77
276 Chapter 30 Calculating the magnetic field due to a current In vector form r r dq E d K K 3 0 4 1 πε = Element ds In vector form

276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

276

Chapter 30

Calculating the magnetic field due to a current

In vector form

rrdqEd 3

041πε

=

Element ds

In vector form

Page 2: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

277

Page 3: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

278

Page 4: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

279

Page 5: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

280

Page 6: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

281

Two long parallel wires a distance 2d apart carry equal currents i in opposite directions, as shown in Fig30-10a. Derive an expression for B(x), the magnitude of the resultant magnetic field for points at a distance x from the midpoint of a line joining the wires. x a p b d d

Page 7: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

282

Sol:

B(x)=Ba(x)+Bb(x)=)()(2)(2 22

000

xdid

xdi

xdi

−=

−+

+ πμ

πμ

πμ

Page 8: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

283

ienc=i1-i2 Note: the right-hand rule

Page 9: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

284

Application:

Case 1 B outside a long straight line with current

Page 10: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

285

Case 2 uniformly distributed current i

Page 11: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

286

Magnitude: 2.0X10-5(T) Direction: counterclockwise

Page 12: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

287

Page 13: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

288

Only (n: the number of turns per unit length)

Page 14: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

289

Page 15: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

290

Page 16: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

291

If Z>>R , B(Z)~ 3

20

2 ZiRμ

B(Z)= 30

2 ZNiA

πμ

(N turns A: the area of the loop)

In vector form 30

2)(

ZZB μ

πμ

=

Exercises:37,39,45,67

Page 17: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

292

Chapter 31

In section29-8,we saw that if we put a closed conducting loop in a B and then

send current through the loop, forces due to the magnetic field create a torque

to turn the loop current + magnetic field torque

With i=0, torque + magnetic field current?

Let us consider two experiments.

First experiment

Page 18: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

293

We note that

The current: an induced current The work per unit charge in producing that current: an induced emf The process: induction

Page 19: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

294

We note that

Switch on a current

Switch off a current

Only when there is a change in the current

Faraday’s law of induction:

Page 20: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

295

Page 21: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

296

To oppose the magnetic field increase being caused by the approaching

magnet.

Page 22: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

297

(a)

Page 23: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

298

Direction: Clockwise(to oppose B)

(b)

Page 24: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

299

Direction: counterclockwise

Page 25: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

300

The same A small increase in the temperature of the loop.

Not a single loop!

Page 26: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

301

New form of faraday’s law

E: induced electric field

*Induced electric fields are produced not by static charges but by a changing

magnetic flux. Although electric fields produced in either way exert forces on

charged particles, there is an important difference between them.

Induced electric field: field lines form closed loops.

Page 27: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

302

0 or 5V?

In figure 31-14b, take R=8.5cm and dB/dt=0.13 T/S (a) Find a expression for the magnitude E of the induced electric field at

points within the magnetic field, at radius r from the center of the magnetic field. Evaluate the expression for r=5.2cm

(b) Find an expression for the magnitude E of the induced electric field at points that are outside the magnetic field. Evaluate the expression r=12.5cm

Copper ring removed

Page 28: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

303

(a)

∫∫∫Φ

===•=•dt

drEdSEdSESdE B)2( π

mmVEcmrdtdBrE

dtdBrrE

rBBAB

/4.32.52

)2(

)(

2

2

=⇒=

=

=

==Φ

ππ

π

(b)

)!0(/8.35.12

2

)(2

2

rtransformeEmmVEcmr

dtdB

rRE

RBBAB

⇒≠=⇒=

=

==Φ π

Page 29: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

304

: can be used to produce a desired magnetic field.

Def inductance

SI unit:

Inductance-like capacitance-depends only on the geometry of the device.

Page 30: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

305

Figure 31-16 shows a cross section, in the plane of the page, of a toroid of N

turns like that in fig.30-21a but of rectangular cross section; its dimensions are as indicated.

(a) What is its inductance L? (b) The toroid shown in fig.31-16 has N=1250turns, a =52mm, b=95mm,and

h=13mm what is the inductance?

(a)

B= riNπ

μ2

0

hdrr

iNBhdrAdBb

a

b

a πμ2

0∫∫∫ ==•=Φ

)/ln(2

12

00 abiNh

hdrr

iNh b

a πμ

πμ

==Φ ∫

)/ln(2

/2

0 abhN

iNπ

μ=Φ L=

(b)

=2.45X10-3H~2.5mH L

Page 31: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

306

( ) NΦ=Li

dtdiL− =

Page 32: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

307

(Like a RC circuit)

Page 33: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

308

S b

Page 34: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

309

(a)

i(0)=0

Inductors: broken wire

(b)

Long after the switch has been closed

Equilibrium

Page 35: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

310

Inductors: connecting wire

3R in parallel

Page 36: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

311

and are both in units of power (work (energy)/time )

A 3.56H inductor is placed in series with a 12.8Ω resistor, and an emf of

3.24V is then suddenly applied across the RL combination.

(a)At 0.278s (which is one inductive time constant) after the emf is applied,

what is the rat P at which energy is being delivered by the battery?

(b)At 0.278s, at what rate PR is energy appearing as thermal energy in the

resistor?

(c)At 0.278s, at what rate PB is energy being stored in the magnetic field?

Page 37: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

312

(a)

i=32.4/12.8(1-e-1)=0.16A

P=ξi=0.5184W~518mW

(b)

PR=i2R=(0.16)2(12.8)=0.3277W~328mW

(c)

PB=dUB/dt=Li(di/dt)

di/dt= L

t

LRt

eR

eLR

Rτξξ −−

=)(

PB=0.1907W~191mW

P= PB+ PR (energy conservation)

A solenoid: length l and cross-sectional area A

Page 38: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

313

AnlL 2

0μ= (31-33)

( )

Page 39: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

314

(a)

(b)

Page 40: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

315

Mutual induction: two coils

Self induction: one coil

Def M21 of coil 2 with respect to coil 1

L (self inductance)

(Not simple!)

Page 41: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

316

(a)

Page 42: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

317

R1>>R2

We may take B1 to be the magnetic field at all points within the boundary of

the smaller coil

(b)

What about ?

Exercises: 5,63,91,98

Page 43: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

318

Chapter 32

Page 44: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

319

Surface 1: N pole

Surface 2: No magnetic dipole

Page 45: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

320

M lies along

Magnetic materials are magnetic because of the electrons within them. We have already seen one way in which electrons can generate a magnetic field: send them through a wire as an electric current, and their motion produces a magnetic field around the wire.

Page 46: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

321

Two important issues:

Protons and neutrons ( 1/1000 !)

Page 47: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

322

Page 48: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

323

Page 49: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

324

Classical analysis

Net component: upward

Page 50: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

325

Electron atom material If the combined magnetic dipole moments produce a magnetic field, then the material is magnetic. *A diamagnetic material placed in an external magnetic field Bext develops a magnetic dipole moment directed opposite Bext . If the field is non-uniform, the diamagnetic material is repelled from a region of greater magnetic field toward a region of lesser field. * A paramagnetic material placed in an external magnetic field Bext develops a magnetic dipole moment in the direction of Bext. If the field is non-uniform, the paramagnetic material is attracted toward a region of greater magnetic field from a region of lesser field. Def. Magnetization M: the vector quantity, the magnetic dipole moment per unit volume

Page 51: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

326

If T>TC, ferromagnetic materials paramagnetic

Page 52: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

327

Rowland ring: thin toroidal core of circular cross section.

(Iron core)

T<TC, strong alignment of adjacent atomic dipoles in a ferromagnetic

material.

Q: An iron nail, a naturally strong magnet?

A: No. There are magnetic domains.

Regions of the crystal throughout which the alignment of the atomic dipoles is

essentially perfect. For the crystal as a whole, however, the domains are so

oriented that they largely cancel each other as far as their external magnetic

Page 53: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

328

effects are concerned.

=?

Page 54: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

329

Recall ampere’s law

(a)

ienc=0

Page 55: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

330

(For r≦R) r=0 B=0

(b)

(c)

Page 56: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

331

Page 57: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

332

(a)

(b)

Page 58: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

333

Exercise :17,33,39,51

Page 59: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

334

Chapter 33

New physics – old mathematics

LC oscillations

See fig.33-1. Electric energy magnetic energy

Page 60: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

335

In contrast to RC and RL circuits, the total energy (UB+UE) in a LC circuit is

conserved.

Q=CV

Page 61: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

336

q x 1/c k i v L m

mk

=ω (Block-spring system) LC1

=ω (LC circuit)

(U is a constant)

(U is a constant)

Page 62: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

337

Page 63: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

338

UE+UB=C

Q2

2

(a) In an oscillating LC circuit, what charge q, expressed in terms of the

maximum charge Q, is present on the capacitor when the energy is shared equally between the electric and magnetic fields? Assume that L=12mH

and C=1.7μF.

(b) When does this condition occur if the capacitor has its maximum charge at time t=0?

Sol:

(a) UE=1/2UE,max

Page 64: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

339

UE =C

q2

2

and UE,max= CQ2

2

Cq2

2

=C

Q22

1 2

QQq 707.0~2

=⇒

(b)

0.707Q=Q tωcos

ωt=45。=4π

t=ωπ4

= ssXLC μπ 110~1012.14

4−=

Page 65: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

340

LRte

CQ /

2

2−U= (decay)

(a)

(b)

Page 66: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

341

An external emf device supplies enough energy to make up for the energy

dissipated as thermal energy in the resistance R.

Page 67: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

342

(v and i in phase)

Page 68: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

343

(v and i 900 out of phase )

Page 69: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

344

Page 70: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

345

Page 71: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

346

Page 72: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

347

In an RLC circuit, Let R=160Ω, c=15.0μF,L=230mH, fd=60.0Hz and

ξm=36.0V

(a) What is the current amplitude?

(b) What is the phase constant Φ?

Sol:

(a)

Ω=−+= 184)( 22CL XXRZ

I= AZm 196.0=

ξ

Page 73: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

348

(b)

radR

XX CL

513.0)564.0(tan

564.0tan

1 −=−=

−=−

=

−φ

φ

Page 74: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

349

(d) With that change in capacitance, what would Pav be ?

(a)

Page 75: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

350

(b)

(c)

(d) ZI rms

rmsξ

= )(0.72)0cos( 0 WIP rmsrmsav == ξ

I2R: Ohmic losses

Page 76: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

351

Page 77: 276 Chapter 30web.phys.ntu.edu.tw/semi/ceos/general.files/handout9.pdf · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4

352

Exercises:27,53,75,87