28
22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data Sheet HMC329A Rev. 0 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Downconverter Conversion loss 9 dB typical for 22 GHz to 29 GHz 11 dB typical for 29 GHz to 38 GHz LO to RF isolation 37 dB typical for 22 GHz to 29 GHz 36 dB typical for 29 GHz to 38 GHz LO to IF isolation 30 dB typical for 22 GHz to 29 GHz 27 dB typical for 29 GHz to 38 GHz RF to IF isolation 31 dB typical for 22 GHz to 29 GHz 34 dB typical for 29 GHz to 38 GHz Input IP3 17 dBm typical for 22 GHz to 29 GHz 21 dBm typical for 29 GHz to 38 GHz IF range DC to 8 GHz Passive, no dc bias required Small size 0.87 × 0.58 × 0.102 mm APPLICATIONS Point to point radios Point to multipoint radios and very small aperture terminal (VSAT) radios Test equipment and sensors Military end use FUNCTIONAL BLOCK DIAGRAM HMC329A 2 LO RF IF 1 3 4 5 6 7 16863-001 Figure 1. GENERAL DESCRIPTION The HMC329A chip is a general-purpose, double balanced mixer that can be used as an upconverter or downconverter from 22 GHz to 38 GHz in a small chip area of 0.87 mm × 0.58 mm. This mixer requires no external component or matching circuitry. The HMC329A provides excellent local oscillation (LO) to radio frequency (RF) and LO to intermediate frequency (IF) suppression due to optimized balun structures. The mixer operates with LO drive levels at 13 dBm or above.

22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer

Data Sheet HMC329A

Rev. 0 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Downconverter

Conversion loss 9 dB typical for 22 GHz to 29 GHz 11 dB typical for 29 GHz to 38 GHz

LO to RF isolation 37 dB typical for 22 GHz to 29 GHz 36 dB typical for 29 GHz to 38 GHz

LO to IF isolation 30 dB typical for 22 GHz to 29 GHz 27 dB typical for 29 GHz to 38 GHz

RF to IF isolation 31 dB typical for 22 GHz to 29 GHz 34 dB typical for 29 GHz to 38 GHz

Input IP3 17 dBm typical for 22 GHz to 29 GHz 21 dBm typical for 29 GHz to 38 GHz

IF range DC to 8 GHz

Passive, no dc bias required Small size

0.87 × 0.58 × 0.102 mm

APPLICATIONS Point to point radios Point to multipoint radios and very small aperture terminal

(VSAT) radios Test equipment and sensors Military end use

FUNCTIONAL BLOCK DIAGRAM

HMC329A

2LO RF

IF

1

3

4

567

1686

3-00

1

Figure 1.

GENERAL DESCRIPTION The HMC329A chip is a general-purpose, double balanced mixer that can be used as an upconverter or downconverter from 22 GHz to 38 GHz in a small chip area of 0.87 mm × 0.58 mm. This mixer requires no external component or

matching circuitry. The HMC329A provides excellent local oscillation (LO) to radio frequency (RF) and LO to intermediate frequency (IF) suppression due to optimized balun structures. The mixer operates with LO drive levels at 13 dBm or above.

Page 2: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 2 of 28

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 5

Thermal Resistance ...................................................................... 5 ESD Caution .................................................................................. 5

Pin Configuration and Function Descriptions ............................. 6 Interface Schematics..................................................................... 6

Typical Performance Characteristics ............................................. 7 Downconverter Performance at IF = 1 GHz, Upper Sideband ............................................................................ 7 Downconverter Performance at IF = 4 GHz, Upper Sideband ............................................................................ 9 Downconverter Performance at IF = 8 GHz, Upper Sideband .......................................................................... 10 Downconverter Performance at IF = 1 GHz, Lower Sideband .......................................................................... 11 Downconverter Performance at IF = 4 GHz, Lower Sideband .......................................................................... 13 Downconverter Performance at IF = 8 GHz, Lower Sideband .......................................................................... 14

Upconverter Performance at IF = 1 GHz, Upper Sideband ........ 15 Upconverter Performance at IF = 4 GHz, Upper Sideband ........ 16 Upconverter Performance at IF = 8 GHz, Upper Sideband ........ 17 Upconverter Performance at IF = 1 GHz, Lower Sideband ........ 18 Upconverter Performance at IF = 4 GHz, Lower Sideband ........ 19 Upconverter Performance at IF = 8 GHz, Lower Sideband ........ 20 Isolation and Return Loss ......................................................... 21 IF Bandwidth, Downconverter ................................................. 23 Spurious and Harmonics Performance ................................... 24

Theory of Operation ...................................................................... 25 Applications Information .............................................................. 26

Typical Application Circuit ....................................................... 26 Assembly Diagram ..................................................................... 26

Mounting and Bonding Techniques for Millimeter Wave GaAs MMICs ............................................................................................. 27

Handling Precautions ................................................................ 27 Mounting ..................................................................................... 27 Wire Bonding .............................................................................. 27

Outline Dimensions ....................................................................... 28 Ordering Guide .......................................................................... 28

REVISION HISTORY 7/2018—Revision 0: Initial Version

Page 3: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 3 of 28

SPECIFICATIONS ELECTRICAL SPECIFICATIONS—22 GHz TO 29 GHz RF FREQUENCY RANGE TA = 25°C, IF = 1 GHz, LO drive level = 13 dBm, RF frequency range = 22 GHz to 29 GHz, all measurements performed as a downconverter with the upper sideband selected, unless otherwise noted.

Table 1. Parameter Symbol Min Typ Max Unit FREQUENCY RANGE

Radio Frequency RF 22 29 GHz Local Oscillator LO 22 29 GHz Intermediate Frequency IF DC 8 GHz

CONVERSION LOSS 9 12.5 dB NOISE FIGURE NF 11 dB ISOLATION

LO to RF 37 dB LO to IF 20 30 dB RF to IF 19 31 dB

INPUT THIRD-ORDER INTERCEPT IP3 10 17 dBm INPUT SECOND-ORDER INTERCEPT IP2 42 dBm INPUT POWER

1 dB Compression P1dB 9.5 dBm UPCONVERTER PERFORMANCE

Conversion Loss 7 dB Input Third-Order Intercept IP3 16 dBm

RETURN LOSS RF 8 dB LO 9.5 dB

Page 4: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 4 of 28

ELECTRICAL SPECIFICATIONS—29 GHz TO 38 GHz RF FREQUENCY RANGE TA = 25°C, IF = 1 GHz, LO drive level = 13 dBm, RF frequency range = 29 GHz to 38 GHz, all measurements performed as a downconverter with the upper sideband selected, unless otherwise noted.

Table 2. Parameter Symbol Min Typ Max Unit FREQUENCY RANGE

Radio Frequency RF 29 38 GHz Local Oscillator LO 29 38 GHz Intermediate Frequency IF DC 8 GHz

CONVERSION LOSS 11 14.5 dB NOISE FIGURE NF 14 dB ISOLATION

LO to RF 36 dB LO to IF 18 27 dB RF to IF 19 34 dB

INPUT THIRD-ORDER INTERCEPT IP3 16 21 dBm INPUT SECOND-ORDER INTERCEPT IP2 46 dBm INPUT POWER

1 dB Compression P1dB 13.5 dBm UPCONVERTER PERFORMANCE

Conversion Loss 10 dB Input Third-Order Intercept IP3 14 dBm

RETURN LOSS RF 8.5 dB LO 6.5 dB

Page 5: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 5 of 28

ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Rating RF Input Power 18 dBm LO Input Power 27 dBm IF Input Power 18 dBm IF Source and Sink Current 2 mA Channel Temperature 150°C Continuous Power Dissipation, PDISS

(TA = 85°C, Derate 5.88 mW/°C Above 85°C) 382 mW

Storage Temperature Range −65 to +150°C Operating Temperature Range −55 to +85°C Electrostatic Discharge (ESD) Sensitivity

Human Body Model (HBM) 1500 V Field Induced Charged Device Model

(FICDM) 1250 V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

Table 4. Thermal Resistance Package Type θJC Unit C-7-5 170 °C/W

ESD CAUTION

Page 6: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 6 of 28

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

HMC329ATOP VIEW

(Not to Scale)

1686

3-00

2

1

2

LO

GND GND

3

RF

4

56IF GNDGND

7

Figure 2. Pin Configuration

Table 5. Pin Function Descriptions Pin No. Mnemonic Description 1, 4, 5, 7,

Die Bottom GND Ground. These pads and die bottom must be connected to RF and dc ground. See Figure 3 for the GND

interface schematic. 2 LO Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic. 3 RF Radio Frequency Port. This pin is ac-coupled and matched to 50 Ω. See Figure 6 for the RF interface

schematic. 6 IF Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block

this port externally using a series capacitor with a value selected to pass the necessary IF frequency range. For operation to dc, this pin must not source or sink more than 2 mA of current or die malfunction and possible die failure can result. See Figure 5 for the IF interface schematic.

INTERFACE SCHEMATICS GND

1686

3-00

3

Figure 3. GND Interface Schematic

1686

3-00

4

LO

Figure 4. LO Interface Schematic

IF

1686

3-00

5

Figure 5. IF Interface Schematic

1686

3-00

6

RF

Figure 6. RF Interface Schematic

Page 7: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 7 of 28

TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER PERFORMANCE AT IF = 1 GHz, UPPER SIDEBAND

0

–20

–16

–12

–4

–8

20 22 28 3424 30 3626 32 38 40

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-00

7

Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures LO = 13 dBm

30

0

5

10

25

20

15

20 22 28 3424 30 3626 32 38 40

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-00

8

Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

90

0

20

80

60

40

10

70

50

30

20 22 28 3424 30 3626 32 38 40

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-00

9

Figure 9. Input IP2 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

0

–20

–16

–12

–4

–8

20 22 28 3424 30 3626 32 38 40

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-01

0

Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

5

10

25

20

15

20 22 28 3424 30 3626 32 38 40

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-01

1

Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

90

80

0

20

60

40

10

70

50

30

20 22 28 3424 30 3626 32 38 40

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-01

2

Figure 12. Input IP2 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 8: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 8 of 28

20

0

8

16

4

12

20 22 28 3424 30 3626 32 38

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-01

3

Figure 13. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 13 dBm

25

0

10

20

5

15

20 22 28 3424 30 3626 32 38

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz) 1686

3-01

4

Figure 14. Noise Figure vs. RF Frequency at TA = 25°C, LO = 13 dBm

20

0

8

16

4

12

20 22 28 3424 30 3626 32 38

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-01

5

Figure 15. Input P1dB vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 9: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 9 of 28

DOWNCONVERTER PERFORMANCE AT IF = 4 GHz, UPPER SIDEBAND

22 28 3424 30 3626 32 4038

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

0

–20

–16

–12

–4

–8

+85°C+25°C–40°C

1686

3-01

6

Figure 16. Conversion Gain vs. RF Frequency at Various Temperatures,

LO = 13 dBm

22 28 3424 30 3626 32 4038RF FREQUENCY (GHz)

+85°C+25°C–40°C

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

1686

3-01

7

Figure 17. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

22 28 3424 30 3626 32 4038

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

0

–20

–16

–12

–4

–8

15dBm13dBm11dBm9dBm7dBm

1686

3-01

8

Figure 18. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

22 28 3424 30 3626 32 4038RF FREQUENCY (GHz)

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

15dBm13dBm11dBm9dBm7dBm

1686

3-01

9

Figure 19. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 10: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 10 of 28

DOWNCONVERTER PERFORMANCE AT IF = 8 GHz, UPPER SIDEBAND

26 28 3430 3632 4038

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

0

–20

–16

–12

–4

–8

+85°C+25°C–40°C

1686

3-02

0

Figure 20. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

26 28 3430 3632 4038RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-02

1

Figure 21. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

26 28 3430 3632 4038

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

0

–20

–16

–12

–4

–8

15dBm13dBm11dBm9dBm7dBm

1686

3-02

2

Figure 22. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

26 28 3430 3632 4038RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-02

3

Figure 23. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 11: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 11 of 28

DOWNCONVERTER PERFORMANCE AT IF = 1 GHz, LOWER SIDEBAND 0

–20

–16

–12

–4

–8

19 21 27 3323 29 3525 31 37 39

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-02

4

Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures,

LO = 13 dBm

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

19 21 27 3323 29 3525 31 37 39

1686

3-02

5

Figure 25. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

20

0

8

16

4

12

20 22 28 3424 30 3626 3221 23 29 3525 31 3727 33 38

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz) 1686

3-03

0

Figure 26. Input P1dB vs. RF Frequency, LO = 13 dBm

0

–20

–16

–12

–4

–8

19 21 27 3323 29 3525 31 37 39

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-02

7

Figure 27. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)19 21 27 3323 29 3525 31 37 39

15dBm13dBm11dBm9dBm7dBm

1686

3-02

8

Figure 28. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 12: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 12 of 28

90

0

20

80

60

40

10

70

50

30INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

19 21 27 3323 29 3525 31 37 39

1686

3-02

6

Figure 29. Input IP2 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

90

0

20

80

60

40

10

70

50

30INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)19 21 27 3323 29 3525 31 37 39

15dBm13dBm11dBm9dBm7dBm

1686

3-02

9

Figure 30. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25°C

Page 13: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 13 of 28

DOWNCONVERTER PERFORMANCE AT IF = 4 GHz, LOWER SIDEBAND 0

–20

–16

–12

–4

–8

19 21 27 3323 2925 31 35

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-03

2

Figure 31. Conversion Gain vs. RF Frequency at Various Temperatures,

LO = 13 dBm

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

19 21 27 3323 2925 31 35

1686

3-03

3

Figure 32. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

0

–20

–16

–12

–4

–8

19 21 27 3323 2925 31 35

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-03

4

Figure 33. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)19 21 27 3323 2925 31 35

15dBm13dBm11dBm9dBm7dBm

1686

3-03

5

Figure 34. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 14: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 14 of 28

DOWNCONVERTER PERFORMANCE AT IF = 8 GHz, LOWER SIDEBAND 0

–20

–16

–12

–4

–8

19 21 2723 2925 31

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-03

6

Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm

19 21 2723 2925 31RF FREQUENCY (GHz)

+85°C+25°C–40°C

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

1686

3-03

7

Figure 36. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

0

–20

–16

–12

–4

–8

19 21 2723 2925 31

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-03

8

Figure 37. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

19 21 2723 2925 31RF FREQUENCY (GHz)

30

0

5

10

25

20

15

INPU

T IP

3 (d

Bm

)

15dBm13dBm11dBm9dBm7dBm

1686

3-03

9

Figure 38. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 15: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 15 of 28

UPCONVERTER PERFORMANCE AT IF = 1 GHz, UPPER SIDEBAND 0

–20

–16

–12

–4

–8

20 22 28 3424 30 3626 32 38 40

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-04

0

Figure 39. Conversion Gain vs. RF Frequency at Various Temperatures,

LO = 13 dBm

30

0

5

10

25

20

15

20 22 28 3424 30 3626 32 38 40

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-04

1

Figure 40. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

20

020 40

INPU

T P1

dB (d

Bm

)

4

8

12

16

22 24 26 28 30 32 34 36 38RF FREQUENCY (GHz) 16

863-

046

Figure 41. Input P1dB vs. RF Frequency, LO = 13 dBm

0

–20

–16

–12

–4

–8

20 22 28 3424 30 3626 32 38 40

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-04

3

Figure 42. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

5

10

25

20

15

20 22 28 3424 30 3626 32 38 40

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-04

4

Figure 43. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 16: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 16 of 28

UPCONVERTER PERFORMANCE AT IF = 4 GHz, UPPER SIDEBAND 0

–4

–12

–8

–16

–2022 24 26 40

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)28 30 32 34 36 38

+85°C+25°C–40°C

1686

3-04

8

Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures LO = 13 dBm

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

22 24 26 40RF FREQUENCY (GHz)28 30 32 34 36 38

+85°C+25°C–40°C

1686

3-04

9

Figure 45. Input IP3 vs. RF Frequency at Various Temperatures

LO = 13 dBm

0

–4

–12

–8

–16

–2022 24 26 40

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)28 30 32 34 36 38

15dBm13dBm11dBm9dBm7dBm

1686

3-05

0

Figure 46. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

22 24 26 40RF FREQUENCY (GHz)28 30 32 34 36 38

15dBm13dBm11dBm9dBm7dBm

1686

3-05

1

Figure 47. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 17: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 17 of 28

UPCONVERTER PERFORMANCE AT IF = 8 GHz, UPPER SIDEBAND

26 40RF FREQUENCY (GHz)

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

28 30 32 34 36 38

+85°C+25°C–40°C

1686

3-05

2

Figure 48. Conversion Gain vs. RF Frequency at Various Temperatures,

LO = 13 dBm

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

26 40RF FREQUENCY (GHz)

28 30 32 34 36 38

+85°C+25°C–40°C

1686

3-05

3

Figure 49. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

26 40RF FREQUENCY (GHz)

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

28 30 32 34 36 38

15dBm13dBm11dBm9dBm7dBm

1686

3-05

4

Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

26 40RF FREQUENCY (GHz)

28 30 32 34 36 38

15dBm13dBm11dBm9dBm7dBm

1686

3-05

5

Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 18: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 18 of 28

UPCONVERTER PERFORMANCE AT IF = 1 GHz, LOWER SIDEBAND

20 4022 24 26 28 30 32 34 36 38

+85°C+25°C–40°C

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz) 1686

3-05

6

Figure 52. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

20 40RF FREQUENCY (GHz)

22 24 26 28 30 32 34 36 38

+85°C+25°C–40°C

1686

3-05

7

Figure 53. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

20 4022 24 26 28 30 32 34 36 38

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

15dBm13dBm11dBm9dBm7dBm

RF FREQUENCY (GHz) 1686

3-05

9

Figure 54. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

20 40RF FREQUENCY (GHz)

22 24 26 28 30 32 34 36 38

15dBm13dBm11dBm9dBm7dBm

1686

3-06

0

Figure 55. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 19: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 19 of 28

UPCONVERTER PERFORMANCE AT IF = 4 GHz, LOWER SIDEBAND

20 36RF FREQUENCY (GHz)

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

22 24 26 28 30 32 34

+85°C+25°C–40°C

1686

3-06

2

Figure 56. Conversion Gain vs. RF Frequency at Various Temperatures,

LO = 13 dBm

20 36RF FREQUENCY (GHz)

22 24 26 28 30 32 34

+85°C+25°C–40°C

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

1686

3-06

3

Figure 57. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

20 36RF FREQUENCY (GHz)

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

22 24 26 28 30 32 34

15dBm13dBm11dBm9dBm7dBm

1686

3-06

4

Figure 58. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

20 36RF FREQUENCY (GHz)

22 24 26 28 30 32 34

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

15dBm13dBm11dBm9dBm7dBm

1686

3-06

5

Figure 59. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 20: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 20 of 28

UPCONVERTER PERFORMANCE AT IF = 8 GHz, LOWER SIDEBAND

32

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

20RF FREQUENCY (GHz)

22 24 26 28 30

+85°C+25°C–40°C

1686

3-06

6

Figure 60. Conversion Gain vs. RF Frequency at Various Temperatures, LO = 13 dBm

+85°C+25°C–40°C

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

3220RF FREQUENCY (GHz)

22 24 26 28 30

1686

3-06

7

Figure 61. Input IP3 vs. RF Frequency at Various Temperatures,

LO = 13 dBm

15dBm13dBm11dBm9dBm7dBm

32

0

–4

–12

–8

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

20RF FREQUENCY (GHz)

22 24 26 28 30

1686

3-06

8

Figure 62. Conversion Gain vs. RF Frequency at Various LO Power Levels,

TA = 25°C

30

0

INPU

T IP

3 (d

Bm

)

5

10

15

20

25

3220RF FREQUENCY (GHz)

22 24 26 28 30

15dBm13dBm11dBm9dBm7dBm

1686

3-06

9

Figure 63. Input IP3 vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 21: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 21 of 28

ISOLATION AND RETURN LOSS Downconverter performance at IF = 1 GHz, upper sideband (low-side LO).

70

0

LO T

O R

F IS

OLA

TIO

N (d

B)

10

20

30

40

50

60

20 4022 24 26 28 30 32 34 36 38LO FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-07

0

Figure 64. LO to RF Isolation vs. LO Frequency at Various Temperatures, LO = 13 dBm

70

0

LO T

O IF

ISO

LATI

ON

(dB

)

10

20

30

40

50

60

20 4022 24 26 28 30 32 34 36 38LO FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-07

1

Figure 65. LO to IF Isolation vs. LO Frequency at Various Temperatures,

LO = 13 dBm

70

0

RF

TO IF

ISO

LATI

ON

(dB

)

10

20

30

40

50

60

20 4022 24 26 28 30 32 34 36 38RF FREQUENCY (GHz)

+85°C+25°C–40°C

1686

3-07

2

Figure 66. RF to IF Isolation vs. RF Frequency at Various Temperatures,

LO = 13 dBm

70

0

LO T

O R

F IS

OLA

TIO

N (d

B)

10

20

30

40

50

60

20 4022 24 26 28 30 32 34 36 38LO FREQUENCY (GHz)

15dBm13dBm11dBm9dBm

1686

3-07

3

Figure 67. LO to RF Isolation vs. LO Frequency at Various LO Power Levels,

TA = 25°C

70

0

LO T

O IF

ISO

LATI

ON

(dB

)

10

20

30

40

50

60

20 4022 24 26 28 30 32 34 36 38LO FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-07

4

Figure 68. LO to IF Isolation vs. LO Frequency at Various LO Power Levels,

TA = 25°C

70

0

RF

TO IF

ISO

LATI

ON

(dB

)

10

20

30

40

50

60

20 4022 24 26 28 30 32 34 36 38RF FREQUENCY (GHz)

15dBm13dBm11dBm9dBm7dBm

1686

3-07

5

Figure 69. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,

TA = 25°C

Page 22: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 22 of 28

20 4022 24 26 28 30 32 34 36 38

0

–4

–12

–8

–16

–20

LO R

ETU

RN

LO

SS (d

B)

LO FREQUENCY (GHz) 1686

3-07

6

Figure 70. LO Return Loss vs. LO Frequency, LO = 13 dBm

20 4022 24 26 28 30 32 34 36 38

0

–4

–12

–8

–16

–20

RF

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (GHz) 1686

3-07

7

Figure 71. RF Return Loss vs. RF Frequency, LO = 26.5 GHz, 13 dBm

0

–1

–2

–3

–4

–5

–6

–7

–8

–9

–100 10

IF R

ETU

RN

LO

SS (d

B)

IF FREQUENCY (GHz)1 2 3 4 5 6 7 8 9

1686

3-07

8

Figure 72. IF Return Loss vs. IF Frequency, LO = 26.5 GHz, 13 dBm

Page 23: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 23 of 28

IF BANDWIDTH, DOWNCONVERTER Upper sideband, LO frequency = 26.5 GHz.

0

–4

–8

–12

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

0 10IF FREQUENCY (GHz)

1 2 3 4 5 6 7 8 9

+85°C+25°C–40°C

1686

3-07

9

Figure 73. Conversion Gain vs. IF Frequency at Various Temperatures, LO = 13 dBm

30

25

20

15

10

5

0

INPU

T IP

3 (d

Bm

)

0 10IF FREQUENCY (GHz)

1 2 3 4 5 6 7 8 9

+85°C+25°C–40°C

1686

3-08

0

Figure 74. Input IP3 vs. IF Frequency at Various Temperatures,

LO = 13 dBm

0

–4

–8

–12

–16

–20

CO

NVE

RSI

ON

GA

IN (d

B)

0 10IF FREQUENCY (GHz)

1 2 3 4 5 6 7 8 9

15dBm13dBm11dBm9dBm7dBm

1686

3-08

1

Figure 75. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 25°C

30

25

20

15

10

5

0

INPU

T IP

3 (d

Bm

)

0 10IF FREQUENCY (GHz)

1 2 3 4 5 6 7 8 9

15dBm13dBm11dBm9dBm7dBm

1686

3-08

2

Figure 76. Input IP3 vs. IF Frequency at Various LO Power Levels,

TA = 25°C

Page 24: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 24 of 28

SPURIOUS AND HARMONICS PERFORMANCE Mixer spurious products are measured in dBc from the IF output power level. N/A means not applicable.

LO Harmonics

LO power = 13 dBm, TA =25°C, and all valued are in dBc below the input LO level measured at the RF port.

Table 6. LO Harmonics N × LO Spur at the RF Port LO Frequency (GHz) 1 2 3 24 9 13 N/A 28 6 N/A N/A 31 8 N/A N/A

Downconverter, Upper Sideband, M × N Spurious Outputs

Mixer spurious products are measured in dBc from the IF output power level.

Spur values are (M × RF) − (N × LO).

IF = 1 GHz, RF = 32 GHz at −10 dBm, and LO = 31 GHz at +13 dBm.

N × LO 0 1 2 3 4

M × RF

0 N/A −5 N/A N/A N/A

1 +32 0 +42 N/A N/A

2 N/A +52 +59 +56 N/A

3 N/A N/A +75 +81 +79

4 N/A N/A N/A +71 +85

IF = 4 GHz, RF = 32 GHz at −10 dBm, and LO = 28 GHz at +13 dBm.

N × LO 0 1 2 3 4

M × RF

0 N/A −5 N/A N/A N/A

1 +32 0 +37 N/A N/A

2 N/A +55 +60 +59 N/A

3 N/A N/A +71 +77 +78

4 N/A N/A N/A +70 +79

IF = 8 GHz, RF = 32 GHz at −10 dBm, and LO = 24 GHz at +13 dBm.

N × LO 0 1 2 3 4

M × RF

0 N/A −3 +21 N/A N/A

1 +34 0 +33 +31 N/A

2 N/A +64 +33 N/A N/A

3 N/A N/A +21 N/A N/A

4 N/A N/A N/A N/A N/A

Downconverter, Lower Sideband, M × N Spurious Outputs

Spur values are (M × RF) − (N × LO).

IF = 1 GHz, RF = 35 GHz at −10 dBm, and LO = 36 GHz at +13 dBm.

N × LO 0 1 2 3 4

M × RF

0 N/A 2 N/A N/A N/A

1 37 0 74 N/A N/A

2 N/A 59 61 74 N/A

3 N/A N/A 81 70 68

4 N/A N/A N/A 83 89

Upconverter, Upper Sideband, M × N Spurious Outputs

Mixer spurious products are measured in dBc from the RF output power level.

IFIN = 1 GHz at −10 dBm, and LO = 31 GHz at 13 dBm.

N × LO 0 1 2 3 4

M × IFIN

−4 92 81 N/A N/A N/A

−3 83 72 N/A N/A N/A

−2 75 50 N/A N/A N/A

−1 25 0 N/A N/A N/A

0 N/A 7 N/A N/A N/A

+1 24 0 N/A N/A N/A

+2 74 46 N/A N/A N/A

+3 84 62 N/A N/A N/A

+4 91 72 N/A N/A N/A

Upconverter, Lower Sideband, M × N Spurious Outputs

IFIN = 1 GHz at −10 dBm, and LO = 36 GHz at 13 dBm.

N × LO 0 1 2 3 4

M × IFIN

−4 92 76 N/A N/A N/A

−3 88 60 N/A N/A N/A

−2 75 44 N/A N/A N/A

−1 23 0 N/A N/A N/A

0 N/A 1 N/A N/A N/A

+1 23 0 N/A N/A N/A

+2 75 42 N/A N/A N/A

+3 91 66 N/A N/A N/A

+4 92 71 N/A N/A N/A

Page 25: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 25 of 28

THEORY OF OPERATION The HMC329A is a general-purpose, double balanced mixer that can be used as an upconverter or a downconverter from 22 GHz to 38 GHz.

When used as a downconverter, the HMC329A downconverts radio frequencies between 22 GHz and 38 GHz to IF values between dc and 8 GHz.

When used as an upconverter, the mixer upconverts IF values between dc and 8 GHz to radio frequencies between 22 GHz and 38 GHz.

The mixer performs well with LO drive levels of 13 dBm or greater and provides excellent LO to RF and LO to IF suppression due to optimized balun structures.

Page 26: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 26 of 28

APPLICATIONS INFORMATION TYPICAL APPLICATION CIRCUIT Figure 77 shows the typical application circuit for the HMC329A. The HMC329A is a passive device and does not require any external components. The LO and RF pins are

internally ac-coupled. When IF operation is not required until dc, it is recommended to use an ac-coupled capacitor at the IF port.

ASSEMBLY DIAGRAM The assembly diagram is shown in Figure 78.

HMC329A

2LO RF

IF GND

GNDGND

GND

1

3

4

567

1686

3-08

3

Figure 77.Typical Application Circuit

1686

3-08

4

3milNOMINAL GAP50Ω

TRANSMISSIONLINE

1milGOLD WIRE(WEDGE BOND)

Figure 78. Assembly Diagram

Page 27: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

Data Sheet HMC329A

Rev. 0 | Page 27 of 28

MOUNTING AND BONDING TECHNIQUES FOR MILLIMETER WAVE GaAs MMICs Attach the die directly to the ground plane eutectically or with conductive epoxy.

To bring RF to and from the chip, use 50 Ω microstrip transmission lines on 0.127 mm (0.005 inches) alumina thin film substrates (see Figure 79).

3mil RIBBON BOND

0.102mm (0.004") THICK GaAs MMIC

0.127mm (0.005")THICK ALUMINA

THIN FILM SUBSTRATE

RF GROUND PLANE

0.076mm(0.003")

1686

3-08

5

Figure 79. Routing RF Signals

If 0.254 mm (0.010 inches) alumina thin film substrates must be used, raise the die 0.152 mm (0.006 inches) so that the surface of the die is coplanar with the surface of the substrate.

One way to accomplish this coplanarity is to attach the 0.102 mm (0.004 inches) die to a 0.152 mm (0.006 inches) molybdenum heat spreader (moly tab), which is then attached to the ground plane (see Figure 80).

0.076mm(0.003")

3mil RIBBON BOND

0.102mm (0.004") THICK GaAs MMIC

0.254mm (0.010")THICK ALUMINA

THIN FILM SUBSTRATE

0.152mm (0.006")THICK MOLY TAB

RF GROUND PLANE

1686

3-08

6

Figure 80. Routing RF Signals (Raised)

Bring the microstrip substrates as close to the die as possible to minimize ribbon bond length. Typical die to substrate spacing is 0.076 mm (0.003 inches). Gold ribbon of a 0.076 mm (0.003 inches) width and a <0.31 mm minimal length (<0.012 inches) is recommended to minimize inductance on the RF, LO, and IF ports.

HANDLING PRECAUTIONS To avoid permanent damage, adhere to the following precautions.

Storage

All bare die ship in either waffle-based or gel-based ESD protective containers and are then sealed in an ESD protective bag. After opening the sealed ESD protective bag, all die must be stored in a dry nitrogen environment.

Cleanliness

Handle the chips in a clean environment. Never use liquid cleaning systems to clean the chip.

Static Sensitivity

Follow ESD precautions to protect against ESD strikes.

Transients

Suppress instrument and bias supply transients while bias is applied. To minimize inductive pickup, use shielded signal and bias cables.

General Handling

Handle the chip only on the edges, using a vacuum collet or with a sharp pair of bent tweezers. Because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers.

MOUNTING The chip is back metallized and can be die mounted with gold/tin eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat.

Eutectic Die Attach

It is best to use an 80% gold/20% tin preform with a work surface temperature of 255°C and a tool temperature of 265°C. When hot 90% nitrogen/10% hydrogen gas is applied, maintain the tool tip temperature at 290°C. Do not expose the chip to a temperature greater than 320°C for more than 20 sec. No more than 3 sec of scrubbing is required for attachment.

Epoxy Die Attach

Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after placing it into position. Cure the epoxy per the schedule provided by the manufacturer.

WIRE BONDING RF bonds made with 0.003 inch × 0.005 inch gold ribbon are recommended for the RF ports. These bonds must be thermos-sonically bonded with a force of 40 g to 60 g. DC bonds of a 0.025 mm (0.001 inches) diameter, thermosonically bonded, are recommended. Create ball bonds with a force of 40 g to 50 g and wedge bonds with a force of 18 g to 22 g. Create all bonds with a nominal stage temperature of 150°C. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as short as possible, less than 0.31 mm (0.012 inches).

Page 28: 22 GHz to 38 GHz, GaAs, MMIC, Double Balanced Mixer Data

HMC329A Data Sheet

Rev. 0 | Page 28 of 28

OUTLINE DIMENSIONS

TOP VIEW(CIRCUIT SIDE)

05-0

5-20

18-A

0.102

SIDE VIEW

*This die utilizes fragile air bridges. Any pickup tools used must not contact this area.

0.870

0.242

0.5801

2 3

4

567

0.100 × 0.100(All Pads)

0.150

0.150

0.197

0.185

0.184

0.105

*AIR BRIDGEAREA

0.106 0.171 0.150 0.150 0.188

Figure 81. 7-Pad Bare Die [CHIP]

(C-7-5) Dimensions shown in millimeter

ORDERING GUIDE Model1 Temperature Range Package Description Package Option HMC329A −55°C to +85°C 7-Pad Bare Die [CHIP] C-7-5 HMC329A-SX −55°C to +85°C 7-Pad Bare Die [CHIP] C-7-5 1 The HMC329A and HMC329A-SX are RoHS compliant parts.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16863-0-7/18(0)