30
2D Materials an introduction starting from the discovery of graphene Developments in material control now enable perfect crystals only one or a few atom thick to be investigated The very broad variety of 2D materials available gives access to unexplored physical phenomena Realization of artificial materials with properties engineered by design at the atomic scale Alberto Morpurgo Philosophy: some idea is better than no idea

2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

2D Materialsan introduction starting from the discovery of graphene

• Developments in material control now enable perfect crystals only one or a few atom thick to be investigated

• The very broad variety of 2D materials availablegives access to unexplored physical phenomena

• Realization of artificial materials with properties engineeredby design at the atomic scale

Alberto Morpurgo

Philosophy: some idea is better than no idea

Page 2: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Natural Graphite Exfoliation

Transfer Contact

Novoselov/Geim2004/2005

Page 3: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Seeing one-atom layers one at a time

Page 4: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Two inequivalent C atoms † †

,i ii j iR RR R

i j

A AH Bt B

† †| | 0i i

i j

ik R ik R

k k kR Ri i

e BAe

Or†

†| | 0

i

j

k R

k

i k R

iik R

B

Ae

pseudo

spin

Relativistic electrons in graphene

| ( ) |H E k

𝑣𝐹(−𝑖ℏ𝛻) ∙ Ԧ𝜎𝛼𝑘𝑒

𝑖𝑘∙ Ԧ𝑟

𝛽𝑘𝑒𝑖𝑘∙ Ԧ𝑟

=

= E(k) 𝛼𝑘𝑒

𝑖𝑘∙ Ԧ𝑟

𝛽𝑘𝑒𝑖𝑘∙ Ԧ𝑟

Dirac EquationH | ۧ𝜓𝑘 = 𝐸(𝑘) | ۧ𝜓𝑘

Page 5: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Novoselov/Geim/Kim2005

Direct Experimental manifestationsGraphene field-effect transistor

Dirac “peak” 𝐺𝐻𝑎𝑙𝑙 = 4𝑒2

ℎ(𝑁 +

1

2)

Resistivity Quantum Hall effect

Page 6: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Quasiclassical orbits

Landau levels = quantization of cyclotron motion

Edge states

Transport through edge channels

Quantum Hall effect for dummies

Page 7: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

𝐻 = 𝑣𝐹 −𝑖ℏ𝛻 ∙ Ԧ𝜎= ħ𝑣𝐹0 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 0

Band structure topology: basic idea

𝐵 𝑘 = 𝑘𝑥 , 𝑘𝑦 , 0

yk

?xk

Think of Hamiltonian as a k-dependent magnetic field

Bloch functions wind around in the Brillouin zone = topologically non-trivial

Graphene

𝐻 = 𝐴Δ/2 + 𝑏𝑘2 0

0 −Δ

2− 𝑏𝑘2

=

= 𝐴 𝐵𝑧𝜎𝑧

𝐵 𝑘 = 0,0, Δ/2 + 𝑏𝑘2

𝐻 = 𝛼 𝐵 𝑘 ∙ Ԧ𝜎Trivial insulator

yk

xk

No winding

Non-trivial topology leads to states at the edges

Page 8: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Different thickness = different electronic systems

𝐸 𝑘 ∝ 𝑘

𝐻1𝐿 ∝0 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 0

Monolayer Bilayer

𝐸 𝑘 ∝ 𝑘 2𝜓 =𝜓𝐴

𝜓𝐵𝜓 =

𝜓𝐴1

𝜓𝐵2

𝐻2𝐿 ∝0 𝑘𝑥 − 𝑖𝑘𝑦

2

𝑘𝑥 + 𝑖𝑘𝑦2

0

Low-energyband

Page 9: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Gate control of electronic bands

Double-gated devices

V= D/2

V= − D/2

Layer potential

𝐻2𝐿 ∝

Δ

2𝑘𝑥 − 𝑖𝑘𝑦

2

𝑘𝑥 + 𝑖𝑘𝑦2

−Δ

2

𝐸 𝑘 ∝ Δ + 𝑎𝑘 2Open band-gap

Turn bilayer grapheneinto an insulator

Page 10: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Manipulating atomic crystalsP. Kim’s group 2010

Gra

ph

ene

on

hB

N

Gra

ph

ene

on

WS 2

Page 11: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Kim

’s g

rou

pMoire superlattice for graphene on hBN

Contact with hBNgenerates periodic potential:

Graphene band structure modified

Satellite Dirac points

Page 12: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Contact mode AFM

removes residues of

nano-fabrication processes

Optical image Before cleaning During cleaning After cleaning

Cleaning 2D materials

Page 13: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

5 mm

CrI3

Graphene

20 mm

Phosporene

NbSe2

WTe210 mm

MoS2

5 mm WSe2 5 mm

2μmBi2Se3

10 mmhBN

Advances in Material Control

. . .

Theory predicts that ~ 1000 different atomic crystals can be produced using similar techniques

A virtually infinite variety of systemsMore than 50 monolayers demonstrated, including: Insulators, semiconductors, semi-metals, topological insulators, superconductors, charge density waves, ferromagnets, antiferromagnets…

Page 14: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Exfoliate/transfer/encapsulate in glove box with controlled atmosphere

Can work with materials not stable in airExample: CrI3 --- the first ferromagnetic monolayer

Thin crystals (even 50 nm) dissolve in a few minutes

Page 15: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

No

vose

lov

20

11

The Grand Vision – already becoming reality

Page 16: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Examples of interesting physics in 2D materials

Goal: to illustrate the breadth of scope --- no details

• Gate-induced superconductivity in semiconducting transition metal dichalcogenides (TMDs)

• Giant tunneling magnetoresistance through 2D magnetic semiconductor tunnel barriers

• Edge conduction in monolayer WTe2 (2D topological insulator)

Page 17: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Semiconducting transition metal dichalcogenides

A. S

ple

nd

ian

iet

al.

NL

10, 1

271

(201

0)

Bulk 3L 2L 1L

• Honeycomb (= graphene), • A/B atom different (=gapped), • very strong SOI

MoS2, WS2, MoSe2, WSe2, …

Page 18: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Ionic liquid gating

Position

Po

ten

tia

l

Ga

te

Dev

ice

Surf

ace

Electrostatics of ionic liquidssimilar to metals =

atomic-scale screening length

Potential drops at interfaces

Ex: WS2

Vsd = 100 mV

Page 19: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Gate-induced superconductivity in MoS2 ionic-liquid FETs

Evo

luti

on

of

the

resi

sta

nce

wit

hg

ate

volt

ag

e(i

on

icliq

uid

ga

tea

nd

ba

ckg

ate

)

Zero resistance state

Page 20: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Persists in monolayers

MoS2 bilayer

MoS2 monolayer

Gate-induced superconductivity in 1L MoS2 with reduced Tc and Hc

-40 -20 0 20 40

-8

-4

0

4

8

7K

V (

mV

)

I (mA)

1.5K

Page 21: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Tunneling spectroscopy

Multilayer graphene as tunneling electrode; MoS2 as tunnel barrier

Tunneling into the gate-induced electron accumulation layer

Page 22: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

An idea of fabrication steps

Bottom G multilayer Define tunneling contacts Transfer MoS2 multilayer

Att

ach

met

alli

c co

nta

cts

& c

lea

n t

he

Mo

S 2su

rfa

ce

Page 23: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Tunneling spectroscopy of gate-induced superconductivity

Tunneling spectroscopy for

1014 cm-2 < n < 5 1014 cm-2

Incomplete DOS suppression & “V-shaped” low-energy DOSUnconventional superconductivity

Page 24: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

2D magnetic materials

Does magnetism persists in 2D magnetic materials?How can we probe it? Is there new physics?

Examples

We will discuss experiments on one compound: CrI3

Page 25: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Hysteretic Kerr rotation angleas expected for ferromagnets

Magneto-optical Kerr effect

But note: Kerr effect probes broken symmetries not magnetization

Page 26: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Extremely unstable in air: Thin crystals (even 50 nm) dissolve in a few minutes

Exfoliating/processing/encapsulating in Glove box

Page 27: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

CrI3 tunnel barriers

Thin CrI3 as tunnel barrierbetween graphene contacts

Optical microscope

Tunneling

Page 28: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

T = 51 K

Tunneling Magnetoresistance

Giant tunneling magneto-resistance: 100 x at B = 2T

For comparison: common tunneling spin-valves = 2 x

Extracting magneticphase diagram from

tunneling magnetoresistance

Page 29: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

Monolayer WTe2: topological insulator with edge transport

WS2 = Semiconductor = trivial insulatorConductance vanishes

(exponentially small ∝ 𝑒−∆

2𝑘𝑇)

WTe2 = topological insulator

Conductance at low T:

𝐺~𝑒2

ℎTopological insulator = Edge conductance

Page 30: 2D Materials - lqss.epfl.ch · 2 WTe 2 10 mm MoS 2 5 mm WSe 2 5 mm 2μm Bi 2 Se 3 10 mm hBN Advances in Material Control. . . Theory predicts that ~ 1000 different atomic crystals

-40 -20 0 20 40

-8

-4

0

4

8

7K

V (

mV

)

I (mA)

1.5K

yk

xk

The exploration of atomically thin crystals has only just started

This is a vast and largely unexplored field of research