153
2 nd Generation (“NextGen”) Sequencing Technologies “Fantastic” bizarre or exotic; seeming more appropriate to a fairy tale than to reality or practical use

2 nd Generation (“NextGen”) Sequencing Technologies “Fantastic” bizarre or exotic; seeming more appropriate to a fairy tale than to reality or practical

Embed Size (px)

Citation preview

  • Slide 1
  • 2 nd Generation (NextGen) Sequencing Technologies Fantastic bizarre or exotic; seeming more appropriate to a fairy tale than to reality or practical use
  • Slide 2
  • Read Length is Not As Important For Resequencing Jay Shendure
  • Slide 3
  • Paired End Reads are Important! Repetitive DNA Unique DNA Single read maps to multiple positions Paired read maps uniquely Read 1Read 2 Known Distance
  • Slide 4
  • Slide 5
  • emulsion PCR Margulies M et al., (2006) Genome sequencing in microfabricated high-density picolitre reactors Nature 437, 376-380 emPCR
  • Slide 6
  • Roche 454 Margulies M et al., (2006) Genome sequencing in microfabricated high-density picolitre reactors Nature 437, 376-380
  • Slide 7
  • OH EE Slawson Tempel, WUSTL
  • Slide 8
  • OH EE Slawson Tempel, WUSTL
  • Slide 9
  • OH EE Slawson Tempel, WUSTL
  • Slide 10
  • OH EE Slawson Tempel, WUSTL
  • Slide 11
  • OH 3 2 1 EE Slawson Tempel, WUSTL
  • Slide 12
  • OH Pyrophosphate EE Slawson Tempel, WUSTL
  • Slide 13
  • OH EE Slawson Tempel, WUSTL
  • Slide 14
  • OH ATP + luciferin EE Slawson Tempel, WUSTL
  • Slide 15
  • OH ATP + luciferin EE Slawson Tempel, WUSTL
  • Slide 16
  • OH EE Slawson Tempel, WUSTL OH
  • Slide 17
  • EE Slawson Tempel, WUSTL OH
  • Slide 18
  • EE Slawson Tempel, WUSTL
  • Slide 19
  • OH EE Slawson Tempel, WUSTL
  • Slide 20
  • OH EE Slawson Tempel, WUSTL
  • Slide 21
  • OH EE Slawson Tempel, WUSTL
  • Slide 22
  • OH EE Slawson Tempel, WUSTL
  • Slide 23
  • OH EE Slawson Tempel, WUSTL
  • Slide 24
  • OH EE Slawson Tempel, WUSTL
  • Slide 25
  • OH ATP + luciferin EE Slawson Tempel, WUSTL
  • Slide 26
  • OH ATP + luciferin EE Slawson Tempel, WUSTL
  • Slide 27
  • 1- mer 2-mer 3-mer 4-mer Brightness of flash is proportional to number of nucleotides added Flash brightness TCACTTCAAGGGT Flash is too bright EE Slawson Tempel, WUSTL
  • Slide 28
  • A T G C Read length 350-400 bp 200 cycles EE Slawson Tempel, WUSTL ~ 0.5 Gb/run Roche 454
  • Slide 29
  • EE Slawson Tempel, WUSTL Nebulizer ~ 400 bp Illumina
  • Slide 30
  • EE Slawson Tempel, WUSTL
  • Slide 31
  • Slide 32
  • Flow cell 8 channels (lanes) Surface of flow cell coated with a lawn of oligo pairs
  • Slide 33
  • EE Slawson Tempel, WUSTL
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Each piece has a unique sequence EE Slawson Tempel, WUSTL
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • bridge PCR
  • Slide 76
  • thousands of strands/cluster each cluster (polony) has a unique sequence EE Slawson Tempel, WUSTL
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • STOP EE Slawson Tempel, WUSTL
  • Slide 87
  • Metzger M (2009) Nature Reviews Genetics 11: 31-46
  • Slide 88
  • STOP EE Slawson Tempel, WUSTL
  • Slide 89
  • OH STOP EE Slawson Tempel, WUSTL
  • Slide 90
  • OH STOP EE Slawson Tempel, WUSTL
  • Slide 91
  • STOP EE Slawson Tempel, WUSTL
  • Slide 92
  • STOP EE Slawson Tempel, WUSTL
  • Slide 93
  • STOP EE Slawson Tempel, WUSTL
  • Slide 94
  • STOP EE Slawson Tempel, WUSTL
  • Slide 95
  • STOP OH EE Slawson Tempel, WUSTL
  • Slide 96
  • OH STOP EE Slawson Tempel, WUSTL
  • Slide 97
  • OH STOP EE Slawson Tempel, WUSTL
  • Slide 98
  • STOP EE Slawson Tempel, WUSTL
  • Slide 99
  • STOP EE Slawson Tempel, WUSTL
  • Slide 100
  • STOP EE Slawson Tempel, WUSTL
  • Slide 101
  • STOP EE Slawson Tempel, WUSTL
  • Slide 102
  • STOP OH EE Slawson Tempel, WUSTL
  • Slide 103
  • GG Illumina, EEST, WUSTL
  • Slide 104
  • GCGC
  • Slide 105
  • GCTGCT
  • Slide 106
  • GCTGGCTG
  • Slide 107
  • GCTGAGCTGA
  • Slide 108
  • 100+ Million Clusters Per Flow Cell 100 Microns
  • Slide 109
  • Flowcell 8 lanes For picture taking: Each lane is broken up into 100 tiles, each fluor is imaged separately 2400 pictures taken per cycle Camera time is the limiting step! EE Slawson Tempel, WUSTL
  • Slide 110
  • STOP Chemistry problem 1: terminator is retained EE Slawson Tempel, WUSTL out of phase
  • Slide 111
  • OH Chemistry problem 2: fluor is retained EE Slawson Tempel, WUSTL
  • Slide 112
  • STOP EE Slawson Tempel, WUSTL Chemistry problem 2: fluor is retained
  • Slide 113
  • STOP EE Slawson Tempel, WUSTL Chemistry problem 2: fluor is retained
  • Slide 114
  • Read length 30 120 bp ~ 3 30 Gb/run GAII Illumina >100 Gb/run HiSeq 90x10 6 reads/lane * 10 2 bp/read = 9x10 9 bp/lane * 16 lanes/run = 144 Gb/run
  • Slide 115
  • ABI SOLiD emPCR Support Oligonucleotide Ligation Detection
  • Slide 116
  • ABI SOLiD Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
  • Slide 117
  • ABI SOLiD Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
  • Slide 118
  • ABI SOLID Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
  • Slide 119
  • ABI SOLiD Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
  • Slide 120
  • Slide 121
  • Ion Torrent
  • Slide 122
  • Nature 475:348 (2011) ~100 bp reads 30 Mb/run
  • Slide 123
  • Slide 124
  • Ion Torrent read quality
  • Slide 125
  • 454, 7.4X, 24.5 Gb cost < $1M 3.3 million SNPs 10,654 cause aa substitution (7,648 different from Venter) 222,718 indels (2 to 40kb) 18 CNVs (26 kb to 1.6 Mb) carrier of 10 highly penetrant disease alleles
  • Slide 126
  • PMID: 20010809 Illumina, 73X, 173 Gb contig N50 = 40 kb scaffold N50 = 1.3 Mb
  • Slide 127
  • 35 interchromosomal translocations 1,315 structural variations (>100 bp) 191,743 small (
  • Illumina, 8X coverage 103 SNP differences between mutant and wt 9 non-synonomous 2 nonsense >> one in encore, an obvious candidate GENETICS 2009 182: 2532 a recessive EMS-induced mutation affecting egg shell morphology
  • Slide 129
  • 30 volume 42 | number 1 | january 2010 Illumina 5.1 Gb of sequence 76 bp reads 40X coverage 4 affected individuals
  • Slide 130
  • Pepke S, Wold B & Mortazavi A. (2009) Nature Methods 6:S22 RNA-Seq
  • Slide 131
  • ChIP-Seq Lefranois P et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37
  • Slide 132
  • Slide 133
  • Plant Physiology, July 2009, Vol. 150, pp. 15411555
  • Slide 134
  • 3 rd Generation (Next 2 Gen) Sequencing Technologies Fabulous having no basis in reality; mythical
  • Slide 135
  • ...ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC......ATGC...
  • Slide 136
  • Helicos Single-molecule sequencing
  • Slide 137
  • Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
  • Slide 138
  • Metzger M (2009) Nature Reviews Genetics 11: 31-46
  • Slide 139
  • 105 to 140 Megabases per hour ~ 35 bp average read length Helicos
  • Slide 140
  • (2009) Volume 27: 847 Helicos, 28X coverage, 84 Gb 752 CNVs 2.8M SNPs
  • Slide 141
  • Ion Torrent Single-molecule sequencing
  • Slide 142
  • Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11 + - Single-molecule sequencing
  • Slide 143
  • Nanopore sequencing Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11 + -
  • Slide 144
  • Nanopore sequencing Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
  • Slide 145
  • Eid et al 2008 Pacific Biosciences Single-molecule sequencing
  • Slide 146
  • ZMW: a hole, tens of nanometers in diameter, fabricated in a 100nm metal film deposited on a silicon dioxide substrate detection volume 20 zeptoliters (10 -21 liters). PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction excitationemission
  • Slide 147
  • PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
  • Slide 148
  • When the DNA polymerase encounters the nucleotide complementary to the next base in the template, it is incorporated into the growing DNA chain. During incorporation, the enzyme holds the nucleotide in the ZMWs detection volume for tens of milliseconds, orders of magnitude longer than the average diffusing nucleotide. The system detects this as a flash of bright light because the background is very low. The polymerase advances to the next base and the process continues to repeat PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
  • Slide 149
  • multiple reads of the same molecule PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
  • Slide 150
  • Eid J et al. (2009) Molecules Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133 PMID: 19023044
  • Slide 151
  • Does it work? 150 bp circular template ~93% raw accuracy 15x coverage 99.3% accuracy Eid et al., 2009
  • Slide 152
  • PacBio claims that, by 2013, the technology will be able to give a raw human genome sequence in less than 3 min, and a complete high-quality sequence in 15 min. (http://www.bio-itworld.com/BioIT_Content.aspx?id=71746andamp;terms=Feb+12+2008+Pacific+Biosciences). Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11 ~ 2-5 bp/sec
  • Slide 153
  • F. Sanger, S. Nicklen, and A. R. Coulson, Proc Natl Acad Sci U S A. 1977; 74: 54635467