8
Thermodynamics A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS

Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

Thermodynamics A complete undergraduate course

Andrew M. Steane

OXFORD \JNIVERSITY PRESS

Page 2: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

Contents

How to use this book (t)

1.1 For the student 1.2 For the teacher

2 Introducing thermodynamics 3

3 A survey of thermodynamic ideas 7

3.1 Energy and entropy 7

3.2 Concepts and terminology 12 3.2.1 System 12 3.2.2 State 14 3.2.3 Extensive, intensive 18 3.2.4 Thermodynamic equilibrium 20 3.2.5 Temperature 22 3.2.6 Quasistatic 22 3.2.7 Reversible and irreversible 23 3.2.8 Adiathermal, isentropic, adiabatic, isothermal 25 3.2.9 Expansion coefficients, heat capacities 26 3.2.10 Thermal reservoir 29

3.3 The laws of thermodynamics 29

3.4 Where we are heading 32

Exercises 33

4 Some general knowledge 34

4.1 Density, heat capacity 34

4.2 Moles 35

4.3 Boltzmann constant, gas constant 36

4.4 Pressure and STP 37

4.5 Latentheat 37 4.6 Magnetic properties 38

s Mathem atical tools 40

5.1 Working with partial derivatives 40 5.1.1 Reciprocal and reciprocity theorems 42 5.1.2 lntegrating 45 5.1.3 Mixed derivatives 46

tsections rnarked with a dagger below are optional reading. They can be omitted without the loss of inf orrnation required later in the book.

Page 3: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

vili Cont.ents

5 .2 Proper and improper differentials, function of state 5.2.1 Integrating factor

5.3 Some further observations 5.3.1 Alternative derivation of reciprocal and reciprocity theorems 5.3.2 Integration in general

Exercises

6 Zeroth law, equation of state

6.1 Empirical temperature 6.1.1 Equation of state 6.1.2 Algebraic argument (t)

6.2 Some example equations of state 6.2.1 Ideal gas 6.2.2 Thermal radiation 6.2.3 Solids and wires 6.2.4 Paramagnetic material 6.2.5 Equations of state for other properties

6.3 Thermometry

Exercises

7 First law, internal energy

7 .1 Defining internal energy 7 .1.1 Heat and work

7 .2 Work by compression

7 .3 Heat capacities 7.3.1 Energy equation 7.3.2 Relation of compressibilities

and heat capacities

7 .4 Solving thermodynamic problems

7.5 Expansion 7.5.1 Free expansion ofideal gas 7.5 .2 Adiabatic expansion of ideal gas 7.5.3 Adiabatic atmosphere 7.5.4 Fast and yet adiabatic?

Exercises

8 The second law and entropy

8.1 Heat engines and the Carnot cycle 8.1.1 Heat pumps and refrigerators 8.1.2 1\vo impossible things (equivalence ofKelvin and Clausius Statements)

8.2 Carnot's theorem and absolute temperature 8.2.1 Carnot's theorem: reversible engines are equally, and the most, efficient 8.2.2 Existence of an absolute temperature measure 8.2.3 Hot heat is more valuable than cold heat

46 49

49 49 50 51

52

54 55 57

59 59 61 62 63 65

66

68

70

70 73 74 77 80

82

83

85 85 86 87 88 89

93

93 95 96 97 97 98

101

Page 4: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

8.3 Clausius' theorem and entropy

8.4 Tue first and second laws together

8.5 Summary

Exercises

9 Understanding entropy

9.1 Examples 9.1.1 Entropy content 9.1.2 Enttopy production and enttopy flow

9.2 But what is it? 9.2.1 Entropy increase in a free expansion

9.3 Gibbs' paradox 9.3.1 Entropy ofmixing 9.3.2 Reversible mixing

9.4 Specific heat anomalies

9.5 Maxwell's daemon 9.5.1 Szilard engine 9.5.2 The Feynman-Smoluchowski ratchet

9.6 The principle of detailed balance

9. 7 Adiabatic surfaces et) 9.8 Irreversibility in the universe

Exercises

10 Heat ftow and thermal relaxation

10.1 Thermal conduction; diffusion equation 10.1.l Steady state 10.1.2 Time-dependent

10.2 Relaxation time

10.3 Speed of sound (t) 10.3.1 Ultra-relativistic gas

Exercises

11 Practical heat engines

11 .1 Tue maximum work theorem 11.1.1 lmperfections

11.2 Otto cycle

Exercises

12 Introducing chemical potential

12.1 Chemical potential of an ideal gas 12.1.1 Example: the isothermal atmosphere

12.2 Saha equation (t)

Exercises

Contents ix

102 105

106

106

108

109 111 112

113 115 116 118 119 120

122 123 125

127

128

131

133

136

136 138 139

145

146 148

148

150

152 152

153

155

157

161 163

165

167

Page 5: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

x Contents

13 Functions and methods

13.1 The fundamental relation 13.1.1 Euler relation, Gibbs-Duhem relation

13.2 Thermodynamic potentials 13.2.1 Free energy as a form of potential energy 13.2.2 Natural variables and thermodynamic potentials 13.2.3 Maxwell relations 13.2.4 Obtaining one potential function from another

13.3 Basic results for closed systems 13.3.1 Relating intemal energy to equation of state 13.3.2 Sackur-Tetrode equation 13.3.3 Complete thermodynamic information

Exercises

14 Elastic bands, rods, bubbles, magnets

14.1 Expressions for work 14.2 Rods, wires, elastic bands 14.3 Surface tension 14.4 Paramagnetism

14.4.1 Idealparamagnet 14.4.2 Cooling by adiabatic demagnetization

14.5 Electric and magnetic work (t) 14.5.1 Dielectrics and polarization 14.5.2 Magnetic work

14.6 lntroduction to the partition function (t) Exercises

15 Modelling real gases

15 .1 van der Waals gas 15.1.1 Phase change 15.1.2 Critical parameters and the law of corresponding states

15.2 Redlich-Kwong, Dieterici, and Peng-Robinson gas Exercises

16 Expansion and flow processes

16.1 Expansion coefficients 16.2 U: free expansion

16.2.1 Deriving the equation of state of an ideal gas

16.3 H: throttle process: Joule-Kelvin expansion 16.3 .1 Bernoulli equation 16.3.2 Cooling and liquification of gases

16.4 Generalflow process 16.4.1 S and H: the gas turbine

Exercises

169

169 170 172 174 175 176 177

177 178 182 186 186

188

188 188 190 192 195 197 200 202 207 210 212

216

219 220 222 224 226

228

228 229 229

230 231 232 236 237 239

Page 6: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

17 Stability and free energy

17 .1 Isolated system: maximum entropy 17 .1.1 Equilibrium condition with intemal restrictions 17 .1.2 Tue minimum energy principle 1 7 .1.3 Stability

17.2 Phase change

17.3 Free energy and availability 17 .3.1 Free energy and equilibrium

Exercises

18 Reinventing the subject

18.1 Some basic derivations from maximum entropy

18.2 Caratheodory formulation ofthe second law (t) 18.3 Negative temperature (t)

19 Thermal radiation

19.1 Some general observations about thermal radiation 19 .1.1 Black body radiation: a first look

19.2 Basic thermodynamic arguments 19.2.1 Equation of state and Stefan-Boltzmann law 19.2.2 Comparison with ideal gas 19.2.3 Adiabatic expansion and Wien's laws (t)

19.3 Cosmic microwave background radiation Exercises

20 Radiative heat transfer

20.1 Tue greenhouse effect

Exercises

21 Chemical reactions

21.1 Basic considerations 21.1.1 Reaction rate

21.2 Chemical equilibrium and the law of mass action 21.2 .1 Van 't Hoff equation 21.2.2 Chemical terminology

21.3 Tue reversible electric cell (t)

Exercises

22 Phase change

22.1 General introduction 22.1.1 Phase diagram 22.1.2 Some interesting phase diagrams

22.2 Basic properties offirst-order phase transitions 22.3 Clausius-Clapeyron equation

Contents xi

243

243 245 246 247

249

250 253 257

259

262

263 265

268

268 274

275 279 282 283

288 289

291

294

297

299

299 301 301 305 306 307

309

311

311 312 314

317 320

Page 7: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

xii Contents

22.3.1 Vapour-liquid and liquid-solid coexistence lines 22.3.2 Gibbs phase rule 22.3.3 Behaviour of the chemical potential

22.4 The type-! superconducting transition (t) Exercises

23 The third law

23.1 Response functions 23.2 Unattainability theorem

23.3 Phase change 23.4 Absolute entropy and chemical potential

24 Phase change, nucleation, and solutes

24.1 Treatment of surface effects

24.2 Metastable phases 24.2.1 Nucleation

24.3 Colligative properties 24.3.1 Osmotic pressure 24.3.2 lnftuence of dissolved particles on phase transitions

24.4 Chapter summary

Exercises

25 Continuous phase transitions

25.1 Orderparameter 25.2 Critical exponents 25.3 Landau mean field theory

25.3.1 Application to ferromagnetism 25.4 Binary mixtures Exercises

26 Self-gravitation and negative heat capacity

26.1 Negative heat capacity 26.1.1 Jeans length

26.2 Black holes and Hawking radiation Exercises

27 Fluctuations

27 .1 Probability of a departure from the maximum entropy point 27.1.1 Is there a violation of the second law?

27.2 Calculating the ftuctuations 27.2.1 More general constraints 27 .2.2 Some general observations

27 .3 Interna! ftows

27.4 Fluctuation as a function oftime

323 325 326 326 329

331

332 333

334 335

336

336 338 341

347 347 350 353 353

355

357 359 361 366 370 373

375

375 377 378 381

382

383 384

385 387 391 393

395

Page 8: Thermodynamics · 2016. 11. 22. · A complete undergraduate course Andrew M. Steane OXFORD \JNIVERSITY PRESS ... 1.2 For the teacher 2 Introducing thermodynamics 3 3 A survey of

27.5 Johnson noise Exercises

28 Thermoelectricity and entropy flow

28.1 Thermoelectric effects 28.1.1 Thomson's treatment

28.2 Entropy gradients and Onsager's reciprocal relations 28.2.1 Derivation of Onsager's reciprocal relation 28.2.2 Application 28.2.3 Entropy current, entropy production rate

Exercises

Appendix A Electric and magnetic work

Appendix B More on natural variables and free energy

Appendix C Some mathematical results

Bibliography

Index

Conunts xili

398 401

403

403 406

409 411 416 41 7 418

421

424

428

431

433