ch that ZYX ++ is a -ero matrix.

  • 8/11/2019 3.3 Exercise

    3/47

    8. )ind non-ero val$es ofxsatisf(in' the matrix e/$ation

    ( )( )

    +=

    +

    x

    x

    x

    x

    x

    xx

    *10

    2&82

    &&

    582

    3

    22 2.

    . If

    = 11

    10A and

    =

    01

    10B , show that ( ) ( )

    22 BABABA + .

  • 8/11/2019 3.3 Exercise

    4/47

    10. )ind the val$e ofxif [ ] Ox

    x =

    2

    1

    2315

    152

    231

    11 .

    11. how that

    =

    21

    35A satisfies the e/$ation OIAA = +32 and hence find 1A .

    12. )ind the matrix satisf(in' the matrix e/$ation

  • 8/11/2019 3.3 Exercise

    5/47

    =

    10

    01

    35

    23

    23

    12A .

    13. )indA, if

    =

    3*3

    121

    &8&

    3

    1

    &

    A .

  • 8/11/2019 3.3 Exercise

    6/47

    1&. If

    =

    02

    11

    &3

    A and

    =

    &21

    212

    B, then verif( ( ) 222 ABBA .

    15. If possible, findBAandAB, where

    ==21

    32

    1&

    ,&21

    212BA .

    1*. how b( an example that for OABOBOA = ,, .

    1+. iven

    =

    *3

    0&2A and

    =

    31

    82

    &1

    B . Is ( ) ABAB = ?

    18. olve forxandy

  • 8/11/2019 3.3 Exercise

    7/47

    0

    11

    8

    5

    3

    1

    2 =

    +

    +

    yx .

    1. IfXand Yare 22 matrices, then solve the followin' matrix e/$ations forXand Y

    =+

    =+

    51

    2223,

    0&

    3232 YXYX .

    20. If [ ]53=A , [ ]3+=B , then find a non-ero matrix Cs$ch that BCAC= .

    21. ive an example of matricesA, Band Cs$ch that ACAB = , whereAis non-ero

    matrix, b$t CB .

  • 8/11/2019 3.3 Exercise

    8/47

    22. If

    =

    = &3

    32,

    12

    21BA and

    =0101C , verif(

    !i" ( ) ( )BCACAB = !ii" ( ) ACABCBA +=+ .

    23. If

    =

    z

    y

    x

    P

    00

    00

    00

    and

    =

    c

    b

    a

    Q

    00

    00

    00

    , prove that

    QP

    zc

    ybax

    PQ =

    =

    00

    00

    00.

  • 8/11/2019 3.3 Exercise

    9/47

    2&. If [ ]312 A=

    1

    0

    1

    110

    011

    101

    , findA.

    25. If [ ]

    ==

    *+8

    &35,12 BA and

    =

    201

    121C , verif( that ( ) ( )ACABCBA +=+ .

    2*. If

    =

    110

    312

    101

    A , then verif( that ( )IAAAA +=+2 , whereIis 3 3 $nit matrix.

    2+. If

    =

    &3&

    210A and

    =

    *2

    31

    0&

    B , then verif( that

  • 8/11/2019 3.3 Exercise

    10/47

    !i" ( ) AA = !ii" ( ) ABAB =

    !iii" ( ) ( )AkkA = .

    28. If

    =

    =

    3+

    &*

    21

    ,

    *5

    1&

    21

    BA , then verif( that

    !i" ( ) BABA +=+ 22

    !ii" ( ) BABA = .

    2. how that AA and AA are both s(mmetric matrices for an( matrixA.

    30. et A and B be s/$are matrices of the order 3 3. Is ( ) 222

    BAAB = ? iven

    reasons.

    31. how that if A and B are s/$are matrices s$ch that BAAB = , then

    ( ) 222 2 BABABA ++=+ .

  • 8/11/2019 3.3 Exercise

    11/47

    32. et

    =

    =

    =

    21

    02,

    51

    0&,

    31

    21 CBA and 2,& == ba . how that

    !i" ( ) ( ) CBACBA ++=++

    !ii" ( )CABBCA ="!

    !iii" ( ) bBaBBba +=+

    !iv" ( ) aAaCACa =

    !v" ( ) AA TT

    =

    !vi" ( ) TTT

    ABAB =

    !vii" ( ) BCACCBA =

    !viii" ( ) TTT BABA =

    33. If

    =

    cossin

    sincos

    A, then show that

    =

    2cos2sin

    2sin2cos2

    A.

  • 8/11/2019 3.3 Exercise

    12/47

    3&. If

    =

    = 01

    10,

    0

    0B

    x

    x

    A and 12

    =x , then show that ( ) 222

    BABA +=+ .

    35. 4erif( that IA =2 when

    =

    &33

    &3&

    110

    A .

    3*. rove b( 6athematical Ind$ction that ( ) ( )= nn AA , where Nn for an( s/$are

    matrixA.

    3+. )ind inverse, b( elementar( row operations !if possible", of the followin'

    matrices

    !i"

    +5

    31!ii"

    *2

    31.

  • 8/11/2019 3.3 Exercise

    13/47

    38. If

    =

    ++ *0

    8

    *

    & w

    yxz

    xy, then find val$es ofx, y, zand w.

    3. If

    =

    12+

    51A and

    =

    8+

    1B , find a matrix Cs$ch that CBA 253 ++ is a n$ll matrix.

    &0. If

    = 2&

    53

    A, then find IAA 1&5

    2

    . 7ence, obtain3

    A .

  • 8/11/2019 3.3 Exercise

    14/47

    &1. )ind the val$es of a, b, c andd,if,

    +

    ++

    =

    3

    &

    21

    *3

    dc

    ba

    d

    a

    dc

    ba .

    &2. )ind the matrixAs$ch that

    =

    1522

    521

    1081

    &3

    01

    12

    A .

    &3. If

    =

    1&

    21A , find IAA +22 ++ .

  • 8/11/2019 3.3 Exercise

    15/47

    &&. If

    =

    cossin

    sincosA , and AA =1 , find val$e of .

    &5. If the matrix

    01

    12

    30

    c

    b

    a

    is a sew s(mmetric matrix, find the val$es of a, b and

    c.

    &*. If ( )

    =

    xx

    xxxP

    cossin

    sincos, then show that ( ) ( ) ( ) ( ) ( )xPyPyxPyPxP .. =+= .

    &+. IfAis s/$are matrix s$ch that AA =2 , show that ( ) IAAI +=+ +3 .

    &8. IfA, Bare s/$are matrices of same order andBis a sews(mmetric matrix, show

    that BAA is sew s(mmetric.

    &. If BAAB = for an( two s/$are matrices, prove b( mathematical ind$ction that

    ( ) nnn BAAB = .

    50. )ind zyx ,, if

    =

    zyx

    zyxzy

    A20

    satisfies 1= AA .

  • 8/11/2019 3.3 Exercise

    16/47

    51. If possible, $sin' elementar( row transformations, find the inverse of the

    followin' matrices

    !i"

    323

    135

    312

    !ii"

    111

    221

    332

    !iii"

    310

    015

    102

    52. 9xpress the matrix

    21&

    211

    132

    as the s$m of a s(mmetric and a sew s(mmetric

    matrix.

    53. %onstr$ct a matrix 22= ijaA whose elements ija are 'iven b(

    jxea ixij sin2

    = .

  • 8/11/2019 3.3 Exercise

    17/47

    5&. If

    ====

    0+5

    8*&,2

    1,13&

    231,21

    32DCBA , then which of the s$ms DCCBBA +++ ,, and DB + is defined?

    55. how that a matrix which is both s(mmetric and sew s(mmetric is a -ero matrix.

    5*. If [ ] Oxx =

    803

    2132 , find the val$e ofx.

  • 8/11/2019 3.3 Exercise

    18/47

    5+. IfAis 3 3 invertible matrix, then show that for an( scalar k !non-ero", kA is

    invertible and ( ) 11 1

    = Ak

    kA .

    58. 9xpress the matrix Aas the s$m of a s(mmetric and a sew s(mmetric matrix,

    where

    =

    &21

    53+

    *&2

    A .

    5. If

    =

    321

    102

    231

    A , then show thatAsatisfies the e/$ation 0113& 23 =+ IAAA .

    *0. et

    =

    21

    32A . #hen show that 0+&2 =+ IAA . :sin' this res$lt calc$late 5A

    also.

    9val$ate, $sin' the properties of determinants

  • 8/11/2019 3.3 Exercise

    19/47

    *1.

    11

    112

    ++

    +

    xx

    xxx*2.

    zayx

    zyax

    zyxa

    +

    +

    +

    *3.

    0

    0

    0

    22

    22

    22

    zyzx

    yzyx

    xzxy

    *&.

    zzyzx

    yzyyx

    zxyxx

    3

    3

    3

    ++

    *5.

    &

    &

    &

    +

    +

    +

    xxx

    xxx

    xxx

    **.

    baccc

    bacbb

    aacba

    22

    22

    22

    :sin' the properties of determinants, prove that

    *+. 0

    22

    22

    22

    =

    +

    +

    +

    yxxyyx

    xzzxxz

    zyyzzy

    *8. xyz

    yxxy

    xxzz

    yzzy

    &=

    +

    +

    +

  • 8/11/2019 3.3 Exercise

    20/47

    *. ( ) 3

    2

    1

    133

    1212

    1122

    =++

    ++

    aaa

    aaa

    +0. If 0=++ CBA , then prove that 0

    1coscos

    cos1cos

    coscos1

    =

    AB

    AC

    BC

    .

    +1. If the coordinates of the vertices of an e/$ilateral trian'le with sides of len'th ;aone of these

    122. IfAandBare invertible matrices, then which of the followin' is not correct?

    !a" 1.

    = AAAadj !b" ( ) ( )[ ] 11 detdet = AA

    !c" ( ) 111 = ABAB !d" ( ) 111 +=+ ABBA

    123. If zyx ,, are all different from -ero and 0

    111

    111

    111

    =

    +

    +

    +

    z

    y

    x

    , then val$e of

    111 ++ zyx is

    !a" zyx !b" 111 zyx

    !c" zyx !d" 1

    12&. #he val$e of the determinant

    xyxyxyxxyx

    yxyxx

    22

    2

    ++++

    ++

    is

    !a" ( )yxx +2 !b" ( )yxy +2

    !c" ( )yxy +23 !d" ( )yxx +2+

  • 8/11/2019 3.3 Exercise

    40/47

    125. #here are two val$es of awhich maes determinant, 8*

    2&0

    12

    521

    =

    =

    a

    a , then s$m of

    these n$mber is

    !a" & !b" 5 !c" & !d"

    12*. et

    1

    1

    1

    2

    2

    2

    zCz

    yBy

    xAx

    =and

    xyzxzyzyx

    CBA

    =1, then

    !a" =1 !b" 1

    !c" 01 = !d" >one of these

    12+. If !yx , , then the determinant

    ( ) ( ) 1sincos1cossin1sincos

    yxyx

    xxxx

    ++

    = lies in the interval

    !a" [ ]2,2 !b" [ ]1,1

    !c" [ ]1,2 !d" [ ]2,1

    Fill in the blanks

    128. AAAAAAAAAAA matrix is both s(mmetric and sew s(mmetric matrix.

    12. $m of two sew s(mmetric matrices is alwa(s AAAAAAAAAAA matrix.

    130. #he ne'ative of a matrix is obtained b( m$ltipl(in' it b( AAAAAAAAAAAAAA.

    131. #he prod$ct of an( matrix b( the scalar AAAAAAAA is the n$ll matrix.

  • 8/11/2019 3.3 Exercise

    41/47

    132. matrix which is not a s/$are matrix is called a AAAAAAAAAAA matrix.

    133. 6atrix m$ltiplication is AAAAAAAAAAAAAAAA over addition.

    13&. IfAis a s(mmetric matrix, then 3A is a AAAAAAAAAAAA matrix.

    135. IfAis a sew s(mmetric matrix, then 2A is a AAAAAAAAAAAAAAA.

    13*. IfAandBare s/$are matrices of the same order, then

    !i" ( )AB B AAAAAAAAAAAAA.

    !ii" ( )kA B AAAAAAAAAAAAA. !kis an( scalar"

    !iii" ( )[ ] BAk B AAAAAAAAAAA.

    13+. IfAis sew s(mmetric, then kA is a AAAAAAAAAAAAA. !kis scalar"

    138. IfAandBare s(mmetric matrices, then

    !i" BAAB is a AAAAAAAAAAAAA.

    !ii" ABBA 2 is a AAAAAAAAAAAAA.

    13. IfAis s(mmetric matrix, then ABB is AAAAAAAAAAAAAA.

    1&0. If AandBare s(mmetric matrices of same order, then AB is s(mmetric if and

    onl( if AAAAAAAAAAAAAA.

    1&1. In appl(in' one or more row operations while findin' 1A b( elementar( row

    operations, we obtain all -eros in one or more, then 1A AAAAAAAAAAAAAA.

    1&2. IfAandBare two sew s(mmetric matrices of same order, then ABis s(mmetric

    matrix is AAAAAAAAAAA.

    1&3. IfAandBare matrices of same order, then ( ) BA 23 is e/$al to AAAAAAAAAA.

    1&&. ddition of matrices is defined if order of the matrices is AAAAAAAAAAAAA.

    1&5. IfAis a matrix of order 3 3, then A3 B AAAAAAAAAAAAAAA.

    1&*. IfA is invertible matrix of order 3 3, then1

    A AAAAAAAAAAAAAAAAAA.

  • 8/11/2019 3.3 Exercise

    42/47

    1&+. If !zyx ,, , then the val$e of determinant

    ( ) ( )( ) ( )( ) ( ) 1&&&&

    13333

    12222

    22

    22

    22

    xxxx

    xxxx

    xxxx

    +

    +

    +

    is

    e/$al to AAAAAAAAAAAAAA.

    1&8. If 02cos = , then

    2

    cos0sin

    0sincos

    sincos0

    B AAAAAAAAAAAAA.

    1&. IfAis a matrix of order 3 3, then ( ) 12 A B AAAAAAAAAAAAAA.

    150. If Ais a matrix of order 3 3, then n$mber of minors in determinant of A are

    AAAAAAAAAAAA.

    151. #he s$m of the prod$cts of elements of an( row with the cofactors of

    correspondin' elements is e/$al to AAAAAAAAAAAAAAA.

    152. If =x is a root of 0

    *+

    22

    +3

    =

    x

    x

    x

    , then other two roots are AAAAAAAAAAAA.

    153.

    0

    0

    0

    yzxz

    zyxy

    zxxyz

    B AAAAAAAAAAAAAAA.

  • 8/11/2019 3.3 Exercise

    43/47

  • 8/11/2019 3.3 Exercise

    44/47

    1*1. 6atrices of different order can not be s$btracted.

    1*2. 6atrix addition is associative as well as comm$tative.

    1*3. 6atrix m$ltiplication is comm$tative.

    1*&. s/$are matrix where ever( element is $nit( is called and identit( matrix.

    1*5. IfAandBare two s/$are matrices of the same order, then ABBA +=+ .

    1**. IfAandBare two matrices of the same order, then ABBA = .

    1*+. If matrix OAB = , then OA = or OB = or bothAandBare n$ll matrices.

    1*8. #ranspose of a col$mn matrix is a col$mn matrix.

    1*. IfAandBare two s/$are matrices of the same order, then BAAB = .

    1+0. If each of the three matrices of the same order are s(mmetric, then their s$m is a

    s(mmetric matrix.

    1+1. IfAandBare an( two matrices of the same order, then ( ) BAAB = .

    1+2. If ( ) ABAB = , whereAandBare not s/$are matrices, then n$mber of rows in A

    is e/$al to n$mber of col$mns in B and n$mber of col$mns in A is e/$al to

    n$mber of rows inB.

    1+3. If A, Band Care s/$are matrices of same order, then ACAB = alwa(s implies

    that CB = .

    1+&. AA is alwa(s a s(mmetric matrix for an( matrixA.

    1+5. If

    =

    2&1

    132A and

    =

    12

    5&

    32

    B , thenABandBAare defined and e/$al.

    1+*. IfAis sew s(mmetric matrix, then 2A is a s(mmetric matrix.

    1++. ( ) 111

    . = BAAB , where A and B are invertible matrices satisf(in'

    comm$tative propert( with respect to m$ltiplication.

    1+8. If two matricesAandBare of the same order, then ABBA 22 +=+ .

    1+. 6atrix s$btraction is associative.

    180. )or the non sin'$lar matrix ( ) ( )= 11, AAA .

  • 8/11/2019 3.3 Exercise

    45/47

    181. CBACAB == for an( three matrices of same order.

    182. ( ) ( ) 3113 = AA , whereAis a s/$are matrix and 0A .

    183. ( ) 11 1

    = Aa

    aA , where ais an( real n$mber andAis a s/$are matrix.

    18&. 11 AA , whereAis nonsin'$lar matrix.

    185. If A and B are matrices of order 3 and 3,5 == BA , then

    &05352+3 ==AB .

    18*. If the val$e of a third order determinant is 12, then the val$e of the determinant

    formed b( replacin' each element b( its cofactor will be 1&&.

    18+. 0

    &3

    32

    21

    =

    +++

    +++

    +++

    cxxx

    bxxx

    axxx

    , then where cba ,, are in ..

    188. 2

    . AAadj = , whereAis s/$are matrix of order two.

    18. #he determinant

    BCAC

    BBAB

    BAAA

    cossincossin

    cossincossin

    cossincossin

    ++

    +

    is e/$al to -ero.

    10. If the determinant

    $nwrcz

    %&qby

    #'(pax

    +++

    +++

    +++

    splits into exactl( ) determinants of

    order 3, each element of which contains onl( one term, then the val$e of) is 8.

  • 8/11/2019 3.3 Exercise

    46/47

    11. et 1*==

    zrc

    yqb

    xpa

    , then 321

    =

    +++

    +++

    +++

    =

    rczczr

    qbybyq

    paxaxp

    .

    12. #he maxim$m val$e of

    cos111

    1"sin1!1

    111

    +

    + is2

    1.

    13. #he determinant

    ( ) ( )

    yxx

    yxx

    yyxyx

    cossincos

    sincossin

    2cossincos

    ++

    = is dependent ofxonl(.

    1&. #he val$e of

    2

    &

    2

    2

    2

    1

    &

    1

    2

    1

    111

    CCC

    CCC

    nnn

    nnn

    ++

    ++is 8.

  • 8/11/2019 3.3 Exercise

    47/47

    15. If

    =

    z

    y

    x

    A

    11

    32

    25

    , 201023,80 =++= zyxxyz , then

    =

    8100

    0810

    0081

    .AadjA .

    1*. If

    =

    =

    2

    1

    2

    1

    2

    33

    2

    1

    2

    5&

    2

    1

    ,

    132

    21

    310

    1

    y

    AxA thenxB 1,yB 1.