59
#2653 Introduction of New Materials into CMOS Devices ESC Symp on Purity Silicon(E6) 8:30 – 9:00 am, October, 10, 2012 @Rm 320, Level 3, Hawaiian Convention Center, Honolulu, Hawaii Hiroshi Iwai Frontier Research Center, Tokyo Institute of Technology

#2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

#2653 Introduction of New Materialsinto CMOS Devices

ESC Symp on Purity Silicon(E6)

8:30 – 9:00 am, October, 10, 2012

@Rm 320, Level 3,Hawaiian Convention Center, Honolulu, Hawaii

Hiroshi Iwai

Frontier Research Center, Tokyo Institute of Technology

Page 2: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Lee De Forest

Electronic Circuits started by the invention of vacuum tube (Triode) in 1906

Cathode(heated) Grid

Anode(Positive bias)

Thermal electrons from cathodecontrolled by grid bias

Same mechanism as that of transistor

Page 3: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

J.E.LILIENFELD

J. E. LILIENFELD

DEVICES FOR CONTROLLED ELECTRIC CURRENTFiled March 28, 1928

3

Page 4: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

ElectronSemiconductor

Gate Electrode

Gate InsulatorNegative bias

Positive bias

Capacitor structure with notch

No current

Current flows

Electricfield

4

Page 5: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Source Channel Drain

0V

N+-Si P-Si

N-Si

0V

1V

Negative

Source Channel DrainN-Si1V

N+-Si P-Si

Surface Potential (Negative direction)

Gate Oxd

ChannelSource Drain

Gate electrode

S D

G

0 bias for gate Positive bias for gate

Surface

Electron flow

5

Page 6: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

However, no one could realize MOSFET operation for more than 30 years.

Because of very bad interface property between the semiconductor and gate insulatorEven Shockley!

6

Page 7: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Very bad interface property between the semiconductor and gate insulator

Even Shockley!

eGe

GeO Electric Shielding

CarrierScattering

Interfacial Charges

Drain Current was several orders of magnitude smaller than expected

7

Page 8: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

1960: First MOSFET by D. Kahng and M. Atalla

Top View

Al

SiO2

Si

Si/SiO2 Interface is exceptionally good

8

Page 9: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

1900 1950 1960 1970 2000

VacuumTube

Transistor IC LSI ULSI

10 cm cm mm 10 m 100 nm

In 100 years, the size reduced by one million times.There have been many devices from stone age.We have never experienced such a tremendous reduction of devices in human history.

10-1m 10-2m 10-3m 10-5m 10-7m

Downsizing of the components has been the driving force for circuit evolution

9

Page 10: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Downsizing1. Reduce Capacitance

Reduce switching time of MOSFETsIncrease clock frequency

Increase circuit operation speed2. Increase number of Transistors

Parallel processingIncrease circuit operation speed

Thus, downsizing of Si devices is the most important and critical issue.10

Downsizing contribute to the performance increase in double ways

Page 11: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Gate oxide

Gate metal

Source Drain

1V 0V0V

Substrate 0V DepletionRegion (DL)

1V

0V 0V

tox and Vdd have to be decreased for betterchannel potential control IOFF Suppression

0V < Vdep<1V

0V

0V < Vdep<1VChannel

0V

0V

0V0V

0.5V

Large IOFF

Region governed By drain bias

Region governed by gate bias

DL touch with SRegion (DL)

Large IOFF

No toxthinning

Vdd

Vdd

11

Page 12: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

How far we can go with downscaling?

Question:

Page 13: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Tunnelingdistance

3 nm

What would be the limit of downsizing!

Source DrainChannel

Page 14: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

14

Vg

Id

Vth (Threshold Voltage)

Vg=0V

SubthreshouldLeakage Current

Subtheshold leakage current of MOSFET

Subthreshold CurrentIs OK at Single Tr. level

But not OKFor Billions of Trs.

ONOFF

Ion

Ioff

Subthresholdregion

Page 15: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

15

Vg (V)1

0.3 V

0.5 V 1.0 V

Ion

Ioff

Id (A/m)

10-7

10-5

10-11

10-9

Vd

Vth

0.15 V

0 0.5

Subthreshold leakage current will limit the downsizing

Page 16: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

16

Subthreshold Leakage (A/m)

Ope

ratio

n Fr

eque

ncy

(a.u

.)

e)

100

10

1

Source: 2007 ITRS Winter Public Conf.

The limit is deferent depending on application

Page 17: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

How far can we go for production?

10m 8m 6m 4m 3m 2m 1.2m 0.8m 0.5m

0.35m 0.25m 180nm 130nm 90nm 65nm 45nm 32nm

1970年

(28nm) 22nm 16nm 11.5 nm 8nm 5.5nm? 4nm? 2.9 nm?

Past 0.7 times per 3 years

Now

In 40 years: 18 generations,Size 1/300, Area 1/100,000

Future

・At least 4,5 generations to 8 ~ 5 nm

Page 18: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

The down scaling of MOSFETs is still possible for at least another 10 years!

2. Thinning of high-k gate oxide thicknessbeyond 0.5 nm

3. Metal(Silicide) S/D

1. Wire channel

4 important technological items for down scaling.New structures

New materials

4. III-V/Ge channel, for the moment, however, very difficult to replace Si

Page 19: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Gate Oxide

ChannelSource Drain

Gate electrode

19

MOSFET

Channel

1960 1970 1980 1990 2000 2010 2020 2030

Si

III‐V/Ge

Gate OxideSiO2 SiON HfO2 LaSixOy

Gate ElectrodeAl Poly Si MetalWSi2/

Poly SiNiSi/Poly Si

Source DrainP/B‐dope Si As/B‐dope Si Silicide

Page 20: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

High-k beyond 0.5 nm

Page 21: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

K. Kim, pp.1, IEDM2010 (Samsung) 1.21.1

1

0.9

0.8

0.7

0.6

0.5

EO

T [n

m]

202020152010Year

12

10

8

6

4

2

0

Body Thickness [nm

]

Multi-Gate

Planar

ITRS2011

Fin width

EOT Scaling Trends

Wire/fin mitigates EOT thinning trend (Trend 1 Trend 2)Because of better SCE control.

However, ION severely degrade with wire/fin width reduction

Therefore, EOT trend will become accelerated again(Trend 2 Trend 3) Thus, high-k becomes important again.21

Page 22: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Si-sub.

Metal

SiO2-IL

High-kSmall interfacial state density at high-k/Si

Oxygen diffusion control for prevention of EOT increase and oxygen vacancy formation in high-k

Thinning or removal of SiO2-IL for small EOT

Flat metal/high-k interface for better mobility

O

Workfunction engineering for Vth control

Interface dipole control for Vth tuning

Suppression of oxygen vacancy formation

Control of interface reaction and Si diffusion to high-k

Oxygen concentration control for prevention of EOT increase and oxygen vacancy formation in high-k

Suppression of metal diffusion

Endurance for high temperature process

Remove contaminationintroduced by CVD

Reliability: PBTI, NBTI, TDDB

Suppression of gate leakage current

Suppression of FLP

22

Issues in high‐k/metal gate stack

Page 23: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

0 10 20 30 40 50Dielectric Constant

4

2

0

-2

-4

-6

SiO2

Ban

d D

isco

ntin

uity

[eV]

Si

XPS measurement by Prof. T. Hattori, INFOS 2003

Conduction band offset vs. Dielectric Constant

Band offset

Oxide

Leakage Current by Tunneling

23

Page 24: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

R. Hauser, IEDM Short Course, 1999Hubbard and Schlom, J Mater Res 11 2757 (1996)

Gas or liquidat 1000 K

H

Radio activeHe

Li Be B C N O F Ne① Na Mg Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① ① K Ca Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr ① ① ① ① ① ① ① ① ① ① Rh Sr Y Zr Nb Mo Tc Ru Rb Pd Ag Cd In Sn Sb Te I Xe ③ ① ① ① ① ① ① ① Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Ha Sg Ns Hs Mt

La Ce Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Candidates

Na Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① K Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr ① ① ① ① ① ① ①

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Unstable at Si interfaceSi + MO X M + SiO 2①

Si + MO X MSi X + SiO 2

Si + MO X M + MSi XOY

Choice of High-k elements for oxide

HfO2 based dielectrics are selected as the first generation materials, because of their merit in1) band-offset, 2) dielectric constant3) thermal stability

La2O3 based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer

24

Page 25: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

SiO2-ILHfSix (k~4)

VO

IO

IOVO

VO

IOIO

VOHfO2

Si substrate SiO2-IL(k~4)

LaSix

VO

IOVO

IO

VO

IOLa2O3silicate

La-rich Si-rich

Si substrate

High PO2Low PO2 High PO2Low PO2

SiO2 IL formation

Si substrate

silicate formation

Si substrate

HfO2 case La2O3 case

Direct contact can be achieved with La2O3 by forming silicate at interfaceControl of oxygen partial pressusre is the key for processing.

Our approach

K. Kakushima, et al., VLSI2010, p.69

Direct high‐k/Si by silicate reaction

Page 26: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

26

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

Si sub.

Hf SilicateSiO2

500 oC

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

Si sub.

Hf SilicateSiO2

500 oC

SiOx-IL growth at HfO2/Si Interface

HfO2 + Si + O2 → HfO2 + Si + 2O*→HfO2+SiO2

Phase separator

SiOx-IL is formed after annealingOxygen control is required for optimizing the reaction

Oxygen supplied from W gate electrode

XPS Si1s spectrum

D.J.Lichtenwalner, Tans. ECS 11, 319

TEM image 500 oC 30min

H. Shimizu, JJAP, 44, pp. 6131

Page 27: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

27

La-Silicate Reaction at La2O3/Si

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

as depo.

300 oC

La-silicate

Si sub.

500 oC

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

as depo.

300 oC

La-silicate

Si sub.

500 oC

La2O3 + Si + nO2→ La2SiO5, La2Si2O7,

La9.33Si6O26, La10(SiO4)6O3, etc.

La2O3 can achieve direct contact of high-k/Si

XPS Si1s spectraTEM image

Direct contact high-k/Si is possible

Page 28: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

28Year

Pow

er p

er M

OSF

ET (P

)

EOT Limit0.7~0.8 nm

EOT=0.5nm

TodayEOT=1.0nm

Now

45nm node

One order of Magnitude

Si

HfO2

Metal

SiO2/SiON

Si

High‐k

Metal

Direct ContactOf high-k and Si

Si

Metal

SiO2/SiON

0.5~0.7nm

Introduction of High-kStill SiO2 or SiONIs used at Si interface

For the past 45 yearsSiO2 and SiON

For gate insulator

EOT can be reduced further beyond 0.5 nm by using direct contact to SiBy choosing appropriate materials and processes.

Page 29: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

29

Substrate

Moving Mask

SourceElectron Beam

Flux

Deposited thin film

Robot

EB Evaporation Flash Lamp Anneal

ALD

RTA

Sputter

EB Evaporation

Flash Lamp Anneal

ALDRTAEntrance

Entrance

Sputter

High-k/metal gate stackfilm deposition cluster tool

Page 30: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 0.5 1 1.5 2 2.5 3

EOT ( nm )

Cur

rent

den

sity

( A

/cm

2 )Al2O3HfAlO(N)HfO2HfSiO(N)HfTaOLa2O3Nd2O3Pr2O3PrSiOPrTiOSiON/SiNSm2O3SrTiO3Ta2O5TiO2ZrO2(N)ZrSiOZrAlO(N)

Gate Leakage vs EOT, (Vg=|1|V)

La2O3

HfO2

30

Page 31: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

31

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

0 0.2 0.4 0.6 0.8 1

Vg=0VVg=0.2VVg=0.4VVg=0.6VVg=0.8VVg=1.0VVg=1.2V

0 0.2 0.4 0.6 0.8 1

Vg=0VVg=0.2VVg=0.4VVg=0.6VVg=0.8VVg=1.0VVg=1.2V

0 0.2 0.4 0.6 0.8 1

Vg=0VVg=0.2VVg=0.4VVg=0.6VVg=0.8VVg=1.0VVg=1.2VI d

(V)

W/L = 50m /2.5m

Vd (V) Vd (V) Vd (V)

EOT=0.37nm

Vth=-0.04VVth=-0.05VVth=-0.06V

EOT=0.37nm EOT=0.40nm EOT=0.48nm

W/L = 50m /2.5m W/L = 50m /2.5m

0.48 0.37nm Increase of Id at 30%

La2O3 at 300oC process make sub-0.4 nm EOT MOSFET

Page 32: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

32

2

1.5

1

0.5

0

Cap

acita

nce

[F/

cm2 ]

-1 -0.5 0 0.5 1Gate Voltage [V]

10kHz 100kHz 1MHz

20 x 20m2 1.5

1

0.5

0

Cap

acita

nce

[F/

cm2 ]

-1.5 -1 -0.5 0 0.5Gate Voltage [V]

20 x 20m2

10kHz 100kHz 1MHz

2

1.5

1

0.5

0

Cap

acita

nce

[F/

cm2 ]

-1.5 -1 -0.5 0 0.5Gate Voltage [V]

20 x 20m2

10kHz 100kHz 1MHz

FGA500oC 30min FGA700oC 30min FGA800oC 30min

A fairly nice La-silicate/Si interface can be obtained with high temperature annealing. (800oC)

However, high-temperature anneal is necessary for the good interfacial property

Page 33: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

33

① silicate-reaction-formedfresh interface

metal

Si sub.

metal

Si sub.

La2O3 La-silicateSi Si

Fresh interface with silicate reaction

J. S. Jur, et al., Appl. Phys. Lett., Vol. 87, No. 10, (2007) p. 102908

② stress relaxation at interface by glass type structure of La silicate.

La atomLa-O-Si bonding

Si sub.

SiO4tetrahedron network

FGA800oC is necessary to reduce the interfacial stress

S. D. Kosowsky, et al., Appl. Phys. Lett., Vol. 70, No. 23, (1997) pp. 3119

Physical mechanisms for small Dit

Page 34: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

34

No interfacial layer can be confirmed with Si/TiN/W

La2O3Si/TiN/W

Page 35: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

300

250

200

150

100

50

0

Elec

tron

Mob

ility

[cm

2 /Vse

c]

10.90.80.70.60.5EOT [nm]

at 1MV/cmT = 300K

Open : Hf-based oxides

Gate leakage is two orders of magnitude lower than that of ITRS.

Electron mobility is comparable to record mobility with Hf-based oxides.

10-2

10-1

100

101

102

103

104

J g a

t Vg

= 1V

[A/c

m2 ]

0.80.750.70.650.60.550.5EOT [nm]

A = 10 x 10m2

ITRS requirements

MIPS Stacks

This work (MIPS Stacks)

T. Ando, et al., (IBM) IEDM 2009, p.423

T. Kawanago, et al., (Tokyo Tech.) T-ED, vol. 59, no. 2, p. 269, 2012

35

Benchmark of La‐silicate dielectrics

Page 36: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

EOT Mobility Vth SS DIBLGate stack Ref.

0.5nmMetal(A)/Cap/HfO2 110cm2/Vs

(at 0.8MV/cm)IMEC

IEDM20090.3V

(Lg=1um)

0.52nmTiN/Cap/HfO2 110cm2/Vs

(at 1x1013cm-2)IBM

VLSI2011~0.4V

(Lg=24nm) 90mV/dec 147mV/V

0.59nmMetal/HfO2 130cm2/Vs

(at 1MV/cm)0.45V

(Lg=1um) 75mV/decSematechVLSI2009

0.65nmMetal/Hf-basedSamsungVLSI2011

0.3~0.4V(Lg=~30nm) 90mV/dec 100mV/V

0.95nmMetal/Hf-basedIntel

IEDM2009~0.3V

(Lg=30nm) 100mV/dec ~200mV/V

0.62nmW/La-silicateTokyo Tech.T-ED2012

-0.08V(Lg=10um) ~70mV/dec

155cm2/Vs (at 1MV/cm)

0.55nmTiN/Cap/HfO2 140cm2/Vs

(at 1MV/cm)IBM

VLSI2009

36

Si benchmark (nMOSFET)

Page 37: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2

EOT = 0.53nm

L/W = 20/20m

T = 300K

Nsub = 3×1016cm-3

Eeff [MV/cm]El

ectr

on M

obili

ty [c

m2 /V

sec]

Recent results by my group.

Page 38: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

substrate

①La gas feed ②Ar purge ③H2O feed ④Ar purge

La

ligand HO

substrate substrate substrate

1 cycle

La

C 3H7

3

L a

C 3H7

3

L a

C 3H7

3

CLaN

NH

C3H7

C3H7

La(iPrCp)3 La(FAMD)3

Precursor (ligand)

ALD is indispensable from the manufacturing viewpoint- precise control of film thickness and good uniformity

K. Ozawa, et al., (Tokyo Tech. and AIST) Ext. Abstr. the 16th Workshop on Gate Stack Technology and Physics., 2011, p.107.

38

ALD of La2O3

Page 39: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Metal (Silicide) S/D

Page 40: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Extreme scaling in MOSFET Lphy

Dop

antC

onc. Gate

Met

al C

onc.

Gate

Lphy = Leff- Atomically abrupt junction- Lowering S/D resistances- Low temperature process for S/D

Metal Schottky S/D junctions

- Dopant abruptness at S/D- Vt and ION variation- GIDL

Schottky Barrier FET is a strong candidate for extremely scaled MOSFET S DChannel

S DChannel

n+-Sin+-Si

Metal Silicide

Metal Silicide

Page 41: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

41

Surface or interface controlDiffusion species:

metal atom (Ni, Co)Rough interface at silicide/Si- Excess silicide formation- Different Bn presented

at interface- Process temperature

dependent composition

Diffusion species: Si atom (Ti)Surface roughness increases- Line dependent

resistivity change

Line widthof 0.1 m

H. Iwai et al., Microelectron. Eng., 60, 157 (2002).

Top view

Epitaxial NiSi2

O. Nakatsuka et al., Microelectron. Eng.,83, 2272 (2006).

Si(001) sub.Annealing: 650 oC

Page 42: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

42

Si substrate

Ni-silicide

Si substrate

Si substrate

Ni-silicide

Si substrate

Deposition of Ni film

Deposition fromNiSi2 source Annealing Flat interface

Roughinterface

No Si substrateconsumption

Annealing

Deposition of Ni-Si mixed films from NiSi2 source

- No consumption of Si atoms from substrate- No structural size effect in silicidation process- Stable in a wide process temperature range

Page 43: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

43

SEM views of silicide/Si interfaces

NiSi2 source

‐ Rough interfaces‐ Consumed Si substrate ‐ Thickness increase ~100 nm

Ni source

‐ Atomically flat interfaces‐ No Si consumption‐ Temperature‐independent

Si substrate

Ni-silicide

Ni source

Ni-silicide

Si substrate

NiSi2 source

STI

Page 44: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

44

Ideal characteristics (n = 1.00, suppressed leakage current)

Suppressed reverse leakage current- Flat interface and No Si substrate consumption- No defects in Si substrate

Ni

NiSi2

-0.8 -0.6 0.0 0.2Diode voltage (V)

-0.4 -0.210-5

10-4

10-3

10-2

Dio

de c

urre

nt (A

/cm

2 )

1.001.08

n

0.659NiSi2

0.676NiBn (eV)Source

1.001.08

n

0.659NiSi2

0.676NiBn (eV)Source

Generation current

RTA:500oC, 1min

Schottky diode structures

Leakage currentAl contact

Ni source

Al contact

NiSi2 source

Si substrate

Si substrate

NiSi2 sourceApplied Voltage (V)

Cur

rent

den

sity

(A/c

m2 )

Page 45: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

45

Page 46: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

III-V/Ge Channel

Page 47: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

S D

1) High injection Velocity of carriers

2) High mobility of carriers

Both 1) and 2) are important

Arming higher performance at lower supply voltage

Problems: Technologies and CostInterfacial properties at the gate insulator/semiconductor

Contact resistance at Source/Drain and semiconductor

Different semiconductors for n- and p- channel FETs

Integration on Si wafer

vinj

III-V (n-channel) or Ge (p-channel)

47

Why high mobility channel materials?

Page 48: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Ge,III-V bulk properties

S. Takagi., IEDM2011, Short course (Tokyo Uni)48

Page 49: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Tri‐gate InGaAs QW‐FET(Intel)M. Radosavljevic, et al.(Intel), IEDM2011, p.765.

Steepest SS and smallest DIBL ever reported (Wfin = 30nm)

Tri‐gate structure has superiority electrostatic controllability compared to ultra‐thin body planar structure

49

Page 50: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Ge‐nanowire pMOSFET (AIST,Tsukuba)

Using Ni‐Ge alloy as metal S/D

Significantly reduces contact resistance

K. Ikeda, et al. (AIST, Tsukuba), VLSI2012, p.165.

High saturation current and high mobility

μeff = 855 cm2/Vs at Ns =5x1012cm‐2

and saturation drain current of 731μA/μm at Vd = ‐1V

Lg= 65nm Wwire= 20nmVD= -1V

VD= -0.5V

VD=-0.05V

Vg-Vth= -2V

50

Page 51: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Planar(metal S/D, Strain, Buffer…) FinFET Tri‐gate Gate‐all‐around

MOSFET Nanowire

material InGaAs Ge InGaSn InGaAs Ge InGaAs Ge InGaAs Ge InGaAs(multishell)

Ge

Dieletric/EOT

Al2O3/ 3.5 nm

7.6 Ao

HfO2+ Al2O3+GeO2

5nm ALDAl2O3

5nm ALD Al2O3

SiON 1.2 nm5.5 nm(Al2O3+GeO2)

10nm‐ALD Al2O3

HfO2:11nm

HfAlO14.8 nm

3.0 nm(ALD Al2O3)

Mobility ‐ ~600(cm2/Vs)

e: 200h: 400

~700(S/m)

‐ ‐ ‐ 701(S/m)

‐ ~500(S/m)

~850(cm2/Vs)

Lch (nm) 55 W/L=30/5 m 50 m 100 4.5 m 60 183 50 200 200 65

DIBL(mV/V) 84 ‐ ‐ 180 ‐ ~50 ‐ 210 ‐ ‐ ‐

SS(mV/dec) 105 ‐ 61pMOS

33nMOS 145 750 90 130 150 160 ‐ ‐

ION(A/m)

278(VD=0.5V)

3(VD=‐0.2V)

4 (n,p)(VD=0.5V)

‐ 10(VD=0.5V)

400(VD=0.5V)

235(VD=‐1V)

180(VD=0.5V)

604(VD=‐0.5V)

100(VD=0.5V)

731(VD=‐1V)

ResearchGroup

Tokyo UniVLSI 2012

Tokyo UniVLSI 2012

Stanford Uni VLSI 2012

Purdue Uni IEDM 2009

Stanford Uni ELD 2007

IntelIEDM 2011

NNDL Taiwan

IEDM 2011

Purdue Uni IEDM 2011

ASTARSingapore IEDM 2009

Hokkaido Uni, IEDM

2011

AIST Tsukuba VLSI 2012

150K

120K

(cm2/Vs)

Ns: 5e12

III-V/Ge benchmark for various structures

51

Page 52: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0 0.4 0.8 1.21.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0 0.4 0.8 1.2

Metal S/D InGaAs‐OILch= 55nm, EOT 3.5nmVDS=0.5V(Tokyo Uni.)[5]

InGaAs NanowireLg= 200nm, Tox 14.8nmVDS=0.5V(Hokkaido Uni.)[4]

InGaAs FinFETLch=130nmEOT 3.8nmVDS=0.5V (NUS)[3]

InGaAs Tri‐gateLg=60 nm,EOT 12AVDS=0.5V (Intel) [2]

InGaAs GAALch=50nm, Dielectric: 10nm Al2O3VDS=0.5V (Purdue Uni.) [1]

Ge Tri‐gateLg=183nm, EOT 5.5nmVD=‐1V (NNDL Taiwan)[9]

Ge GAA Lg= 300nm, dielectric: GeO2(7nm)‐HfO2(10nm)VD= ‐0.8V (ASTAR Singapore)[8]

Ge FinFETLg=4.5 mm, Dielectric: SiON, VDS=‐1V(Stanford Uni.)[7]

GOI Tri‐gateLg: 65nm. EOT 3.0nmVD=‐1V (AIST Tsukuba)[6]

Si‐bulk 45nmIntel VDD=1V

I OFF(A/m)

ION (mA/m)

nMOS pMOS

ION (mA/m)[1] J. J. Gu et al., pp.769, IEDM2011 (Purdue).[2] M. Radosavljevic et al., pp.765, IEDM201(Intel).[3] H. –C. Chin et al., EDL 32, 2 (2011) (NUS)[4] K. Tomioka et al., pp.773, IEDM2011 (Hokkaido Uni).

[6] K. Ikeda et al., pp.165, VLSI2012 (AIST, Tsukuba).[7] J. Feng et al., IEEE EDL 28(2007)637 (Stanford Uni)[8] J. Peng et al., pp.931, IEDM2009 (ASTAR Singapore)[9] S. Hsu et al., pp.825, IEDM2011 (NNDL Taiwan)

[5] S. H. Kim et al., pp.177, VLSI2012 (Tokyo Uni)

Si‐bulk 45nmIntel VDD=1V[11]

Si‐FinFET 32nmIntel VDD=0.8V [10]

Si‐FinFET 32nmIntel VDD=0.8V [10]

[10] C. Auth et al., pp.131, VLSI2012 (Intel).

[11] K. Mistry et al., pp.247, IEDM2007 (Intel).

Si‐FinFET 22nmIntel VDD=0.8V [10]

Si‐FinFET 22nmIntel VDD=0.8V [10]

Multi-gate III-V and Si benchmark

52

Page 53: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

2018 2022 2024 2026

Lg (nm)

Vdd (V)

EOT (nm)Mobility enhancement

factor due tochannel material

Year of Production 2020

14 11.7 9.3 7.4 5.80.63 0.61 0.58 0.56 0.540.68 0.62 0.56

8 8 8 8 80.50 0.45

4 4 4 4 4GeIII-V

0.28 0.24 0.20 0.16 0.130.41 0.36 0.30 0.25 0.21Ge

III-VCg Ideal(fF/m)

229 230 238 245 251230 231 241 249 254Ge

III-VVt,sat (mV)

0.13 0.11 0.09 0.07 0.060.21 0.17 0.13 0.10 0.08Ge

III-VCV/I (ps)

Manufacturing solutionsare NOT known

53

ITRS 2011 for III‐V/Ge

Page 54: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

2018 2022 2024 2026

Lg (nm)

Year of Production 2020

14 11.7 9.3 7.4 5.84.29 4.58 5.32 5.93 6.642.26 2.44 2.86 3.19 3.63Ge

III-V

2.200 2.343 2.523 2.703 2.8841.769 1.932 2.121 2.330 2.555Ge

III-V

131 113 96 82 70149 126 105 85 72Ge

III-V

0.18 0.15 0.13 0.11 0.090.23 0.20 0.16 0.14 0.11Ge

III-V

Equivalent Injection velocity

Vinj (107 cm/s)

Id,sat(mA/m)

Isd,leak (nA/m) 100 100 100 100 100Rsd

(Ω-m)

CV2

(fJ/m)

Manufacturing solutionsare NOT known

54

ITRS 2011 for III‐V/Ge, Contd

Page 55: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

C based materials

55

Page 56: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

A. D. Franklin et al., pp.525, IEDM2011 (IBM)

Sub-10nm carbon nanotube transistor

Transistor operation with Lch of 9nm 56

Page 57: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Z. Chen et al., pp.509, IEDM2008 (IBM)

Graphene Field-effect TransistorJ. B. Oostinga et al., Nature Materials 7 (2008) 151

・Ambipolar Characteristics

・Bi-layer graphene and double gates can open the gap

57・ Ioff is very large No bandgap

Page 58: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

58

Conclusions

Si-MOSFET is the most fundamental and smallest functional device available for manufacturing.

In order to keep the scaling of MOSFETs, aggressive introduction of new materials is inevitable.

Page 59: #2653 Introduction of New Materials into CMOS …...#2653 Introduction of New Materials into CMOS Devices ESC Sympon Purity Silicon(E6) 8:30 –9:00 am, October, 10, 2012 @Rm320, Level

Thank you for your attention!

59