45
3. BASICS OF REINFORCED CONCRETE DESIGN 3.1. REVIEW OF THE DESIGN METHODS 3.2. FUNDAMENTALS OF LIMIT STATE METHOD FOR CONCRETE 3.3. VERIFICATION CONDITIONS 3.4 ACTIONS Dr.ing. NAGYGYÖRGY Tamás, Assoc. Prof. Email: tamas.nagy[email protected] Tel: +40 256 403 935 Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm Office: A219

3. BASICS OF REINFORCED CONCRETE DESIGN

  • Upload
    vannhu

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3. BASICS OF REINFORCED CONCRETE DESIGN

3. BASICS OF REINFORCED CONCRETE DESIGN

3.1. REVIEW OF THE DESIGN METHODS3.2. FUNDAMENTALS OF LIMIT STATE METHOD FOR CONCRETE3.3. VERIFICATION CONDITIONS3.4 ACTIONS

Dr.ing. NAGY‐GYÖRGY Tamás,  Assoc. Prof.

E‐mail:  tamas.nagy‐[email protected]: +40 256 403 935Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm Office:  A219

Page 2: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.1 REVIEW OF THE DESIGN METHODS

DESIGNING METHODS FOR CONCRETE ELEMENTS

• ADMISSIBLE STRENGTH METHOD

• DESIGN METHOD IN ULTIMATE STAGE

• LIMIT STATE METHOD

Page 3: 3. BASICS OF REINFORCED CONCRETE DESIGN

ADMISSIBLE STRENGTH METHOD Switzerland ‐ 1903Germany  ‐ 1904France  ‐Great Britain  ‐ 1911Romania  ‐ 1942 … 1956

3.1 REVIEW OF THE DESIGN METHODS

Page 4: 3. BASICS OF REINFORCED CONCRETE DESIGN

ADMISSIBLE STRENGTH METHOD Main assumptions:• Plain sections remains plain• Elastic behaviour of the materials • Tension concrete between the cracks is neglected• Reinforcement has the same strain as the surrounding concrete (s = c)

3.1 REVIEW OF THE DESIGN METHODS

REAL SECTION

n.a.

εc σcAc

b

h

d

x

(Concrete in tension)Act

HOMOGENOUS (IDEAL) SECTION

εs

σct=σs/n

Ns= As σsAs

Page 5: 3. BASICS OF REINFORCED CONCRETE DESIGN

ADMISSIBLE STRENGTH METHOD 

3.1 REVIEW OF THE DESIGN METHODS

REAL SECTION

n.a.

Ac

b

h

d

x

(Concrete in tension)Act

HOMOGENOUS (IDEAL) SECTION

Ns= As σsAs

Page 6: 3. BASICS OF REINFORCED CONCRETE DESIGN

ADMISSIBLE STRENGTH METHOD 

3.1 REVIEW OF THE DESIGN METHODS

REAL SECTION

n.a.

εc σcAc

b

h

d

x

(Concrete in tension)Act

HOMOGENOUS (IDEAL) SECTION

εs

σct=σs/n

Ns= As σsAs

are valid up today! 

Page 7: 3. BASICS OF REINFORCED CONCRETE DESIGN

Section: b, h, AsConcrete compressive strength in bending Ri

Strength of steel at yielding y

Calculation of stresses by Navier’s formulas & c

Loads

Static analysis M (corresponds to current MEqp)

s   s, adm = y /csc   c, adm = Ri /cc

Safety coefficients:‐ steel cs = 2‐ concrete  cc = 2 … 3‐ element ?

FLOWCHART OF CALCULATION

3.1 REVIEW OF THE DESIGN METHODS

ADMISSIBLE STRENGTH METHOD 

Page 8: 3. BASICS OF REINFORCED CONCRETE DESIGN

DESIGN METHOD IN ULTIMATE STAGE

3.1 REVIEW OF THE DESIGN METHODS

1938 in Soviet Union and Brazil in Romania legislated from 1956, in effect until 1960...1970

Design is made in ultimate stage when the resistance of the section is ended yielding of reinforcement and crushing of compressed concrete occur

Real behaviour of the materials are taking into account!

Page 9: 3. BASICS OF REINFORCED CONCRETE DESIGN

DESIGN METHOD IN ULTIMATE STAGE

3.1 REVIEW OF THE DESIGN METHODS

εcu

b

h

d

x

εs>σs/Es

AsNs= As σs

Ri Ri0.8x

Ns= As σs

Page 10: 3. BASICS OF REINFORCED CONCRETE DESIGN

DESIGN METHOD IN ULTIMATE STAGE

3.1 REVIEW OF THE DESIGN METHODS

Obs:c=1.8…2.5 ‐ safety coefficient for the element

Strength of concrete are average value!_R

FLOWCHART OF CALCULATION

Section: b, h, AsConcrete compressive strength in bending Ri

Strength of steel at yielding y

Calculation resisting bending momentMR

Loads

Static analysisM (corresponds to current MEqp)

M  MR /c   

Page 11: 3. BASICS OF REINFORCED CONCRETE DESIGN

METHOD OF LIMIT STATES

• Developed in Soviet Union 1943...1955

• in Romania introduced in 1960 (translation from Russian)in 1970 as Romanian Code

P8‐61STAS 8000‐67STAS 10107/0‐76STAS 10107/0‐90SR EN 1992‐1‐1:2004

3.1 REVIEW OF THE DESIGN METHODS

Page 12: 3. BASICS OF REINFORCED CONCRETE DESIGN

METHOD OF LIMIT STATES

• Developed in Soviet Union 1943...1955• CEC: in 1975 decided on an action program in the field of construction

The basic principles of the Soviet code were taken into account by CEB and FIP

from 1998 fib (CEB+FIP) printed the MODEL CODE

• CEN published: EN 1992‐1‐1:2004 

NoteCEB (1953; France) ‐ Comité Euro‐Internationale du Béton = Euro‐International Concrete CommitteeFIP (1952; England) ‐ Fédération Internationale de la Précontrainte = International Federation for 

Prestressingfib (1998) ‐ fédération internationale du béton = International Federation for ConcreteCEC ‐ Commission of European CommunityCEN ‐ Comité Européen de Normalisation = European Committee for Standardization

3.1 REVIEW OF THE DESIGN METHODS

(MC 78, 90, 2010) 

Page 13: 3. BASICS OF REINFORCED CONCRETE DESIGN

METHOD OF LIMIT STATES

3.1 REVIEW OF THE DESIGN METHODS

EN 1992‐1‐1:2004 

…  1990 1992  2004 2015  ….

October 2013434 pages, 201 figures, 76 tables, Hardcover.Language of Publication: EnglishISBN: 978-3-433-03061-5

Page 14: 3. BASICS OF REINFORCED CONCRETE DESIGN

3. BASICS OF REINFORCED CONCRETE DESIGN

3.1. REVIEW OF THE DESIGN METHODS

3.2. FUNDAMENTALS OF LIMIT STATE METHOD FOR CONCRETE3.3. VERIFICATION CONDITIONS3.4 ACTIONS

Page 15: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.2. FUNDAMENTALS OF LSM FOR CONCRETE

Limit states are states beyond which the elementno longer fulfills the relevant design criteria

Ultimate limit states (ULS)  concern safety of people and/or of the structures, through STRENGTH exceedingStates associated with collapse or with other similar forms of structural failure

• Loss of bearing capacity• Loss of static equilibrium/stability • Fatigue

Serviceability limit states (SLS)  concern comfort of the people, structural FUNCTIONALITYStates that correspond to conditions beyond which specified service requirements for a structure or structural member are no longer met

• Cracking of concrete• Deformations• Vibrations• Damaging of concrete due to excessive compression which is likely to lead to 

loss of durability

Page 16: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.2. FUNDAMENTALS OF LSM FOR CONCRETE

LSM may be applied by:‐ reliability analysis‐ design assisted by tests‐ partial factor method (design value of loads with the highest intensities and

design value of strengths with the smallest values)

Two fundamentals are considered:

1. Real behaviour of the materials

2. A system of safety coefficients (statistical or not)

Page 17: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.2. FUNDAMENTALS OF LSM FOR CONCRETE

1. Real behaviour of the materials:

‐ Elastic behaviour under service loads

‐ Plastic behaviour in ultimate stageMEd 

fcd

fyd

Med

s < fyd

Page 18: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.2. FUNDAMENTALS OF LSM FOR CONCRETE

2. A system of safety coefficients (statistical or not)

takes into account variations of the material properties and loads

Statistical events: ‐ normal distribution (Gauss; symmetrical)  material strength

‐ unsymmetrical distribution  loads

Page 19: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.2. FUNDAMENTALS OF LSM FOR CONCRETE

f

 

Dispersion of values

p=5%

 

p=5%

Probability p shows how many values are bigger/smaller than xmax/xmin

2

2

S2xxexp

2S1xf

Page 20: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.2. FUNDAMENTALS OF LSM FOR CONCRETE better concrete

Page 21: 3. BASICS OF REINFORCED CONCRETE DESIGN

3. BASICS OF REINFORCED CONCRETE DESIGN

3.1. REVIEW OF THE DESIGN METHODS3.2. FUNDAMENTALS OF LIMIT STATE METHOD FOR CONCRETE

3.3. VERIFICATION CONDITIONS3.4 ACTIONS

Page 22: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

Page 23: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

Page 24: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

max min

5% x 5% = 2.5‰ from 2000 elements assumefailure of 5 elements

Page 25: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

max min

• Stresses limitation: ‐ in concrete  to avoid longitudinal crackingto limit micro‐cracking of compressed concreteto limit creep

‐ in reinforcement to limit cracking of concreteto limit plastic deformation of concrete

• Limitation of crack width = crack control (0,3 … 0,4 mm)• Limitation of deformations = drifts and deflection control

Page 26: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

max min

Crack control: wk wmaxDeflection control: f  fmaxStresses limitation: s s max; c c max

Page 27: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

max min

Crack control: wk wmaxDeflection control: f  fmaxStresses limitation: s s max; c c max

Page 28: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

max min

Crack control: wk wmaxDeflection control: f  fmaxStresses limitation: s s max; c c max

Page 29: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.3. VERIFICATION CONDITIONS

max min

Crack control: wk wmaxDeflection control: f  fmaxStresses limitation: s s max; c c max

Page 30: 3. BASICS OF REINFORCED CONCRETE DESIGN

3. BASICS OF REINFORCED CONCRETE DESIGN

3.1. REVIEW OF THE DESIGN METHODS3.2. FUNDAMENTALS OF LIMIT STATE METHOD FOR CONCRETE3.3. VERIFICATION CONDITIONS

3.4 ACTIONS

Page 31: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Action (F)  Set of forces (loads) applied to the structure (direct action); Set of imposed deformations or accelerations (ex. Temperature changes, moisture variation, uneven settlement or earthquakes) (indirect action).

Classification Characteristics Example

Permanent(G)

act throughout a given reference period and for which the variationin magnitude with time is negligible

‐ Self weight (structural elements, non‐structural elements, fix equipment) (dead load)‐ Shrinkage, settlement, ‐ Prestressing.

Variable    (Q)   

variation in magnitude with time is neither negligible nor monotonic

‐ Live load‐ wind‐ snow‐ …

Accidental(A)

seismic action of significant magnitude

‐ explosion‐ impact‐ fire

Seismic action(AE)

due to earthquake ground motions

Page 32: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 33: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

dominant rest

=0.7( 0.9)

Page 34: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 35: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 36: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 37: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 38: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

=0.0/0.4/0.8Importance class of the structure

Class I 1.4

Class II 1.2

Class III 1.0

Class IV 0.8

Page 39: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

CR0‐2012

SeismicFundamental

Page 40: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

CR0‐2012

Page 41: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

CR0‐2012

Page 42: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 43: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 44: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Page 45: 3. BASICS OF REINFORCED CONCRETE DESIGN

3.4. ACTIONS

Thank you for your attention!

Load combination?

Load combination?