20
Institute of Solid State Physics Technische Universität Graz 24. Semiconductors June 21, 2018

24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Institute of Solid State PhysicsTechnische Universität Graz

24. Semiconductors

June 21, 2018

Page 2: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Thermal conductivity

vK Dc

Uj Ej

Average particle energy

u En

internal energy density

Uj ED n D u

U vduj D T Dc TdT

Uj K T

Thermal conductivity

0 as 0K T

Page 3: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Wiedemann - Franz law

Einstein relation:

vDcKne

Bk TDe

2

2

3 BkK Te

3v Bc nkDulong - Petit:

8 22.22 10 W / KelKLT

Wiedemann Franz law

Lorentz number

Page 4: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Lorenz number

At low temperatures the classical predictions for the thermal and electrical conductivities are too high but their ratio is correct. Only the electrons within kBTof the Fermi surface contribute.

8 22.22 10 W / KelKLT

Page 5: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Silicon

silicon crystal = diamond crystal structure

• Important semiconducting material• 2nd most common element on earths crust (rocks, sand, glass, concrete)• Often doped with other elements• Oxide SiO2 is a good insulator

Page 6: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density
Page 7: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Institute of Solid State PhysicsTechnische Universität Graz

Semiconductors

From Ibach & Lueth

Conduction band

Valence band

( ) ( )n D E f E dE

Page 8: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Absorption and emission of photons

absorption

emission

semiconductorabsorption

Page 9: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Direct and indirect band gaps

Direct bandgap semiconductors are used for optoelectronics

Eg

photonphonons

k

E E

kDirect bandgap Indirect

bandgap

Conduction band

Valence band

Page 10: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Semiconductors

Conduction band

Valence band

Page 11: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Light emitting diodes

Page 12: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

GaN

1st Brillioun zone of hcp

E

kxky

Page 13: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Minimum of the conduction band

Free electron dispersion relation

k

E 220

*2 c

k kE E

m

Ec

Conduction band minimum

Near the conduction band minimum, the bands are approximately parabolic.

Page 14: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Effective mass

2*

2

2( )x

md E k

dk

The parabola at the bottom of the conduction band does not have the same curvature as the free-electron dispersion relation. We define an effective mass to characterize the conduction band minimum.

This effective mass is used to describe the response of electrons to external forces in the particle picture.

220

*2 c

k kE E

m

E

kxky

Page 15: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Top of the valence band

2*

2

2

0( )x

md E k

dk

In the valence band, the effective mass is negative.

Charge carriers in the valence band are positively charged holes.

m*h = effective mass of holes

E

k

2*

2

2( )h

x

md E k

dk

Page 16: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Holes

filled states

band empty states

empty states

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

j ev k D k f k dk

ev k D k f k dk ev k D k f k dk

ev k D k f k dk

A completely filled band does not contribute to the current.

Holes have a positive charge and a positive mass.

Page 17: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Effective Mass

XL

220

*2 c

k kE E

m

2*

2

2

e

x

md Edk

220

*2 v

k kE E

m

2*

2

2

h

x

md Edk

Page 18: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Paul Adrien Maurice Dirac Albert Einstein

Holes

Erwin Schrödinger

Page 19: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Paul Adrien Maurice Dirac Albert Einstein

Holes

Erwin Schrödinger

2 22

2 2

d u d ucdt dx

2

2

du d ukdt dx

Wave equation

Heat equation

Page 20: 24. Semiconductorslampx.tugraz.at/~hadley/ss1/lectures18/jun21.pdf24. Semiconductors June 21, 2018 Thermal conductivity K Dc v jU Ej Average particle energy uEn internal energy density

Paul Adrien Maurice Dirac Albert Einstein

Holes

Erwin Schrödinger

32

1j j

j

mc p c it

Dirac equation

E = mc2