49
2010 2010 Center for Subsurface Center for Subsurface Imaging and Fluid Modeling Imaging and Fluid Modeling Shuyu Sun and GT Schuster Shuyu Sun and GT Schuster 8 PhD students, 5 Research Fellows 8 PhD students, 5 Research Fellows rof Sherif Hanafy, Dr. Chaiwoot B. et al.) rof Sherif Hanafy, Dr. Chaiwoot B. et al.)

2010

  • Upload
    garron

  • View
    32

  • Download
    0

Embed Size (px)

DESCRIPTION

Center for Subsurface Imaging and Fluid Modeling. 2010. Shuyu Sun and GT Schuster. 8 PhD students, 5 Research Fellows (Prof Sherif Hanafy , Dr. Chaiwoot B. et al.). Bill Bosworth: PhD Colgate, Marathon 21 years, Apache 5 years, senior research advisor Apache. - PowerPoint PPT Presentation

Citation preview

Page 1: 2010

20102010

Center for Subsurface Center for Subsurface Imaging and Fluid ModelingImaging and Fluid Modeling

Shuyu Sun and GT SchusterShuyu Sun and GT Schuster

8 PhD students, 5 Research Fellows8 PhD students, 5 Research Fellows(Prof Sherif Hanafy, Dr. Chaiwoot B. et al.)(Prof Sherif Hanafy, Dr. Chaiwoot B. et al.)

Page 2: 2010
Page 3: 2010

Bill Bosworth: Bill Bosworth: PhD Colgate, Marathon 21 years, PhD Colgate, Marathon 21 years,

Apache 5 years, seniorApache 5 years, senior research advisor Apacheresearch advisor Apache

Mike Zinger: Mike Zinger: BS Iowa State, Amoco 20 years,BS Iowa State, Amoco 20 years,

10 years Aramco,Team Leader Red Sea Expl.10 years Aramco,Team Leader Red Sea Expl.

David Keyes: David Keyes: PhD Harvard, Columbia Univ.,YalePhD Harvard, Columbia Univ.,Yale

Univ., GordonUniv., Gordon Bell Prize, VP SIAMBell Prize, VP SIAM

Ibrahim Hoteit: Ibrahim Hoteit: PhD J. Fourier, Data assimilationPhD J. Fourier, Data assimilation

Dinesh Kaushik: Dinesh Kaushik: PhD, Gordon Bell Prize, algorithmsPhD, Gordon Bell Prize, algorithms

C. Boonyasiriwat: C. Boonyasiriwat: PhD, U of Utah, FWI and simulationPhD, U of Utah, FWI and simulation

Raed Al Huseini: Raed Al Huseini: PhD, Economic DevelopmentPhD, Economic Development

Shuyu Sun: Shuyu Sun: PhD UT Austin, S. Carolina Univ., reservoir PhD UT Austin, S. Carolina Univ., reservoir

simulationsimulation

Page 4: 2010

Great AppreciationGreat Appreciation

Mara Rovelli, Sabrina Percher, Marielaure Boulot, Antonia Mara Rovelli, Sabrina Percher, Marielaure Boulot, Antonia

Forshaw, Mirna Haydar, Mariam FouadForshaw, Mirna Haydar, Mariam Fouad

Page 5: 2010

20102010

Center for Subsurface Center for Subsurface Imaging and Fluid ModelingImaging and Fluid Modeling

Shuyu Sun and GT SchusterShuyu Sun and GT Schuster

8 PhD students, 5 Research Fellows8 PhD students, 5 Research Fellows(Prof Sherif Hanafy, Dr. Chaiwoot B. et al.)(Prof Sherif Hanafy, Dr. Chaiwoot B. et al.)

Page 6: 2010

• BenefitsBenefits: : Yearly Houston meeting, annual reports, access toYearly Houston meeting, annual reports, access to student interns, expert in fluid flow modeling, seismic, and student interns, expert in fluid flow modeling, seismic, and eventually EM imagingeventually EM imaging

• Goal: Goal: Develop innovative computational methods for seismic Develop innovative computational methods for seismic imaging and subsurface fluid flow modeling. Examples imaging and subsurface fluid flow modeling. Examples include 3D waveform inversion, 3D RTM, TI modeling, include 3D waveform inversion, 3D RTM, TI modeling, reservoir fluid simulator. reservoir fluid simulator.

Center for Subsurface Imaging andCenter for Subsurface Imaging andFluid Modeling (CSIM) ConsortiumFluid Modeling (CSIM) Consortium

• AdvantagesAdvantages: : More than $1,500,000/yr in KAUST researchMore than $1,500,000/yr in KAUST research funds, tightly coupled visualization+supercomputer resourcesfunds, tightly coupled visualization+supercomputer resources + reservoir fluid modeling+ seismic imaging+ reservoir fluid modeling+ seismic imaging

• Computers: Computers: IBM Blue Gene 225 Tflop, Intel+GPU ClustersIBM Blue Gene 225 Tflop, Intel+GPU Clusters GPU+IBM expertsGPU+IBM experts

• CollaborationsCollaborations: : UT Austin (Stoffa+TTI), UU (GPU)UT Austin (Stoffa+TTI), UU (GPU)

Page 7: 2010

Research GoalsResearch GoalsG.T. Schuster (Columbia Univ.,G.T. Schuster (Columbia Univ., 1984)1984)

Seismic Interferometry: VSP, SSP, OBSSeismic Interferometry: VSP, SSP, OBS

Multisource+Preconditioned RTM+MVA+Inversion+Modeling: Multisource+Preconditioned RTM+MVA+Inversion+Modeling:

TTI 3D RTM, GPU: TTI 3D RTM, GPU: Stoffa+CSIM, UUtah K. Johnson SCI, PSU, KAUSTStoffa+CSIM, UUtah K. Johnson SCI, PSU, KAUST

ShaheenShaheen

CorneaCornea

Seismic Lab: >630 Channel capacity, resisitivitySeismic Lab: >630 Channel capacity, resisitivity

Page 8: 2010

Research GoalsResearch GoalsShuyu Sun (UT Austin, 2005)Shuyu Sun (UT Austin, 2005)

Modeling of multiphase flow in porous media Modeling of multiphase flow in porous media (new approaches for fractures, diffusion, capillarity …) (new approaches for fractures, diffusion, capillarity …)

Advanced finite element methods Advanced finite element methods (dynamic mesh adaption, multiscale resolution, (dynamic mesh adaption, multiscale resolution, element-wise conservation, efficient linear solvers, …) element-wise conservation, efficient linear solvers, …)

Computational thermodynamics of reservoir fluidComputational thermodynamics of reservoir fluid

Page 9: 2010

2010 CSIM2010 CSIM Consortium Consortium

Inaugural Members: Inaugural Members: Aramco, Exxon, Chevron, Aramco, Exxon, Chevron,

BPBP,, Petrobras, GXT, PEMEXPetrobras, GXT, PEMEX

($25 K/year)($25 K/year)

Annual Meeting: Houston Jan. 2011Annual Meeting: Houston Jan. 2011

Midyear Report: Summer 2010Midyear Report: Summer 2010Software Policy: Same as UTAM for SchusterSoftware Policy: Same as UTAM for Schuster

Shuyu Sun PolicyShuyu Sun Policy

Page 10: 2010

http://utam.gg.utah.edu/csimhttp://utam.gg.utah.edu/csim

Page 11: 2010

1980

Multisource SeismicMultisource SeismicImagingImaging

vs

copper

VLIW

Superscalar

RISC

1970 1990 2010

1

100

100000

10

1000

10000

Aluminum

Year

202020001980

CPU Speed vs Year

Page 12: 2010

JackJackBuckskinBuckskin

KaskidaKaskidaTiberTiber

35,055 Feet

Motivation for Better Seismic Imaging StrategyMotivation for Better Seismic Imaging Strategy

¼ billion $$$ well¼ billion $$$ well

Page 13: 2010

FWI Problem & Possible Soln.FWI Problem & Possible Soln.

• Problem:Problem: FWI computationally costly FWI computationally costly

• Solution:Solution: Multisource Encoded FWI Multisource Encoded FWI

Preconditioning speeds up by factor 2-3Preconditioning speeds up by factor 2-3

Iterative encoding reduces crosstalkIterative encoding reduces crosstalk

Page 14: 2010

Multisource Migration:Multisource Migration: mmmigmig=L=LTTdd

Forward Model:Forward Model:

Multisource Phase Encoded ImagingMultisource Phase Encoded Imaging

d +d +dd =[ =[L +L +LL ]m ]m11 222211

LL{dd{

=[=[L +L +LL ]( ](dd + + dd ) ) 11 222211

TT TT

= = L d +L d +L dL d + + 11 222211

TT TT

LL dd + +L L dd22 112211

Crosstalk noiseCrosstalk noiseStandard migrationStandard migration

TT TT

m = m +(k+1) (k)

Page 15: 2010

Multisource S/N RatioMultisource S/N Ratio

# geophones/CSG# geophones/CSG

# CSGs# CSGs

L [d + d +.. ]1 221

d +d T d , d 2211

L [d + d + … ]1 2

T , …. +….

Page 16: 2010

Multisrc. Migration vs Standard Migration

# iterations# iterations

Iterative Multisrc. Migration vs Standard Migration

vs

vs

MSMSS-1

M~~

# geophones/CSG# geophones/CSG # CSGs# CSGs

MSMI

Page 17: 2010

Crosstalk TermCrosstalk Term

Time Statics

Time+Amplitude Statics

QM Statics

LL dd + +L L dd22 112211

TT TT

Page 18: 2010

SummarySummary

Time Statics

Time+Amplitude Statics

QM Statics

1. Multisource crosstalk term analyzed analytically1. Multisource crosstalk term analyzed analytically

2. Crosstalk decreases with increasing 2. Crosstalk decreases with increasing , randomness, , randomness, dimension, iteration #, and decreasing depthdimension, iteration #, and decreasing depth

3. Crosstalk decrease can now be tuned3. Crosstalk decrease can now be tuned

4. Some detailed analysis and testing needed to refine 4. Some detailed analysis and testing needed to refine predictions.predictions.

LL dd + +L L dd22 112211

TT TT

Page 19: 2010

• Fast Multisource Least Squares Fast Multisource Least Squares Kirchhoff Mig.Kirchhoff Mig.

• Multisource Waveform Inversion (Ge Zhan)Multisource Waveform Inversion (Ge Zhan)

Multisource TechnologyMultisource Technology

Page 20: 2010

0Z

k(m

)3

0 X (km) 16

The Marmousi2 Model

The area in the white box is used for S/N calculation.

Page 21: 2010

0 X (km) 16

0Z

k(m

)3

0Z

(k

m)

3

0 X (km) 16

Conventional Source: KM vs LSM (50 iterations)

LSM (100x)

KM (1x)

Page 22: 2010

0 X (km) 16

0Z

k(m

)3

0Z

(k

m)

3

0 X (km) 16

200-source Supergather: KM vs LSM (300 its.)

LSM (33x)

KM (1/200x)

Page 23: 2010

S/N

0

1 I300

S/N =7

The S/N of MLSM image grows as the square root of the number of iterations.

MI

Page 24: 2010

• Fast Multisource Least Squares Migration ( Dai)Fast Multisource Least Squares Migration ( Dai)

• Multisource Waveform Inversion (Boonyasiriwat)Multisource Waveform Inversion (Boonyasiriwat)

Multisource TechnologyMultisource Technology

Page 25: 2010

Multisource Migration:Multisource Migration: mmmigmig=L=LTTdd

Forward Model:Forward Model:

m =[Lm =[LTTL]L]-1-1LLTTddMultisrc-Least FWI:Multisrc-Least FWI:

Multisource Encoded FWIMultisource Encoded FWI

m’ = m - Lm’ = m - LTT[Lm - d][Lm - d]

f ~ [Lf ~ [LTTL]L]-1-1

ff Steepest DescentSteepest Descent

PreconditionedPreconditioned

Nd +Nd =[Nd +Nd =[NL +NL ]mL +NL ]m11 222211 2211 11 22

multisource preconditionermultisource preconditioner

Page 26: 2010

Multiscale Waveform TomographyMultiscale Waveform TomographyMultiscale Waveform TomographyMultiscale Waveform Tomography

1. Collect data d(x,t)1. Collect data d(x,t)

2. Generate synthetic data d(x,t) by FD method2. Generate synthetic data d(x,t) by FD methodsynsyn..

3. Adjust v(x,z) until ||d(x,t)-d(x,t) || minimized by CG.3. Adjust v(x,z) until ||d(x,t)-d(x,t) || minimized by CG.synsyn.. 22

4. To prevent getting stuck in local minima:4. To prevent getting stuck in local minima: a). Invert early arrivals initiallya). Invert early arrivals initially

mute

7

b). Use multiscale: low freq. high freq.b). Use multiscale: low freq. high freq.

Page 27: 2010

0 km0 km 20 km20 km

0 km0 km

6 km6 km 3 km/s3 km/s

6 km/s6 km/s

Boonyasiriwat et al., 2009, TLEBoonyasiriwat et al., 2009, TLE

Page 28: 2010

3 km/s3 km/s

6 km/s6 km/s

Initial modelInitial model

5 Hz5 Hz

10 Hz10 Hz

20 Hz20 Hz

Waveform TomogramsWaveform Tomograms

3 km/s3 km/s

6 km/s6 km/s

3 km/s3 km/s

6 km/s6 km/s

3 km/s3 km/s

6 km/s6 km/s

0 km0 km

6 km6 km

0 km0 km

6 km6 km

0 km0 km

6 km6 km

0 km0 km

0 km0 km 20 km20 km

6 km6 km

Page 29: 2010

17

Data Pre-ProcessingData Pre-Processing

3D-to-2D conversion3D-to-2D conversion

Attenuation compensationAttenuation compensation

Random noise removalRandom noise removal

Page 30: 2010

17

Source Wavelet EstimationSource Wavelet Estimation

Pick the water-bottomPick the water-bottom

Stack along the water-bottom to obtain an estimate ofStack along the water-bottom to obtain an estimate ofsource waveletsource wavelet

Generate a stacked sectionGenerate a stacked section

In some cases, source wavelet inversion can be used.In some cases, source wavelet inversion can be used.

Page 31: 2010

17

Gradient Computation and InversionGradient Computation and Inversion

Multiscale inversion: low to high frequencyMultiscale inversion: low to high frequency

Dynamic early-arrival muting windowDynamic early-arrival muting window

Normalize both observed and calculated data within the sameNormalize both observed and calculated data within the sameshotshot

Quadratic line search method (Nocedal and Wright, 2006)Quadratic line search method (Nocedal and Wright, 2006)A cubic line search can also be used.A cubic line search can also be used.

Page 32: 2010

Low-pass FilteringLow-pass Filtering

18

Offset (km)

Tim

e (s)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)Tim

e (s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) 0-15 Hz CSG (c) 0-25 Hz CSG

Page 33: 2010

Dynamic Early-Arrival Muting WindowDynamic Early-Arrival Muting Window

19

Offset (km)

Tim

e (s)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

0-15 Hz CSG

Offset (km)

Tim

e (s)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

0-25 Hz CSG

Window = 1 s Window = 1 s

Page 34: 2010

19

Offset (km)

Tim

e (s)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

0-15 Hz CSG

Offset (km)

Tim

e (s)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

0-25 Hz CSG

Window = 2 s Window = 2 s

Dynamic Early-Arrival Muting WindowDynamic Early-Arrival Muting Window

Page 35: 2010

2000 20202.52.5

00

Dep

th (

km)

Dep

th (

km)

X (km)X (km)

Traveltime TomogramTraveltime Tomogram

15001500

30003000

Vel

ocity

(m

/s)

Vel

ocity

(m

/s)

Waveform TomogramWaveform Tomogram

2.52.5

00

Dep

th (

km)

Dep

th (

km)

ResultsResults

Page 36: 2010

2100 2020

2.52.5

00

Dep

th (

km)

Dep

th (

km)

X (km)X (km)

Waveform TomogramWaveform Tomogram

15001500

30003000

Vel

ocity

(m

/s)

Vel

ocity

(m

/s)

2.52.5

00

Dep

th (

km)

Dep

th (

km)

Vertical Derivative of Waveform TomogramVertical Derivative of Waveform Tomogram

Page 37: 2010

Kirchhoff Migration ImagesKirchhoff Migration Images

22

Page 38: 2010

Kirchhoff Migration ImagesKirchhoff Migration Images

22

Page 39: 2010

Comparing CIGsComparing CIGs

23

Page 40: 2010

Comparing CIGsComparing CIGs

24

CIG from Traveltime Tomogram CIG from Waveform Tomogram

Page 41: 2010

Comparing CIGsComparing CIGs

25

Page 42: 2010

Comparing CIGsComparing CIGs

26

CIG from Traveltime Tomogram CIG from Waveform Tomogram

Page 43: 2010

Comparing CIGsComparing CIGs

27

Page 44: 2010

Comparing CIGsComparing CIGs

28

CIG from Traveltime Tomogram CIG from Waveform Tomogram

Page 45: 2010

Multi-Source Waveform Inversion StrategyMulti-Source Waveform Inversion Strategy(Ge Zhan) (Ge Zhan)

Generate multisource field data with known time shift

Generate synthetic multisource data with known time shift from estimated

velocity model

Multisource deblurring filter

Using multiscale, multisource CG to update the velocity model with

regularization

Initial velocity model

144 shot gathers144 shot gathers

Page 46: 2010

3D SEG Overthrust Model(1089 CSGs)

15 km

3.5 km

15 km

Page 47: 2010

3.5 km

Dynamic QMC TomogramDynamic QMC Tomogram (99 CSGs/supergather)(99 CSGs/supergather)

Static QMC TomogramStatic QMC Tomogram(99 CSGs/supergather)(99 CSGs/supergather)

15 km

Dynamic Polarity TomogramDynamic Polarity Tomogram(1089 CSGs/supergather)(1089 CSGs/supergather)

Numerical ResultsNumerical Results

Page 48: 2010

Multisource FWI SummaryMultisource FWI Summary(We need faster migration algorithms & better velocity models)(We need faster migration algorithms & better velocity models)

IO 1 vs 1/20

Cost 1 vs 1/20 or better

Resolution dx 1 vs 1

Sig/MultsSig ?

Stnd. FWI Multsrc. FWIStnd. FWI Multsrc. FWI

Page 49: 2010

Multisource FWI SummaryMultisource FWI Summary(We need faster migration algorithms & better velocity models)(We need faster migration algorithms & better velocity models)

Future: Multisource MVA, Interpolation, Future: Multisource MVA, Interpolation, Field Data, Migration Filtering, LSM Field Data, Migration Filtering, LSM