19
PREDICTIVE RELIABILITY ASSESSMENT OF A DCDC CONVERTER USING FIDES HANDBOOK Sid-Hamed Houalef, Amélie THIONVILLE & Philippe POUGNET (Valeo)

3-Predictive Reliability Assessment

Embed Size (px)

Citation preview

  • PREDICTIVE RELIABILITY ASSESSMENT OF A DCDC CONVERTER USING FIDES

    HANDBOOK

    Sid-Hamed Houalef, Amlie THIONVILLE & Philippe POUGNET (Valeo)

  • AGENDA

    Demonstrator: Reliability target

    Mission profile & Hypotheses

    Results

    Comparison with predictive reliability results based on

    RDF 2000 handbook

    Conclusion

  • Demonstrator : DC-DC converter

    Converts power (2kW)

    from the 24 V network to14V network (buck mode)

    From the 14 V network(battery) to the 24 Vnetwork (boost mode)

    Converter

    Wakeup

    Network 24 V

    Network 14 V

    CAN BusBattery voltage

    & currentmeasurements

  • T carter

    IMS

    Board

    Board FR4

    ambiant T

    DCDC converter

    Reliability target: B10 15 years

  • DCDC Converter Predictive Reliability

    Hypotheses:

    Components failure law: exponential

    Fabrication process and component fabrication process under control

    Thermal conditions

    Ambiant under hood temperature defined by the customer

    The Carter temperature is measured through testing currents [160,140 A]

    The carter temperature is the ambiant temperature of the two boards

    Two functions considered: Buck & Boost

    Steps:

    Mission profile

    Components

    Applied loads (condensers and resistors)

    Component junction temperature (active discrete components)

    Audit manufacturing (Automotive Quality)

    Audit induit (quality of the assembly design rules-)

  • DC-DC CONVERTER MISSION PROFILE

    Average daily use

    Nombres de cycles/jour

    Dure en minute Nombre de cycles et dure en hiver

    Nombre de cycles et dure en I-S

    Nombre de cycles et dure en t

    1 46 min 67 51h 168 128h 101 77h 1 25 min 67 28h 168 128h 101 77h 4 13 min 268 55h 670 137h 402 82h

    Functioning Thermal Cycles

    Temprature Hiver Printemps- automne (Intersaison)

    t

    T ambiante externe -10C 15C 30C

    T ambiante moteur 30C 70C 85C

    Tcyclage 25C 25C 25C

    T carter=Tmax Cyclage 55C 95C 110C

  • MISSION PROFILE

    Tcarter

    T

    Tamb cycles

    Carter Temperature is the temperature near the electronic

    components

    Thermal Cycle

  • Mission profile

    DC DC converter

    THERMIQUE CYCLAGE THERMIQUE HUMIDITE MECANIQUE CHIMIQUE

    PHASE On / Off tannuel-phase Tambiante Tcyclage cy Ncy-annuel Tmax-Cycalge RHstockage-

    carte GRMS-phase Pollution saline

    Pollution artificielle

    Zone d'application

    Niveau de protection

    garage t Off 2 427 30 - - - - 70 - Faible Zone urbaine Moteur Hermtiquegarage I-S Off 4 045 15 - - - - 70 - Faible Zone urbaine Moteur Hermtiquegarage hiver Off 1 618 - 10 - - - - 70 - Faible Zone urbaine Moteur Hermtiquecycle de nuit t On 77 85 25,00 0,77 101 110 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle de nuit I-S On 128 70 25,00 0,77 168 95 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle de nuit hiver On 51 30 25,00 0,77 67 55 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle matin t On 42 85 25,00 0,42 101 110 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle matin I-S On 70 70 25,00 0,42 168 95 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle matin hiver On 28 30 25,00 0,42 67 55 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle en journe t On 82 85 25,00 0,21 402 110 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle en journe t On 137 70 25,00 0,21 670 95 70 0,10 Faible Zone urbaine Moteur Hermtiquecycle en journe t On 55 30 25,00 0,21 268 55 70 0,10 Faible Zone urbaine Moteur Hermtique

    Somme (1an = 8760 h) ===> 8 760

    The mission profile is described by i phases parking (off) Driving on a road Traffic jam

  • Failure rate of a component (FIDES)1. for each component and each phase i of the mission profie Fides calculates a

    predictive failure rate

    induit

    TCyt h r mi q u e

    l ec t r i que

    mcani que humi di t chi mi que

    Temperature

    Thermal cycles

    Electrical

    Humidity

    Chemical

    vibrations

    factor depending on the position of the component on the circuit and on the respect of standard assembly procedures

    TCythrmique

    lectrique

    mcaniquehumiditchimique

    iinduitRHRHMcaMBrazjoTCyjoinTCy

    TCyBoitierTCyBoitthermiqueth

    phases

    i

    annueli

    phases

    iphysique

    t

    +++

    +==

    )

    ()8760

    (

    int

  • Failure rate of an equipment (FIDES)

    +=

    composants cartescartescomposantsquipement

    processingmanufacturpartphysiquecomponent = _

    2. Predictive failure rate for each component (Fides takes in account the processfactor and a quality audit factor)

    3. Predicitive failure rate of the equipment

  • Results

    CARTE SMI CARTE FR4

    6000

    CONVERTISSEUR DC/DC

    DEFAILLANCES EN FIT 127 515 685

    CONNECTEURS BONDINGS

    42

    4511 368DEFAILLANCES EN PPM/an 1113

    DC DC Converter Failure rate (FIDES)

  • Critical components of the Power boardPareto taux de dfaillance lev par composant sur la carte SMI

    0

    0,5

    1

    1,5

    2

    2,5

    3

    capa

    p14+

    x Fil

    tr

    2200

    F

    polar

    is

    50V

    capa

    amor

    tisse

    men

    t 820

    F

    polar

    is

    50V

    induc

    tance

    Buck

    Boos

    t 14

    H

    Induc

    tance

    p14+

    x 40

    7nH

    induc

    tance

    p14 4

    07nH

    capa

    non

    polar

    is

    amor

    tisse

    men

    t 680

    F

    35V

    SHUN

    T 0.1m

    5%

    3W

    RES.S

    HUNT

    BVS

    0,002

    OHM

    1%

    3W

    PLAG

    E BRA

    SURE

    capa

    d'am

    ortis

    sem

    ent p

    r ch

    arge

    820

    F 50V

    TRAN

    S.MOS

    FET-N

    .CM

    S 40V

    1.5m

    OHM

    180A

    TO26

    3-7

    TRAN

    S.MOS

    FET-N

    .CM

    S 40V

    1.5m

    OHM

    180A

    TO26

    3-7

    RES.1

    206 1

    60OH

    M 1%

    250m

    W 10

    0PPM

    TRAN

    S.MOS

    FET-N

    .CM

    S 40V

    120A

    TO26

    3

    TRAN

    S.MOS

    FET-N

    .CM

    S 40

    V 120

    A TO2

    63

    CER

    4.7uF

    10%

    50V X

    7R

    Type composant

    L

    a

    m

    b

    d

    a

    e

    n

    F

    I

    T

    Taux de dfaillance par composant

  • Critical components of the command boardPareto Taux de dfaillance lev par composant sur la carte FR4

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    LP

    CURR

    ENT-M

    ODE P

    WM

    CTRL

    UCC2

    803 S

    O8

    LIN.CM

    P SO1

    4 T4 x

    4 36V

    2901

    LIN.CM

    P SO8

    T4

    x2

    36V 2

    903

    RES.2

    512 1

    OHM

    5%

    1W

    -

    200/+

    850P

    PM

    RES 3

    0R

    1%

    500m

    W TF

    400p

    pm

    TRAN

    SFO

    FLYB

    ACK 1

    04uH

    10%

    EV15

    P=6.8

    W

    RES.C

    ER

    0603

    T5

    13K0

    1%

    0W

    IC DR

    V MOS

    HBDG

    IRS2

    110S

    SO16

    TRAN

    N-CH

    AN

    SMAR

    T LOW

    -

    SIDE

    RES.0

    805 4

    ,7KOH

    M 5%

    125m

    W

    COND

    .06

    03

    X7R

    33NF

    10%

    16V

    COND

    .12

    06

    X7R

    100N

    F 10%

    50V

    RES.1

    206 1

    00OH

    M 5%

    250m

    W

    RES.1

    206 6

    ,8KOH

    M 5%

    250m

    W 20

    0PPM

    COND

    .08

    05

    X7R

    150n

    F 5%

    16V

    CAP A

    LUM

    220u

    F 20%

    25V

    PCB

    COMM

    ANDE

    DCDC

    STAR

    S+X P

    ROTO

    RES.C

    MS

    1210

    2,2KO

    HM

    5%

    0,25W

    200P

    PM

    BDE

    Type composant

    L

    a

    m

    b

    d

    a

    e

    n

    F

    I

    T

    Taux de dfaillance par composant

  • Reliability target: B10

    Comparison objective / FIDES assessment

    ObjectifRf [2]

    B10 129648h 15 ans 370000 km 10% 100000PPM 7113PPM 812FIT 6000PPM 685 FIT

    Calcul FIDES En FIT

    Dfaillance PPM/15ans

    Dfaillance en PPM/an

    Dfaillance en FIT

    Calcul FIDES en PPM/an

    Temps calendaire Nombre d'anne

    Kilomtrage effectuer

    % De dfaillances

    A 15% marginFonction Faillure F

    0,00

    0,01

    0,10

    1,00

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105Dure de vie du DC-DC en anne calendaire

    F

    (

    l

    a

    m

    b

    d

    a

    )

    F(l)B10F(l)FIDES

  • Effect of thermal cycles amplitude on life time

    FIDES MTBF / MTBF target (1.314 106 h) in function of Tcyclageamplitude

    MTBF fides / MTBFobjectif

    28,10 25,2021,20

    16,32

    11,35

    7,23

    4,33,38

    2,44

    1,73

    1,19

    0,48

    0,25

    0,14

    0,95

    0

    1

    10

    100

    -60 -50 -40 -30 -20 -10 0 10 15 20 25 30 40 50 60

    Delta T (C)

    r

    a

    t

    i

    o

    d

    u

    r

    e

    d

    e

    v

    i

    e

    M

    T

    B

    F

    /

    M

    T

    B

    F

    (

    c

    i

    b

    l

    e

    )

  • Comparison FIDES / RDF 2000

    SMI Powerboard, FR4 command board and DCDC converter

    OBJECTIFS CLIENT

    RATIO RATIO RATIO

    Carte Carte Carte Carte SMI FR4 DC-DCSMI FR 4 SMI FR 4 RDF/FIDES RDF/FIDES RDF/FIDES

    Dfaillances en

    FIT/1E-9H 127 515 685 954 1798 2752 812 FIT

    Dfaillances 8 3 4En PPM 1113 4511 6000 8357 15750 24108 7113 ppm

    DC-DC

    CALCUL FIDES CALCUL RDF 2000

    DC-DC DC-DC

  • Conclusion

    High failure rate components are identified

    Predictive reliability assessment meets the 15years B10 target

    Thermal cycles amplitude has an impact on thelifetime A forced convection cooled system is recommended

    Comparison FIDES et RDF2000

    Assesments are in the same range

    Field return data necessary

  • Feedback on FIDESStrengths:

    Takes into account the recent component technological improvements

    Component failure rate based on field return experience

    Factors for Component Fabrication Process and Quality

    Mission profile is precise

    Thermal stresses

    Mechanical stresses

    Humidity

    Effect of Chemical environment

    Assembly technologies (bonding, )

    Easy to use (Excel spreadsheet)

    Weaknesses:

    Software capacity is limited

    Same mission profile for all the components

    Power components are not critical

    Is it adapted to the automotive sector?

  • THANK FOR YOUR ATTENTION