77
276 Chapter 30 Calculating the magnetic field due to a current In vector form r r dq E d K K 3 0 4 1 πε = Element ds In vector form

276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

276

Chapter 30

Calculating the magnetic field due to a current

In vector form

rrdqEd 3

041πε

=

Element ds

In vector form

Page 2: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

277

Page 3: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

278

Page 4: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

279

Page 5: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

280

Page 6: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

281

Two long parallel wires a distance 2d apart carry equal currents i in opposite directions, as shown in Fig30-10a. Derive an expression for B(x), the magnitude of the resultant magnetic field for points at a distance x from the midpoint of a line joining the wires. x a p b d d

Page 7: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

282

Sol:

B(x)=Ba(x)+Bb(x)=)()(2)(2 22

000

xdid

xdi

xdi

−=

−+

+ πμ

πμ

πμ

Page 8: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

283

ienc=i1-i2 Note: the right-hand rule

Page 9: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

284

Application:

Case 1 B outside a long straight line with current

Page 10: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

285

Case 2 uniformly distributed current i

Page 11: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

286

Magnitude: 2.0X10-5(T) Direction: counterclockwise

Page 12: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

287

Page 13: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

288

Only (n: the number of turns per unit length)

Page 14: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

289

Page 15: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

290

Page 16: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

291

If Z>>R , B(Z)~ 3

20

2 ZiRμ

B(Z)= 30

2 ZNiA

πμ

(N turns A: the area of the loop)

In vector form 30

2)(

ZZB μ

πμ

=

Exercises:37,39,45,67

Page 17: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

292

Chapter 31

In section29-8,we saw that if we put a closed conducting loop in a B and then

send current through the loop, forces due to the magnetic field create a torque

to turn the loop current + magnetic field torque

With i=0, torque + magnetic field current?

Let us consider two experiments.

First experiment

Page 18: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

293

We note that

The current: an induced current The work per unit charge in producing that current: an induced emf The process: induction

Page 19: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

294

We note that

Switch on a current

Switch off a current

Only when there is a change in the current

Faraday’s law of induction:

Page 20: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

295

Page 21: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

296

To oppose the magnetic field increase being caused by the approaching

magnet.

Page 22: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

297

(a)

Page 23: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

298

Direction: Clockwise(to oppose B)

(b)

Page 24: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

299

Direction: counterclockwise

Page 25: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

300

The same A small increase in the temperature of the loop.

Not a single loop!

Page 26: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

301

New form of faraday’s law

E: induced electric field

*Induced electric fields are produced not by static charges but by a changing

magnetic flux. Although electric fields produced in either way exert forces on

charged particles, there is an important difference between them.

Induced electric field: field lines form closed loops.

Page 27: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

302

0 or 5V?

In figure 31-14b, take R=8.5cm and dB/dt=0.13 T/S (a) Find a expression for the magnitude E of the induced electric field at

points within the magnetic field, at radius r from the center of the magnetic field. Evaluate the expression for r=5.2cm

(b) Find an expression for the magnitude E of the induced electric field at points that are outside the magnetic field. Evaluate the expression r=12.5cm

Copper ring removed

Page 28: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

303

(a)

∫∫∫Φ

===•=•dt

drEdSEdSESdE B)2( π

mmVEcmrdtdBrE

dtdBrrE

rBBAB

/4.32.52

)2(

)(

2

2

=⇒=

=

=

==Φ

ππ

π

(b)

)!0(/8.35.12

2

)(2

2

rtransformeEmmVEcmr

dtdB

rRE

RBBAB

⇒≠=⇒=

=

==Φ π

Page 29: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

304

: can be used to produce a desired magnetic field.

Def inductance

SI unit:

Inductance-like capacitance-depends only on the geometry of the device.

Page 30: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

305

Figure 31-16 shows a cross section, in the plane of the page, of a toroid of N

turns like that in fig.30-21a but of rectangular cross section; its dimensions are as indicated.

(a) What is its inductance L? (b) The toroid shown in fig.31-16 has N=1250turns, a =52mm, b=95mm,and

h=13mm what is the inductance?

(a)

B= riNπ

μ2

0

hdrr

iNBhdrAdBb

a

b

a πμ2

0∫∫∫ ==•=Φ

)/ln(2

12

00 abiNh

hdrr

iNh b

a πμ

πμ

==Φ ∫

)/ln(2

/2

0 abhN

iNπ

μ=Φ L=

(b)

=2.45X10-3H~2.5mH L

Page 31: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

306

( ) NΦ=Li

dtdiL− =

Page 32: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

307

(Like a RC circuit)

Page 33: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

308

S b

Page 34: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

309

(a)

i(0)=0

Inductors: broken wire

(b)

Long after the switch has been closed

Equilibrium

Page 35: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

310

Inductors: connecting wire

3R in parallel

Page 36: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

311

and are both in units of power (work (energy)/time )

A 3.56H inductor is placed in series with a 12.8Ω resistor, and an emf of

3.24V is then suddenly applied across the RL combination.

(a)At 0.278s (which is one inductive time constant) after the emf is applied,

what is the rat P at which energy is being delivered by the battery?

(b)At 0.278s, at what rate PR is energy appearing as thermal energy in the

resistor?

(c)At 0.278s, at what rate PB is energy being stored in the magnetic field?

Page 37: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

312

(a)

i=32.4/12.8(1-e-1)=0.16A

P=ξi=0.5184W~518mW

(b)

PR=i2R=(0.16)2(12.8)=0.3277W~328mW

(c)

PB=dUB/dt=Li(di/dt)

di/dt= L

t

LRt

eR

eLR

Rτξξ −−

=)(

PB=0.1907W~191mW

P= PB+ PR (energy conservation)

A solenoid: length l and cross-sectional area A

Page 38: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

313

AnlL 2

0μ= (31-33)

( )

Page 39: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

314

(a)

(b)

Page 40: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

315

Mutual induction: two coils

Self induction: one coil

Def M21 of coil 2 with respect to coil 1

L (self inductance)

(Not simple!)

Page 41: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

316

(a)

Page 42: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

317

R1>>R2

We may take B1 to be the magnetic field at all points within the boundary of

the smaller coil

(b)

What about ?

Exercises: 5,63,91,98

Page 43: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

318

Chapter 32

Page 44: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

319

Surface 1: N pole

Surface 2: No magnetic dipole

Page 45: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

320

M lies along

Magnetic materials are magnetic because of the electrons within them. We have already seen one way in which electrons can generate a magnetic field: send them through a wire as an electric current, and their motion produces a magnetic field around the wire.

Page 46: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

321

Two important issues:

Protons and neutrons ( 1/1000 !)

Page 47: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

322

Page 48: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

323

Page 49: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

324

Classical analysis

Net component: upward

Page 50: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

325

Electron atom material If the combined magnetic dipole moments produce a magnetic field, then the material is magnetic. *A diamagnetic material placed in an external magnetic field Bext develops a magnetic dipole moment directed opposite Bext . If the field is non-uniform, the diamagnetic material is repelled from a region of greater magnetic field toward a region of lesser field. * A paramagnetic material placed in an external magnetic field Bext develops a magnetic dipole moment in the direction of Bext. If the field is non-uniform, the paramagnetic material is attracted toward a region of greater magnetic field from a region of lesser field. Def. Magnetization M: the vector quantity, the magnetic dipole moment per unit volume

Page 51: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

326

If T>TC, ferromagnetic materials paramagnetic

Page 52: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

327

Rowland ring: thin toroidal core of circular cross section.

(Iron core)

T<TC, strong alignment of adjacent atomic dipoles in a ferromagnetic

material.

Q: An iron nail, a naturally strong magnet?

A: No. There are magnetic domains.

Regions of the crystal throughout which the alignment of the atomic dipoles is

essentially perfect. For the crystal as a whole, however, the domains are so

oriented that they largely cancel each other as far as their external magnetic

Page 53: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

328

effects are concerned.

=?

Page 54: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

329

Recall ampere’s law

(a)

ienc=0

Page 55: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

330

(For r≦R) r=0 B=0

(b)

(c)

Page 56: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

331

Page 57: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

332

(a)

(b)

Page 58: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

333

Exercise :17,33,39,51

Page 59: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

334

Chapter 33

New physics – old mathematics

LC oscillations

See fig.33-1. Electric energy magnetic energy

Page 60: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

335

In contrast to RC and RL circuits, the total energy (UB+UE) in a LC circuit is

conserved.

Q=CV

Page 61: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

336

q x 1/c k i v L m

mk

=ω (Block-spring system) LC1

=ω (LC circuit)

(U is a constant)

(U is a constant)

Page 62: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

337

Page 63: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

338

UE+UB=C

Q2

2

(a) In an oscillating LC circuit, what charge q, expressed in terms of the

maximum charge Q, is present on the capacitor when the energy is shared equally between the electric and magnetic fields? Assume that L=12mH

and C=1.7μF.

(b) When does this condition occur if the capacitor has its maximum charge at time t=0?

Sol:

(a) UE=1/2UE,max

Page 64: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

339

UE =C

q2

2

and UE,max= CQ2

2

Cq2

2

=C

Q22

1 2

QQq 707.0~2

=⇒

(b)

0.707Q=Q tωcos

ωt=45。=4π

t=ωπ4

= ssXLC μπ 110~1012.14

4−=

Page 65: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

340

LRte

CQ /

2

2−U= (decay)

(a)

(b)

Page 66: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

341

An external emf device supplies enough energy to make up for the energy

dissipated as thermal energy in the resistance R.

Page 67: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

342

(v and i in phase)

Page 68: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

343

(v and i 900 out of phase )

Page 69: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

344

Page 70: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

345

Page 71: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

346

Page 72: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

347

In an RLC circuit, Let R=160Ω, c=15.0μF,L=230mH, fd=60.0Hz and

ξm=36.0V

(a) What is the current amplitude?

(b) What is the phase constant Φ?

Sol:

(a)

Ω=−+= 184)( 22CL XXRZ

I= AZm 196.0=

ξ

Page 73: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

348

(b)

radR

XX CL

513.0)564.0(tan

564.0tan

1 −=−=

−=−

=

−φ

φ

Page 74: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

349

(d) With that change in capacitance, what would Pav be ?

(a)

Page 75: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

350

(b)

(c)

(d) ZI rms

rmsξ

= )(0.72)0cos( 0 WIP rmsrmsav == ξ

I2R: Ohmic losses

Page 76: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

351

Page 77: 276 Chapter 30 · 2015. 8. 12. · 276 Chapter 30 . Calculating the magnetic field due to a current . In vector form . r r dq dE. K K. 3. 4 0 1 πε = Element ds . In vector form

352

Exercises:27,53,75,87