19
2,3-Sigmatropic Rearrangements in Organic Synthesis October 25, 2006 Matt Haley Crimmins Group

2,3-Sigmatropic Rearrangements in Organic …3-Sigmatropic Rearrangements in Organic Synthesis October 25, 2006 Matt Haley Crimmins Group Sigmatropic Rearrangements-concerted pericyclic

Embed Size (px)

Citation preview

2,3-Sigmatropic Rearrangements in Organic Synthesis

October 25, 2006

Matt Haley

Crimmins Group

Sigmatropic Rearrangements-concerted pericyclic reactions traditionally thought to be governed by orbital symmetry-a group attached by a sigma bond migrates to the terminus of an adjacent pi-electron system

2,3-sigmatropic rearrangements:-can be defined as a thermal isomerization that proceeds through a six-electron, five-membered cyclic transition state-thermally allowed sigmatropic process according to the Woodward-Hoffman Rule*

XY

XY Y

X

5-membered cyclic transition state

2,3-sigmatropic rearrangements discussed:

-2,3-Wittig rearrangements

-Mislow-Evans rearrangement

-Additional 2,3 rearrangements

*Chem. Rev. 1986, 86, 885-902

2,3-Wittig Rearrangement(anionic)

O O O

O

G

Me

G = C CH

C Me

n-BuLi

THF, -85 °CGHO

Me

99% ee99% ee

O

G

G = Ph

C CH

C TMS

n-BuLi

THF, -85 °CGHO

Me

95~98% ee100% ee100% ee

Me

Chem. Rev. 1986, 86, 885-902

erythro

threo

A general trend is observed that E-alkenes show threo selection and Z-alkenes show Erythro selection. Exceptions include Substrates where G = CO2H and Ph

-regiospecific carbon-carbon bond formation and allylic transposition of oxygen function-generation of specific olefin geometries-stereoselective creation of vicinal chiral centers-transfer of chirality-competition is seen with 1,2-shift, dependent on substrate structure and rxntemperature

Diastereoselection Study

O

G

Me

O

G

Me

GHO

Me

GHO

Me

O

H

H

GMe

H

O

H

G

HMe

H

O

H

G

HH

Me

O

H

H

GH

Me

threoerythro

Diastereoselectivity: Proposed Transition States

Chem. Rev. 1986, 86, 885-902

Nakai and Mikami Marshall, Houk, and Wu

J. Org. Chem. 1990, 55, 1421-1423

endo exo

Transition structure based onMP2/6-31+G computations:

sterics place substituentspreferentially in the exo positionπ-acceptors like carbonyls

and electropositive groupslike silyl ethers prefer endo position

Cation plays large role

Piers, et al. Organic Letters, 2000, 2, 1407-1410

Me

OH

H

Me

Me KH, Bu3SnCH2I

Me

O

H

Me

Me

SnBu3

-diterpenoid from the cyathane family-characterized by Ayer and Taube in 1972-anti-fungal and promotes synthesis of nerve growth factor

Me

HO

1. Me2NNH22. CSA (equil .)

71% (2 s teps)

Me

HN

N

1. KDA,

2. A cOH, NaOAc, H2O

69% (2 steps )

Me3Ge

Me

HO

Me3GeI

1. NaOMe, 66%2. LDA , MeI, 85%3. NIS , 90%4. BuLi , 86%

Me

OH

H Me

CHO

O

Me

HO

Me

H

Sarcodonin G

Me

Piers, et al. Organic Letters, 2000, 2, 1407-1410

Me

O

H

Me

Me BuLi

88% (2 steps)

H

Me

O

H

Me

Me

Me

O

H

Me

Me

Me

H

Me

Mequench

HOH H

Completion of Sarcodonin G

Piers, et al. Organic Letters, 2000, 2, 1407-1410

Me

H

Me

Me

HO

1. KH, PMBCl, 96%

2. OsO4, NaIO4, 65%3. NaH, (EtO)2CO, 74%

Me

H

Me

MeO H

PMBO

CO 2E t

TBAF; CH2I2

78%

Me

H

Me

MeO

PMBO

CO 2E t

I

SmI2

CO 2E t

O

Me

PMBO

Me

H Me

1. DIBAlH2. DMP

86% (2 steps)

CO2Et

O

Me

PMBO

Me

H

CHO

O

Me

PMBO

Me

H

H

1. piper id ine, P hSeCl

2. KIO4, 78% (2 steps)

3. DBN, 95%4. DDQ , 91%

CHO

O

Me

HO

Me

HMe Me Me

Mislow-Evans(neutral)

Acc. Chem. Res. 1974, 7, 147-155

SO

SO O

S

R R R

R3P:

O

-it is proposed that the rearrangement proceeds exclusively through a concerted mechanism

-equilibrium lies largely to the left, sulfonate not detectable by NMR

-increased heating can result in 1,3-shift of sulfoxide:

SPh

O

!Ph

S

O

J. Org. Chem. 1989, 54, 2779-2780

There is a very high E-olefin selectivity when there is substitution β to the sulfoxide (substitution at R1)

R1 X

H

R3R2

SOR4

R1

R2

X

H

OsR4

R3

R1 > R2

R1 OSR4

X

R3

R2

Olefin Geometry

Synthesis of the Imine Ring System of Pinnatoxins

OO

OH

Me

N

Me

OHO Me

H

R

Me

Pinnatoxins: A: R = CO2H C: R =

B: R =CO2

-

NH3+

CO2-

NH3+

-pinnatoxins structurally elucidated by Uemura et al. in 1995-structurally unique cyclic imine, stable to aqueous acids

Organic Letters, 2005, 7, 1629-1631

O

OPMBO

OAc

N

Me

Me

O O

O

PivO

PMBO

SO

O

O

O

PMBO

PivO Me

Me

OH

cascade Claisen-Mislow-Evans

Construction of Cascade Reaction Precursor

Organic Letters, 2005, 7, 1629-1631

from ascorbic acid

O

HO

OHO

1. LAH, 98%

2. NaH, PivCl3. I2, Ph3P, ImH, 74% (2 steps) PivO

IA

O

O

O

TIPS O

MgB r1. , 93%

2. OsO4, NaIO43. TPAP, NMO , 68% ( 2 s teps)

O O

OOTIPS

O

1. LDA; Et2Zn; A , DMPU

2. PhNTf2, KHMDS

80% (2 steps )O O

OOTIPS

TfO

PivO

1. PMBOCH2CH2CH2ZnX, Pd0, 75%

2. TBAF, 91%

3. Swern

4. (S )-methyl p- to lyl s ul fox ide, LDA

5. TMSCl, KHMDS

6. LDA, 65% (4 steps)

O O

OOTIPS

TfO

PivO

O O

O

PivO

PMBO

SO

O O

O

PivO

PMBO

SO

(EtO)3P, s-collidine

MeOCH2OCH2CH2OH

150 °C, 15h, ~90%

O

O

O

PMBO

PivO Me

Me

OH

Cascade Claisen-Mislow-Evans

OO

O

SR1

R2

A r(O)

O

O

O

PMBO

P ivO Me

Me

S OA r O

O

O

PMBO

P ivO Me

Me

SO

A r

O

O

O

PMBO

PivO Me

Me

SO

ArO

O

O

PMBO

PivO Me

Me

OH

(EtO)3P:

Organic Letters, 2005, 7, 1629-1631

O

OPMBO

OAc

N

Me

Me

can be done in microvave in 20 min with ~10% yield hit

O

Me

HO H

OO

O

H

OMe

H

Me

MeH

Me

MeH

TBDPSOO

H

OMe

H

Me

MeH

Me

MeH

Ph3P

O

H

OH

O TMS

O

OTBS

TIPSO

H

Me

H

+

(+)-Milbemycin D

-milbemycins first reported in 1975 by Mishima-among the most potent antiparasitic and insecticidal agents known-notable synthetic challenges include spiroketal moiety and hexahydrobenzofuran

Crimmins et al. J. Am. Chem. Soc. 1996, 118, 7513-7528

Additional 2,3-Sigmatropic RearrangementsSynthesis of (+)-Milbemycin D

O

1. Ph3P=CHCO2Et, 98%2. LAH

3. TBSCl, 95% (2 steps )

TBSO

HC CCHO1. , 98%2. LAH, 98%

Me

OTBS

Me

O TBSOH OH

+

1. SAE2. Swern3. MeMgCl4. Swern

73% ( 4 steps)Me

O TBS

Me

OTBSO O

+O O

1.5 : 1

Me

OTBSO

O

LDA , TMSCl

Me

OTBSOTMS

TMSO

mCPBA

60% (2 steps )Me

OTBSO

TMSO

HO PhSeCl, 78%O

OR

H

O

H

H

Me

SePh

OTBS

Preparation of 2,3-Rearrangement Precursor

Crimmins et al. J. Am. Chem. Soc. 1996, 118, 7513-7528

O

OR

H

O

H

H

Me

SePh

OTBS

H2O2

66% ( 2 steps)

O

OR

H

OH

H

Me

Se

OTBS

Ph

O

O

H

O

OTMS

OTBS

O

H

Me

Se

PhO

OR

H

OH

H

Se

OTBS

PhO

Me

wor kupO

H

O

O TMS

O TBS

HO

H

Me

O

H

O

OTMS

OTBS

HO

H

Me

O

HOTMS

O

OTBS

TIPSO

H

Me

HTBDPSO

OHO Me

H

Me

MeH

Me

MeH

Ph3P

+

1. MeLi -LiBr

2. I2

(73% 2 steps )

O

H

TBDPSO

O

HO Me

H

Me

MeH

Me

MeH

O TMST IPSO

Me

H OTBS

O

Me

HO H

OO

O

HO Me

H

Me

MeH

Me

MeH

OH

Crimmins et al. J. Am. Chem. Soc. 1996, 118, 7513-7528

Rearangement and Endgame

O

MeMe

H

O

Bakkenolide A

Additional 2,3-Sigmatropic Rearrangements Cont’dSynthesis of Bakkenolide A

-Approximately 50 bakkanes isolated from plants to date-they are sesquiterpenoids possessing a cis-hydrindane skeleton with two quat. centers-biological activities include selective cytotoxicity, antifeedant effects and inhibition of platelet aggregation

Organic Letters, 2004, 6, 3345J. Am. Chem. Soc. 1977, 99, 5453

Me

Me

O

CHSnC4H9

Cl

KotBu84%

Me

O

CHSnC4H9

Me

KOH

78%

Me

O

MeMe

O

Me

+

OsO4, NaIO4

46%

only s yn pdt

taken on

Me

O

OMe

Me

O

O

Me 1. KOtBu, 63%

2. H2/Pd-C, 93%O

H

Me

Me

Li

H

Me

Me

HO60%

PB r3

H

Me

MeBr

Synthesis of Bakkenolide A

H

MeMe

Br S

O

O

HN

HN C

S

SCH3

NaH

75% (2 steps) H

Me

Me

SSCH3

NNHTs

J. Am. Chem. Soc. 1977, 99, 5453

H

Me

Me

SSCH3

NNHTs

H

Me

Me

SSCH3

N

TsN

H

Me

Me

S

N

T sN

SCH3H

Me

Me

S

N

TsN

SCH3 H

Me

Me

SCH3

S

NaH

62%

2,3-Sigmatropic RearrangementSynthesis of Bakkenolinde A

H

MeMe

SCH3

S

HgO, HgCl2, H2O

H

MeMe

SCH3

O

H2SeO3 O

MeMe

H

O

Additional Interesting 2,3 Rearrangements

SeAr*

Ar=

Fe

NMe2

Me

N

OMe

Ts

mCPBA or

Ti(OiPr)2, DIPT Me OH

Ph SeR

NHTs

*

R =OH

, tBuOCl, then TsNHLi 90% ee

Angew. Chem. Int. Ed. 2000, 39, 3740

NN2

O

( )m

( )n Cu(acac)2

C6H6, refluxN

H

O( )m

( )n

NO

N2

Cu(acac)2

C6H6, refluxN

O

H

J. Chem. Soc., Perkin Trans. 1. 2001, 3325