9
3.3 Divided Differences 1

3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

3.3 Divided Differences

1

Page 2: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Representing 𝑛th Lagrange Polynomial

• If 𝑃𝑛 𝑥 is the 𝑛th degree Lagrange interpolating polynomial that agrees with 𝑓 𝑥 at the points {𝑥0, 𝑥1, … , 𝑥𝑛}, express 𝑃𝑛 𝑥 in the form: 𝑃𝑛 𝑥 =𝑎0 + 𝑎1 𝑥 − 𝑥0 + 𝑎2 𝑥 − 𝑥0 𝑥 − 𝑥1 +⋯+𝑎𝑛 𝑥 − 𝑥0 𝑥 − 𝑥1 𝑥 − 𝑥2 … 𝑥 − 𝑥𝑛−1

• ? How to find constants 𝑎0,…, 𝑎𝑛?

2

Page 3: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Divided Differences

• Zeroth divided difference: 𝑓 𝑥𝑖 = 𝑓(𝑥𝑖)

• First divided difference:

𝑓 𝑥𝑖 , 𝑥𝑖+1 =𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖𝑥𝑖+1 − 𝑥𝑖

• Second divided difference:

𝑓 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2 =𝑓 𝑥𝑖+1, 𝑥𝑖+2 − 𝑓 𝑥𝑖 , 𝑥𝑖+1

𝑥𝑖+2 − 𝑥𝑖

• 𝑘th divided difference: 𝑓 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘

=𝑓 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑘 − 𝑓 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘−1

𝑥𝑖+𝑘 − 𝑥𝑖

3

Page 4: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

• Finding constants 𝑎0,…, 𝑎𝑛.

1. 𝑥 = 𝑥0: 𝑎0 = 𝑃𝑛 𝑥0 = 𝑓 𝑥0 = 𝑓 𝑥0

2. 𝑥 = 𝑥1: 𝑓 𝑥0 + 𝑎1 𝑥1 − 𝑥0 = 𝑃𝑛 𝑥1 =𝑓 𝑥1

⟹ 𝑎1 =𝑓 𝑥1 − 𝑓 𝑥0𝑥1 − 𝑥0

= 𝑓 𝑥0, 𝑥1

3. In general: 𝑎𝑘 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑘 for 𝑘 = 0,… , 𝑛

4

Page 5: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Newton’s Interpolatory Divided Difference Formula

𝑃𝑛 𝑥= 𝑓 𝑥0 + 𝑓 𝑥0, 𝑥1 𝑥 − 𝑥0+ 𝑓 𝑥0, 𝑥1, 𝑥2 𝑥 − 𝑥0 𝑥 − 𝑥1 +⋯+ 𝑓 𝑥0, … , 𝑥𝑛 𝑥 − 𝑥0 𝑥 − 𝑥1 …(𝑥 − 𝑥𝑛−1)

Or 𝑃𝑛 𝑥= 𝑓 𝑥0

+ [𝑓[𝑥0, … , 𝑥𝑘] 𝑥 − 𝑥0 …(𝑥 − 𝑥𝑘−1)]

𝑛

𝑘=1

5

Page 6: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Table for Computing

6

Page 7: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Algorithm: Newton’s Divided Differences

Input: 𝑥0, 𝑓 𝑥0 , 𝑥1, 𝑓 𝑥1 , … , 𝑥𝑛, 𝑓 𝑥𝑛 Output: Divided differences 𝐹0,0, … , 𝐹𝑛,𝑛 //comment: 𝑃𝑛 𝑥 = 𝐹0,0 + [𝐹𝑖,𝑖 𝑥 − 𝑥0 …(𝑥 − 𝑥𝑖−1)]

𝑛𝑖=1

Step 1: For 𝑖 = 0,… , 𝑛 set 𝐹𝑖,0 = 𝑓(𝑥𝑖) Step 2: For 𝑖 = 1,… , 𝑛 For 𝑗 = 1,… , 𝑖

set 𝐹𝑖,𝑗 =𝐹𝑖,𝑗−1−𝐹𝑖−1,𝑗−1

𝑥𝑖−𝑥𝑖−𝑗

End End Output(𝐹0,0,…𝐹𝑖,𝑖,…,𝐹𝑛,𝑛) STOP. 7

Page 8: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Theorem. Suppose that 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏] and 𝑥0, 𝑥1, … , 𝑥𝑛 are distinct numbers in [𝑎, 𝑏]. Then

∃𝜉 ∈ 𝑎, 𝑏 with 𝑓 𝑥0, … , 𝑥𝑛 =𝑓 𝑛 (𝜉)

𝑛!.

Remark: When 𝑛 = 1, it’s just the Mean Value Theorem.

8

Page 9: 3.3 Divided Differenceszxu2/acms40390F12/Lec-3.3.pdf · 3.3 Divided Differences 1 . Representing 𝑛th Lagrange Polynomial •If

Example. 1) Complete the following divided difference table. 2) Find the interpolating polynomial.

9