31-bridgedesign (1)

Embed Size (px)

Citation preview

  • 8/3/2019 31-bridgedesign (1)

    1/67

    1

    Part 1

    Introduction To Bridge Design

  • 8/3/2019 31-bridgedesign (1)

    2/67

    2

    How Do Bridge Engineers Decide

    On What Type Of Bridge To Build?

    Bridge Survey flood plain cross sections

    inspection reports

    existing bridge (scour, etc)

    water elevations

    photos

    existing roadway profile

    Geotechnical Report

    soil / geological formations

    slopes and grading

    foundation problemssoil prop.s - phi angles etc

    Factors affecting choice of superstructure location, city or rural

    span length

    vertical clearance

    maintainability

    environmental concerns transportation to site issues

    cost

    Factors affecting choice of substructure

    location and geometry

    subsoil conditions

    height of column

  • 8/3/2019 31-bridgedesign (1)

    3/67

    3

    Bridge Design Process

    Preliminary Design Process

    Bridge Survey Geotechnical Report

    1. Determine the most

    economical type structure and

    span arrangement

    2. Hydraulic Analysis3. Preliminary Cost Estimate

    4. Foundation Borings

    5. Determine Foundation Type

    Final Design Process

    Top to Bottom Design (twice) Design methods per AASHTO and

    MoDOT Bridge Manual

    Analysis via

    computations

    spreadsheetscomputer programs

    Detail plans are produced by technicians

    (Micro-Station)

    Plans are checked

    Quantities computed

    Special Provisions written

    Plans are advertised for bidding

    Low Bid Contractor builds the bridge

  • 8/3/2019 31-bridgedesign (1)

    4/67

    4

    Types of Superstructures

    Bridges are often referred to by their superstructure types.

    The superstructure system of members carry the roadway over a crossing

    and transfer load to a substructure.

    Superstructures are categorized by;

    Support type (simply supported or continuous)

    Design type (slab on stringer, slab, arch. Rigid frame, etc) Material type (steel, concrete, timber)

  • 8/3/2019 31-bridgedesign (1)

    5/67

    5

    Slab on Stringer Bridges

    Most common type of bridge in Missouri. Consist of a deck, resting on the girders. The deck distributes the

    loads transversely to the girders.

    The girders carry the loads longitudinally (down the length of the

    bridge) to the supports, (abutments and intermediate bents).

    Concrete

    Deck Girder

    Prestressed I Girder Prestressed Double Tee

    Prestressed Box

    Steel

    Plate Girder

    Wide Flange

    Steel Box Girder

  • 8/3/2019 31-bridgedesign (1)

    6/67

    6

    I - GIRDER

    BULB TEE

    Prestressed Girders

  • 8/3/2019 31-bridgedesign (1)

    7/67

    7

    Prestressed Concrete I-Girder

  • 8/3/2019 31-bridgedesign (1)

    8/67

    8

    Prestressed Concrete I-Girder Bridge

  • 8/3/2019 31-bridgedesign (1)

    9/67

    9

    Prestressed Concrete Panels

  • 8/3/2019 31-bridgedesign (1)

    10/67

    10

    Prestressed Double Tee Girders

  • 8/3/2019 31-bridgedesign (1)

    11/67

    11

    Steel Plate Girder / Wide Flange Beam / Box Beam

  • 8/3/2019 31-bridgedesign (1)

    12/67

    12

    Steel Plate Girder Bridge

  • 8/3/2019 31-bridgedesign (1)

    13/67

    13

    Slab Bridges

    In slab bridges the deck itself is the structural frame or the entire deck is a thin

    beam acting entirely as one primary member. These types are used wheredepth of structure is a critical factor.

    Typical Slab Bridges : Concrete Box Culverts Solid Slabs Voided Slabs

  • 8/3/2019 31-bridgedesign (1)

    14/67

    14Box Culvert

    Triple Box Culvert

  • 8/3/2019 31-bridgedesign (1)

    15/67

    15

    Voided Slab Bridge

  • 8/3/2019 31-bridgedesign (1)

    16/67

    16

    Solid Slab

    Voided Slab Bridge

  • 8/3/2019 31-bridgedesign (1)

    17/67

    17

    Substructures

    The substructure transfers the superstructure loads to the foundations.

    End Abutments

    Integral Abutment - girders on beam supported by piles, girders concreted into the

    diaphragm

    Non-Integral Abutment - diaphragms of steel cross-frames, uses expansion devices

    Semi-Deep Abutment - used when spanning divided highways to help shorten span

    Open C.C. Abutment - beam supported by columns and footings, rarely used

    Intermediate bents

    Open Concrete Bent - beams supported by columns and footings (or drilled shafts)

    either a concrete diaphragm (Pre-Stressed Girder) or steel diaphragm (Plate Girder)

    This is the most common type of Pier MoDOT uses.

    Pile Cap Bent - beams supported by piling (HP or C.I.P.) and are used when the

    column height is less than 15 feet and usually in rural areas. Hammer Head Bent - single oval or rectangular column and footing.

    Spread footings - are used when rock or soil can support the structure.

    Pile footings - rectangular c.c. supported by HP or Cast in Place piles

    Drilled Shafts - holes drilled into bedrock filled with concrete

  • 8/3/2019 31-bridgedesign (1)

    18/67

    18

    Integral End Abutment

  • 8/3/2019 31-bridgedesign (1)

    19/67

    19

    Semi-Deep End Abutment

  • 8/3/2019 31-bridgedesign (1)

    20/67

    20

    Prestressed I-girder intermediate bent

  • 8/3/2019 31-bridgedesign (1)

    21/67

    21

    Steel girders with open intermediate

    bent diaphragms

  • 8/3/2019 31-bridgedesign (1)

    22/67

    22

    Footing

    Pile Cap Column Footing

  • 8/3/2019 31-bridgedesign (1)

    23/67

    23

    Column Footing

  • 8/3/2019 31-bridgedesign (1)

    24/67

    24

    Preliminary Design

    Bridge location

    Hydraulic design to determine required

    bridge length and profile grade

    Bridge type selection

  • 8/3/2019 31-bridgedesign (1)

    25/67

    25

    Stream Gage Data

  • 8/3/2019 31-bridgedesign (1)

    26/67

    26

    Flood-Frequency Rating Curve

    0

    40000

    80000

    120000

    160000

    0 20 40 60 80 100

    Return period (years)

    Discharge(cfs)

  • 8/3/2019 31-bridgedesign (1)

    27/67

    27

    Q = discharge (cfs or m3/s)

    kc = constant (1.0 for English units or0.00278 for metric units)

    C= Runoff Coefficient

    I= Rainfall Intensity (in/hr or mm/hr)

    A = Drainage Area (acres or hectares)

    Rational Method

    AICkQc

  • 8/3/2019 31-bridgedesign (1)

    28/67

    28

    Drainage Area Delineation

  • 8/3/2019 31-bridgedesign (1)

    29/67

    29

    n1 n2 n3

    LeftOverbank

    RightOverbank

    Channel

    Stream Valley Cross-sections

  • 8/3/2019 31-bridgedesign (1)

    30/67

    30

    Mannings Equation

    0

    32486.1

    SRAn

    Q

    n = Roughness Coefficient

    A = Area

    R = Hydraulic Radius = A / P

    P = Wetted Perimeter

    S = Hydraulic Gradient (channel slope)

  • 8/3/2019 31-bridgedesign (1)

    31/67

    31

    n1 n2 n3

    LeftOverbank

    RightOverbank

    Channel

    Stream Valley Cross-sections

  • 8/3/2019 31-bridgedesign (1)

    32/67

    32

    Energy Equation

    Elevation

    1 2

    Datum

    Elevation

    Pressure

    Pressure

    Velocity

    Velocity

    HeadlossEGL

    HGL

    z1

    z2

    y1

    y2

    V12/2g

    V22/2g

    hl

    lhg

    Vyz

    g

    Vyz

    22

    2

    2

    22

    2

    1

    11

  • 8/3/2019 31-bridgedesign (1)

    33/67

    33

    Constriction of Valley by Bridge

    Opening Length

    Bridge Deck/Roadway

  • 8/3/2019 31-bridgedesign (1)

    34/67

    34

    Encroachment by Roadway Fill

    Flood elevationbefore encroachmenton floodplain

    Fill Fill

    Bridge Opening Encroachment

    Backwater

    Encroachment

  • 8/3/2019 31-bridgedesign (1)

    35/67

    35

    Backwater

    Normal WaterSurface

    Water Surface through Structure

    Affect of Bridge on Flood

    ElevationsDesign High WaterSurface (DHW)

  • 8/3/2019 31-bridgedesign (1)

    36/67

    36

    Part 2

    Slab Design

  • 8/3/2019 31-bridgedesign (1)

    37/67

    37

    Geometry & Loads

    16k 16k

    Deck Weight = Width x Thickness x Unit Weight

    1 ft x (8.5in x12 in/ft) x 150 lb/cf = 106 lb/ft

  • 8/3/2019 31-bridgedesign (1)

    38/67

    38

  • 8/3/2019 31-bridgedesign (1)

    39/67

    39

  • 8/3/2019 31-bridgedesign (1)

    40/67

    40

    Design Moment

    MDL1 = wS2/10 = 0.106 x 82/ 10 = 0.678

    MDL2 = wS2/10 = 0.035 x 82/ 10 = 0.224

    MLL = 0.8(S+2)P/32 = 0.8(8+2)(16)/32 = 4

    MImp = 30% x MLL = 1.2

    Mu

    = 1.3[0.678+0.224+1.67(4+1.2)] = 12.4

    Design For 12.4 k-ft/ft

  • 8/3/2019 31-bridgedesign (1)

    41/67

    41

    Statics, Moment, Shear, Stress?

  • 8/3/2019 31-bridgedesign (1)

    42/67

    42

    Reinforced Concrete Design

    Basic Equations For Moment Utilize Whitney

    Stress Block Concept

    Design Moment = Capacity

    12.4 k-ft/ft = fAsfy(d-a/2) f= 0.90

    Compression = Tension

    0.85fcba = Asfy

    Two Simultaneous Equations, Two Unknowns (a & As)

    d

    c

    Comp.

    Tens.

    c = a /b1

  • 8/3/2019 31-bridgedesign (1)

    43/67

    43

    Reinforced Concrete Design

    (0.85)(4ksi)(12in)(a)=(As)(60ksi) a=1.47As

    12.4k-ft=(0.9)(As)(60ksi)(6in-1.47As/2)/(12in/ft)

    12.4=27As-3.31As2

    ax2+bx+c=0 a=3.31, b=-27, c=12.4, x=As

    As = [-b - (b2 - 4ac)1/2]/2a

    As = [-27 - ((-27)2-(4)(3.31)(12.4))1/2]/[(2)(3.31)]

    As = 0.49 in2/ft

    5/8 rebar at 7.5 in centersd

    c

    Comp.

    Tens.

    c = a /b1

  • 8/3/2019 31-bridgedesign (1)

    44/67

    44

    Part 3

    Steel Beam Design

  • 8/3/2019 31-bridgedesign (1)

    45/67

    45

    Simple Span Beam50 ft span

  • 8/3/2019 31-bridgedesign (1)

    46/67

    46

    Dead Load = Beam Weight + Deck Weight

  • 8/3/2019 31-bridgedesign (1)

    47/67

    47

    Live Load = HS20 Truck x Distribution Factor

    Distribution Factor = S/5.5

  • 8/3/2019 31-bridgedesign (1)

    48/67

    48

    Design Moment = 2358 kip-ft

  • 8/3/2019 31-bridgedesign (1)

    49/67

    49

    Design Shear = 214 kips

    S l Gi d D i

  • 8/3/2019 31-bridgedesign (1)

    50/67

    50

    Steel Girder Design Design Moment = 2358 k-ft

    Design Shear = 214 kips

    Limit Bending Stress

    Due To Moment

    Limit Shear Stress

    Due to Shear

  • 8/3/2019 31-bridgedesign (1)

    51/67

    51

    Gi d D i

  • 8/3/2019 31-bridgedesign (1)

    52/67

    52

    Girder Design

    Moment Of Inertia (I)

    1/12bh3+Ad2

    Parallel Axis Theorem

    Section Modulus = S = I/c

    Stress = Moment/Section Modulus (M/S)

    For Strength DesignLimit Stress to Fy

    Find Shape With S > M/Fy

    S > (2358k-ft)(12in/ft)/50ksi = 566 in3

    A W36x170 Provides 580 in3

  • 8/3/2019 31-bridgedesign (1)

    53/67

    53

    Part 4

    Intermediate Bent Design

  • 8/3/2019 31-bridgedesign (1)

    54/67

    54

    Load Cases

    Permanent Loads:

    DD = Downdrag

    DC = Dead LoadComponent

    DW = Dead Load

    Wearing Surface

    EH = Horizontal Earth ES = Earth Surcharge

    EV = Vertical Earth

    EL = Locked In Forces

    Transient Loads:

    SE = Settlement

    BR = Braking CE = Centrifugal Force

    CT = Vehicular

    Collision

    CV = Vessel Collision EQ = Earthquake

    IC = Ice Load

    FR = Friction

  • 8/3/2019 31-bridgedesign (1)

    55/67

    55

    Load Cases (Cont.)

    Transient Loads:

    LL = Live Load

    IM = Dynamic Load LS = Live Load

    Surcharge

    PL = Pedestrian Load

    WL = Wind On LiveLoad

    WS = Wind On

    Structure

    Transient Loads:

    TG = Temperature

    Gradient

    TU = Uniform

    Temperature

    CR = Creep

    SH = Shrinkage WA = Water Load

  • 8/3/2019 31-bridgedesign (1)

    56/67

    56

    Load Combinations

    Load Combination

    Limit State

    DC

    DD

    DW

    EH

    EV

    ES

    EL

    LL

    IM

    CE

    BR

    PL

    LS WA WS WL FR

    TU

    CR

    SH TG SE

    Use One of These at a Time

    EQ IC CT CV

    STRENGTH I

    (unless noted)gp 1.75 1.00 -- -- 1.00 0.50/1.20 gTG gSE -- -- -- --

    STRENGTH II gp 1.35 1.00 -- -- 1.00 0.50/1.20 gTG gSE -- -- -- --STRENGTH III gp -- 1.00 1.40 -- 1.00 0.50/1.20 gTG gSE -- -- -- --STRENGTH IV gp -- 1.00 -- -- 1.00 0.50/1.20 -- -- -- -- -- --STRENGTH V gp 1.35 1.00 0.40 1.0 1.00 0.50/1.20 gTG gSE -- -- -- --EXTREME EVENT I gp gEQ 1.00 -- -- 1.00 -- -- -- 1.00 -- -- --EXTREME EVENT II gp 0.50 1.00 -- -- 1.00 -- -- -- -- 1.00 1.00 1.00SERVICE I 1.00 1.00 1.00 0.30 1.0 1.00 0.50/1.20 gTG gSE -- -- -- --SERVICE II 1.00 1.30 1.00 -- -- 1.00 0.50/1.20 -- -- -- -- -- --

    SERVICE III 1.00 0.80 1.00 -- -- 1.00 0.50/1.20 gTG gSE -- -- -- --SERVIE IV 1.00 -- 1.00 0.70 -- 1.00 0.50/1.20 -- 1.0 -- -- -- --

    FATIGUELL, IM &

    CE ONLY-- 0.75 -- -- -- -- -- -- -- -- -- -- --

  • 8/3/2019 31-bridgedesign (1)

    57/67

    57

    Water (WA)Strength

    M = (Pbh)(h)= Pbh2

    h

    Resultant

    P

    ContractionS

    cour

    100year

    PierSco

    ur

    100yea

    r

    Q100

    b

    M

  • 8/3/2019 31-bridgedesign (1)

    58/67

    58

    Water (WA) - Extreme Event

    (Cont.)

    (b)1000

    0.7VForce2

    ContractionScou

    r

    500year

    PierScour

    500year

    Q500

    b

    B

    A (B)1000

    0.5VForce2

    A = Of Water Depth 10

    B = Sum Of Adjacent Span Length 45

    Drift Mat

    Pressure = CDV2/1000

    CD=0.7

    CD=0.5

  • 8/3/2019 31-bridgedesign (1)

    59/67

    59

    Wind on Structure (WS)

    P(WS)Vert.

    W

    W

    P(WS)Trans. HH

    P(WS)Long.

    PSub.

    PVert. = (20psf)(W)(L)PTrans. = (50psf)(H)(L)

    PLong. = (12psf)(H)(LT)(%)

    PSub. = (40psf)(b)

    L = Tributary Length

    LT = Total Bridge Length

    % = Long. Distribution %

    b = Column Or Cap Width

  • 8/3/2019 31-bridgedesign (1)

    60/67

    60

    Wind on Live Load (WL)PTrans. = (100plf)(L)

    PLong. = (40plf)(LT)(%)

    L = Tributary Length

    LT = Total Bridge Length

    % = Long. Distribution %

    P(WL)Trans.P(WL)Long.

    6

  • 8/3/2019 31-bridgedesign (1)

    61/67

    61

    Int. Bent Analysis

  • 8/3/2019 31-bridgedesign (1)

    62/67

    62

    Cap Beam - Strength Limit State

    Basic Equations For Moment Utilize Whitney

    Stress Block Concept

    fMn

    = fAs

    fy

    (d-a/2)

    f= 0.90

    de

    c

    Comp.

    Tens.

    c = a /b1

  • 8/3/2019 31-bridgedesign (1)

    63/67

    63

    Cap BeamService Limit State Crack Control

    dc = Concrete Cover To Center Of Closest Bar fs = Service Tensile Stress In Reinforcement

    h = Overall Section Thickness

    ge= 1.00 For Class 1 Exposure (Crack Width = 0.017)= 0.75 For Class 2 Exposure (Crack Width = 0.013)

    )d0.7(h

    d1

    c

    cs

    2dc700sss

    e f

    g

  • 8/3/2019 31-bridgedesign (1)

    64/67

    64

    Cap Beam Service Limit State

    Crack Control Is Based On A Physical Model

    x

    h dc

    fc1

    fc2

    fs/n

    l lCrackSpacing

    Primary TensionReinforcement

    fc1

    fc2

    fs/n

    fc1

    fc2

    fs/n

    l= =16.03

    s s

    22c2

    sd2

    dc

  • 8/3/2019 31-bridgedesign (1)

    65/67

    65

    Simplified Shear Design

    LRFD

    fVn = f(Vc + Vs + Vp)(kips) f= 0.90

    a Set At 90 Set: b=2.0, q =45

    Results In:

    vvcc db'0.0316V f s

    )sincot(cotdA

    Vvyv

    s

    a

    f

    LbsToConvertTo1000ByMultiply V c

    vvcc db'2.00V fs

    dAV

    vyv

    s

    f

    0.0

    Si lif d Sh i

  • 8/3/2019 31-bridgedesign (1)

    66/67

    66

    Simplifed Shear Design

    Section A-A

    5-#6s

    (E

    achFace)

    6 - #9s

    6 - #9s

    #5s @

    12 or 6A

    A

    -400

    -200

    0

    200

    400

  • 8/3/2019 31-bridgedesign (1)

    67/67

    Column Design

    Column42 Diameter

    -1000

    3500P (kip)

    (P max)

    (P min)

    1800

    M (k-ft)

    Controlling Point

    Axial Load Moment Interaction Diagram

    18-#9 Bars