47
2 Fourier series(F.S.) Dirichlet’s conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier Series - Parseval’s identity - Harmonic Analysis. 2.0.1 Periodic function A function f (x) is said to be periodic if and only if f (x + p)= f (x) for some p for x. The smallest value of p is called period of the function. Examples : 1. sin(x +2π) = sin x, 2π is period for f (x) = sin x 2. cos(x +2π) = cos x, 2π is period for f (x) = cos x 3. tan(x + π) = tan x, π is period for f (x) = tan x 4. sin x + 2π n = sin nx, 2π n is period for f (x) = sin nx 5. cos x + 2π n = cos nx, 2π n is period for f (x) = cos nx 6. tan x + π n = tan nx, π n is period for f (x) = tan nx 2.0.2 Continuity of a function A function f (x) is said to be continuous in the interval [a, b], if it is continuous at every point of the interval. 2.0.3 Left Hand Limit The left hand limit of f (x) at x = a is defined as x approaches a from left and denoted by f (a-) and is defined by f (a-) = lim h0 f (a - h) 89

2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

  • Upload
    others

  • View
    51

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

2 Fourier series(F.S.)

Dirichlet’s conditions - General Fourier series - Odd and evenfunctions - Half range sine series - Half range cosine series -Complex form of Fourier Series - Parseval’s identity - HarmonicAnalysis.

2.0.1 Periodic function

A function f(x) is said to be periodic if and only if f(x + p) = f(x) forsome p for x. The smallest value of p is called period of the function.

Examples :

1. sin(x+ 2π) = sin x, 2π is period for f(x) = sin x

2. cos(x+ 2π) = cos x, 2π is period for f(x) = cos x

3. tan(x+ π) = tan x, π is period for f(x) = tan x

4. sin

(x+

n

)= sinnx,

nis period for f(x) = sinnx

5. cos

(x+

n

)= cosnx,

nis period for f(x) = cosnx

6. tan(x+

π

n

)= tannx,

π

nis period for f(x) = tannx

2.0.2 Continuity of a function

A function f(x) is said to be continuous in the interval [a, b], if it iscontinuous at every point of the interval.

2.0.3 Left Hand Limit

The left hand limit of f(x) at x = a is defined as x approaches a fromleft and denoted by f(a−) and is defined by

f(a−) = limh→0

f(a− h)

89

Page 2: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

90 Unit II - FOURIER SERIES (F.S.)

2.0.4 Right Hand Limit

The right hand limit of f(x) at x = a is defined as x approaches a fromright and denoted by f(a+) and is defined by

f(a+) = limh→0

f(a+ h)

Note : A function f(x) is said to be continuous at x = a is

f(a−) = f(a) = f(a+)

2.1 Dirichlet’s conditions

If a function f(x) is defined in c ≤ x ≤ c + 2`, it can be expanded asFourier series of the form

f(x) =a02+

∞∑n=1

(an cos

nπx

`+ bn sin

nπx

`

)where a0, an, bn are Fourier constant coefficients, provided:

(i) f(x) is periodic, single valued and finite in (c, c+ 2`).

(ii) f(x) is continuous (or) piecewise continuous with finite number ofdiscontinuities in (c, c+ 2`).

(iii) f(x) has at the most a finite number of maxima or minima in(c, c+ 2`).

2.2 General Fourier series

In (c, c+ 2`), Fourier series is

f(x) =a02+

∞∑n=1

(an cos

nπx

`+ bn sin

nπx

`

)where a0, an, bn are Fourier coefficients which can be found by Euler’sformulae.

2.2.1 Euler’s formula

In (c, c+ 2`), Fourier series is

f(x) =a02+

∞∑n=1

(an cos

nπx

`+ bn sin

nπx

`

)

Page 3: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 91

where

a0 =1

`

∫ c+2`

c

f(x) dx

an =1

`

∫ c+2`

c

f(x)cos(nπx

`

)dx

bn =1

`

∫ c+2`

c

f(x)sin(nπx

`

)dx

Case(i): If c = 0, (c, c+ 2`) becomes (0, 2`).∴ Fourier series is

f(x) =a02+

∞∑n=1

(an cos

nπx

`+ bn sin

nπx

`

)where

a0 =1

`

∫ 2`

0

f(x) dx

an =1

`

∫ 2`

0

f(x)cos(nπx

`

)dx

bn =1

`

∫ 2`

0

f(x)sin(nπx

`

)dx

Case(ii): If c = −`, (c, c+ 2`) becomes (−`, `).∴ Fourier series is

f(x) =a02+

∞∑n=1

(an cos

nπx

`+ bn sin

nπx

`

)where

a0 =1

`

∫ `

−`

f(x) dx

an =1

`

∫ `

−`

f(x)cos(nπx

`

)dx

bn =1

`

∫ `

−`

f(x)sin(nπx

`

)dx

Case(iii): If c = 0 and ` = π, (c, c+ 2`) becomes (0, 2π).∴ Fourier series is

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx)

where

Page 4: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

92 Unit II - FOURIER SERIES (F.S.)

a0 =1

π

∫ π

0

f(x) dx

an =1

π

∫ π

0

f(x)cosnx dx

bn =1

π

∫ π

0

f(x)sinnx dx

Case(iv): If c = −π and ` = π, (c, c+ 2`) becomes (−π, π).∴ Fourier series is

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx)

where

a0 =1

π

∫ π

−π

f(x) dx

an =1

π

∫ π

−π

f(x)cosnx dx

bn =1

π

∫ π

−π

f(x)sinnx dx

While finding series(Fourier/Cosine/Sine/Complex/Harmonic):Analyse what series, what interval and f (x ) with related formulae.Intervals : (0, 2π), (−π, π), (0, π), (0, 2`), (−`, `), (0, `)

(* denotes class work problems)

�� � Worked Examples

2.2.2 Examples under (0, 2π)

Example 2.1. Find the Fourier series of f(x) = x2 in (0, 2π) and with

period 2π.

{a0 =

8

3π2, an =

4

n2, bn =

−4π

n

}Solution : Given f(x) = x2 defined in the interval (0, 2π).∴ The Fourier series of f(x) is given by

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx) (1)

Page 5: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 93

where a0 =1

π

2π∫0

f (x) dx

an =1

π

2π∫0

f (x) cosnxdx

bn =1

π

2π∫0

f (x) sinnxdx

Now, a0 =1

π

2π∫0

x2dx =1

π

[x3

3

]=

1

π

[8π3

3− 0

]=

8π2

3

an =1

π

2π∫0

x2 cosnxdx

=1

π

[x2(sinnx

n

)− 2x

(− cosnx

n2

)+ 2

(− sinnx

n3

)]2π0

=1

π

[x2

sinnx

n+ 2x

cosnx

n2− 2

sinnx

n3

]2π0

=1

π

[(0 +

n2− 0

)− (0 + 0− 0)

][∵ cos 2nπ = 1]

∴ an =4

n2

bn =1

π

2π∫0

x2 sinnxdx

=1

π

[x2(− cosnx

n

)− 2x

(− sinnx

n2

)+ 2

(cosnxn3

)]2π0

=1

π

[−x2cosnx

n+ 2x

sinnx

n2+ 2

cosnx

n3

]2π0

=1

π

[(−4π2

n+ 0 +

2

n3

)−(0 + 0 +

2

n3

)]=1

π

(−4π2

n

)∴ bn =

−4π

n

Sub. the value of a0, an, bn in (1)

Page 6: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

94 Unit II - FOURIER SERIES (F.S.)

f(x) =1

2

(8π2

3

)+

∞∑n=1

(4

n2cosnx− 4π

nsinnx

)=4π2

3+ 4

∞∑n=1

(cosnx

n2− π sinnx

n

)Example 2.2. * Find the Fourier series of f(x) = x in (0, 2π) with f(x+

2π) = f(x).

{Ans : a0 = 2π, an = 0, bn =

−2

n

}Example 2.3. Find the Fourier series of f(x) = (π − x)2 in (0, 2π) of

periodicity 2π.

{a0 =

2

3π2, an =

4

n2, bn = 0

}Example 2.4. * Obtain the Fourier series expansion for the functionf(x) = x(2π − x) in 0 ≤ x ≤ 2π, with period 2π. Show that112 +

122 +

132 + · · · = π2

6 {a0 =

4

3π2, an = − 4

n2, bn = 0

}

Solution: Given f(x) = x(2π − x)

= 2πx− x2

The Fourier series of f(x) is given by

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx) (1)

where a0 =1

π

2π∫0

f (x) dx,an =1

π

2π∫0

f (x) cosnxdx, bn =1

π

2π∫0

f (x) sinnxdx

Now, a0 =1

π

2π∫0

(2πx− x2

)dx

=1

π

[2πx2

2− x3

3

]2π0

=1

π

[πx2 − x3

3

]2π0

=1

π

[(4π3 − 8π2

3

)− 0

]=

1

π

(4π3

3

)a0 =

4π2

3

Page 7: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 95

an =1

π

2π∫0

(2πx− x2

)cosnxdx

=1

π

[(2πx− x2

)(sinnxn

)− (2π − 2x)

(− cosnx

n2

)+(−2)

(− sinnx

n3

)]2π0

=1

π

[(2πx− x2

) sinnxn

+ (2π − 2x)cosnx

n2+

2 sinnx

n3

]2π0

=1

π

[(0 + (−2π)

1

n2+ 0

)−(0 + 2π

1

n2 + 0

)]=

1

π

[−2π

n2− 2π

n2

]=

1

π

(−4π

n2

)an =

−4

n2

bn =1

π

2π∫0

(2πx− x2

)sinnxdx

=1

π

[(2πx− x2

)(− cosnx

n

)− (2π − 2x)

(− sinnx

n2

)+(−2)

(cosnxn3

)]2π0

=1

π

[−(2πx− x2

) cosnxn

+ (2π − 2x)sinnx

n2− 2

cosnx

n3

]2π0

=1

π

[(0 + 0− 2

n3

)−(0 + 0− 2

n3

)]bn = 0

Sub. the value of a0, an and bn in (1),

f (x) =1

2

(4π2

3

)+

∞∑n=1

(−4

n2

)cosnx+ 0

f (x) =2π2

3− 4

∞∑n=1

cosnx

n2

Page 8: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

96 Unit II - FOURIER SERIES (F.S.)

Deduction :

Since f (x) = x (2π − x)

∴ x (2π − x) =2π2

3− 4

∞∑n=1

cosnx

n2

Put x = 0,

0 =2π2

3− 4

∞∑n=1

1

n2

4∞∑n=1

1

n2=

2π2

3

i.e.,∞∑n=1

1

n2=

2π2

12

i.e.,1

12+

1

22+

1

32+ · · · = π2

6.

Example 2.5. Find the Fourier series of periodicity 2π for

f(x) =

{x, (0, π)

2π − x, (π, 2π)

Solution: Given f(x) =

{x, (0, π)

2π − x, (π, 2π)Since the function f(x) is defined in the interval (0, 2π).∴ The Fourier series of f(x) is given by

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx) (1)

where a0 =1

π

2π∫0

f (x) dx,an =1

π

2π∫0

f (x) cosnxdx, bn =1

π

2π∫0

f (x) sinnxdx

Page 9: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 97

Now, a0 =1

π

π∫0

xdx+

2π∫π

(2π − x) dx

=

1

π

[(x2

2

0

+

(2πx− x2

2

)2π

π

]

=1

π

[(π2

2− 0

)+

((4π2 − 2π2

)−(2π2 − π2

2

))]=

1

π

[π2

2+ 2π2 − 3π2

2

]=

1

π

(π2 + 4π2 − 3π2

2

)=

1

π

(2π2

2

)a0 = π

an =1

π

π∫0

x cosnxdx+

2π∫π

(2π − x) cosnxdx

=

1

π

[[x

(sinnx

n

)− 1 ·

(− cosnx

n2

)]π0

+

[(2π − x)

(sinnx

n

)− (−1)

(− cosnx

n2

)]2ππ

]

=1

π

[[x sinnx

n+

cosnx

n2

]π0

+

[(2π − x)

sinnx

n− cosnx

n2

]2ππ

]

=1

π

[[(0 +

(−1)n

n2

)−(0 +

1

n2

)]+

(0− 1

n2

)−(0− (−1)n

n

)]=

1

π

[(−1)n

n2− 1

n2− 1

n2+

(−1)n

n2

]=

1

π

[2 (−1)n

n2− 2

n2

]an =

2

n2π[(−1)n − 1]

Page 10: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

98 Unit II - FOURIER SERIES (F.S.)

bn =1

π

π∫0

x sinnxdx+

2π∫π

(2π − x) sinnxdx

=

1

π

[[x

(− cosnx

n

)− 1

(− sinnx

n2

)]π0

+

[(2π − x)

(− cosnx

n

)− (−1)

(− sinnx

n2

)]2ππ

]

=1

π

[[−x cosnx

n+

sinnx

n2

]π0

+

[− (2π − x)

cosnx

n− sinnx

n2

]2ππ

]

=1

π

[[(−π (−1)n

n+ 0

)− (0 + 0)

]+

[(0− 0)−

(−π (−1)n

n− 0

)]]=

1

π

[−π (−1)n

n+π (−1)n

n

]bn = 0

Sub. the value of a0, an and bn in (1)

f (x) =π

2+

∞∑n=1

(2

n2π((−1)n − 1) cosnx+ 0

)f (x) =

π

2+

2

π

∞∑n=1

((−1)n − 1

n2

)cosnx

Page 11: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 99

For deduction partsContinuous point Discontinuous point

Same point At extremes At middle

Substitute thecontinuous pointin f(x) directlyExample:(1)

f(x) =x

2in (0, 2π) at x = πisf(x = π) =

π

2(2)f(x) = x3 − x

in (0, 2π) at x =π

2isf(x =

π

2

)=(π

2

)3−(π2

)

f(x) = Average offunction at extremesExample:

(1)f(x) =x

2in (0, 2π) at

x = 0 isf(x = 0)

=f(x = 0) + f(x = 2π)

2

=02 +

2π2

2=π

2(2)f(x) = cos xin (0, 2π) at x = 2π is

f(x = 2π)

=cos 0 + cos 2π

2

=1 + 1

2= 1

f(x) = Average of

LHL & RHLExample:(1)f(x) ={

0, 0 < x < ππ, π < x < 2π

in (0, 2π) isf(x = π)

=f(π−) + f(π+)

2wheref(π−) = lim

h→0f(π − h)

= 0

&

f(π+) = limh→0

f(π + h)

= π

∴ f(x = π) =0 + π

2

2

Example 2.6. Find the Fourier series for the function f(x) =1

2(π − x)

in(0, 2π) with period 2π and deduce 1− 1

3+

1

5− · · · = π

4.{

a0 = 0, an = 0, bn =1

n&x =

π

2

}Example 2.7. Find the Fourier series for the function

f(x) =

{x, (0, π)

2π − x, (π, 2π)and deduce

1

12+

1

32+

1

52+ · · · = π2

8.{

a0 = π, an =2

πn2[(−1)n − 1] , bn = 0&x = 0

}Example 2.8. * Find the Fourier series for f(x) = x (2π − x) in (0, 2π)

and deduce∞∑n=1

1

n2=π2

6.

{a0 =

3

2

, an =−4

n2, bn = 0&x = 0

}

Page 12: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

100 Unit II - FOURIER SERIES (F.S.)

Example 2.9. Find the Fourier series for f(x) = x sinx in (0, 2π) and

deduce1

(1)(3)− 1

(3)(4)+

1

(5)(7)− · · · = π − 2

4.{

a0=−2, an=−2

1−n2(n 6= 1) , a1=

−1

2, bn=0 (n 6= 1) , b1=π&x=

π

2

}Solution : Given f(x) = x sinx in (0, 2π).∴ The Fourier series of f(x) is given by

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx) (1)

where a0 =1

π

2π∫0

f (x) dx, an =1

π

2π∫0

f (x) cosnxdx, bn =1

π

2π∫0

f (x) sinnxdx

Now, a0 =1

π

2π∫0

x sinxdx

=1

π[x (− cosx)− 1 (− sinx)]2π0

=1

π[−x cosx+ sinx]2π0

=1

π[(−2π + 0)− (0 + 0)]

a0 = −2

an =1

π

2π∫0

x sinx cosnxdx

=1

π

2π∫0

x cosnx sinxdx

=1

π

2π∫0

x1

2(sin (n+ 1)x− sin (n− 1)x) dx

=1

2π∫0

x (sin (n+ 1)x− sin (n− 1)x) dx

Page 13: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 101

=1

[x

(− cos (n+ 1)x

n+ 1+

cos (n− 1)x

n− 1

)−1

(− sin (n+ 1)x

(n+ 1)2+

sin (n− 1)x

(n− 1)2

)]2π0

=1

[x

(cos (n− 1)x

n− 1− cos (n+ 1)x

n+ 1

)+sin (n+ 1)x

(n+ 1)2− sin (n− 1)x

(n− 1)2

]2π0

=1

[[2π

(1

n− 1− 1

n+ 1

)+ 0− 0

]− [0 + 0− 0]

]=

1

n− 1− 1

n+ 1=n+ 1− (n− 1)

n2 − 1

an =2

n2 − 1, n 6= 1

a1 =1

π

2π∫0

x sinx cosxdx (∵ an = 1π

2π∫0

x sinx cosnxdx)

=1

2π∫0

x2 sin x cosxdx

=1

2π∫0

x sin 2xdx

=1

[x

(− cos 2x

2

)− 1 ·

(− sin 2x

4

)]2π0

=1

[−x cos 2x

2+

sin 2x

4

]2π0

=1

[(−2π

2+ 0

)− (0 + 0)

]a1 =

−1

2

Page 14: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

102 Unit II - FOURIER SERIES (F.S.)

bn =1

π

2π∫0

x sinx sinnxdx

=1

π

2π∫0

x sinnx sinxdx

=1

π

2π∫0

x1

2(cos (n− 1)x− cos (n+ 1)x)dx

=1

π

2π∫0

x (cos (n− 1)x− cos (n+ 1)x)dx

=1

[x

(sin (n− 1)x

n− 1− sin (n+ 1)x

n+ 1

)−1

(− cos (n− 1)x

(n− 1)2+

cos (n+ 1)x

(n+ 1)2

)]2π0

=1

[x

(sin (n+ 1)x

n+ 1− sin (n− 1)x

n− 1

)+

(cos (n− 1)x

(n− 1)2− cos (n+ 1)x

(n+ 1)2

)]2π0

=1

[(0 +

1

(n − 1)2− 1

(n + 1)2

)−(0 +

1

(n − 1)2− 1

(n + 1)2

)]bn = 0, n 6= 1

Page 15: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 103

b1 =1

π

2π∫0

x sinx sinxdx =1

π

2π∫0

x sin2 xdx

=1

π

2π∫0

x1

2(1− cos 2x) dx

=1

2π∫0

(x− x cos 2x) dx

=1

[x2

2−[x

(sin 2x

2

)− 1

(− cos 2x

4

)]]2π0

=1

[x2

2− x sin 2x

2− cos 2x

4

]2π0

=1

[(4π2

2− 0− 1

4

)−(0− 0− 1

4

)]=

1

(2π2)

b1 = π

From (1),

f (x) =a02+

∞∑n=1

(an cosnx+ bn sinnx)

=a02+

∞∑n=1

an cosnx+∞∑n=1

bn sinnx

=a02+ a1 cosx+

∞∑n=2

an cosnx+ b1 sinx+∞∑n=2

bn sinnx

=1

2(−2)− 1

2cosx+

∞∑n=2

(2

n2 − 1

)cosnx+ π sinx+ 0

i.e., f (x) = −1− 12 cosx+ 2

∞∑n=2

(cos nxn2−1

)+ π sinx

Example 2.10. * Find the Fourier series for f(x) = x cosx in (0, 2π).{a0 = 0, an = 0 (n 6= 1) , a1 = π, bn =

2n

1− n2(n 6= 1) , b1 =

−1

2

}

Page 16: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

104 Unit II - FOURIER SERIES (F.S.)

Example 2.11. Obtain Fourier series for f(x) = eax in (0, 2π).

Solution : Given f(x) = eax in (0, 2π).The Fourier series of f(x) is given by

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx) (1)

where

a0 =1

π

2π∫0

f (x) dx, an =1

π

2π∫0

f (x) cosnxdx, bn =1

π

2π∫0

f (x) sinnxdx

Now, a0 =1

π

2π∫0

eaxdx =1

π

[eax

a

]2π0

=1

aπ[eax]2π0 =

1

[ea2π − e0

]∴ a0 =

1

(e2aπ − 1

)an =

1

π

2π∫0

eax cosnxdx =1

π

[eax

a2 + n2(a cosnx+ n sinnx)

]2π0

=1

π

[e2aπ

a2 + n2(a+ 0)− 1

a2 + n2(a+ 0)

]=1

π

[ae2aπ

a2 + n2− a

a2 + n2

]=

a

π (a2 + n2)

[e2aπ − 1

]∴ an =

a(e2aπ − 1

)π (a2 + n2)

bn =1

π

2π∫0

eax sinnxdx =1

π

[eax

a2 + n2(a sinnx− cosnx)

]2π0

=1

π

[e2aπ

a2 + n2(0− n)− 1

a2 + n2(0− n)

]=1

π

[−ne2aπ

a2 + n2+

n

a2 + n2

]=

−nπ (a2 + n2)

[e2aπ − 1

]∴ bn =

−n(e2aπ − 1

)π (a2 + n2)

Sub. the value of a0, an, bn in (1)

f(x) =1

2

(e2aπ − 1

)+

∞∑n=1

[a(e2aπ − 1

)π (a2 + n2)

cosnx−n(e2aπ − 1

)π (a2 + n2)

sinnx

]

=e2aπ − 1

2aπ+

∞∑n=1

(e2aπ − 1

π (a2 + n2)

)[a cosnx− n sinnx]

Page 17: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 105

=e2aπ − 1

2aπ+e2aπ − 1

π

[ ∞∑n=1

(1

a2 + n2

)(a cosnx− n sinnx)

]

=e2aπ − 1

π

[1

2a+

∞∑n=1

1

a2 + n2(a cosnx− n sinnx)

]Example 2.12. * Find the Fourier series for f(x) = e−x in (0, 2π) and

deduce∞∑n=2

(−1)n

1 + n2, further derive a series for cosec hπ.{a0 =

1− e−2π

π, an =

1− e−2π

π (1 + n2), bn =

n

π

1− e−2π

1 + n2&x = π

}Note : General Fourier series is used in full range intervals as 2π or 2`

length. i.e., intervals of the form (0, 2π), (0, 2`), (−π, π), (−`, `).In intervals (−π, π) & (−`, `), use even function or odd function orneither even nor odd function(or none) ideas.

2.3 Odd and even functions

(1) If

f(−x)=

{f(x)⇒Gn. f(x) is an even fn.[symmetric about y-axis]

−f(x)⇒Gn. f(x) is an odd fn.[symmetric about origin]

(2) If f (−x) 6=

{f(x)

−f(x)

}⇒ Gn. f(x) is neither even nor odd fn.

Note: (even function)× (even function) = (even function)

(odd function)× (odd function) = (even function)

(even function)× (odd function) = (odd function)

Examples :Even fns:

±a, x2, cosx, |x| , |cosx| , |sinx| , x sinx, sin2 x,√1−cosx, e±x2

Odd fns:±x, x3, x3 − x, x cosx, x2 sinx, · · ·

Neither Even nor odd fns:e±ax,±x2 ± x, · · ·

Note :

a∫−a

f(x)dx =

a∫

0

f(x)dx, if f(x) is even

0, if f(x) is odd

Page 18: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

106 Unit II - FOURIER SERIES (F.S.)

If f(x) =

{f1(x), in (−π, 0)f2(x), in (0, π)

such that

(a) f1(−x) = f2(x), then given f(x) is said to be an even function in(−π, π).

(b) f1(−x) = −f2(x), then given f(x) is said to be an odd functionin (−π, π).

2.3.1 Fourier series formula for the intervals (−π, π), (−`, `)

Interval (−`, `) (−π, π)

If f(x) is even,⇒ bn = 0

f(x) =a02

+∞∑n=1

an cosnπx

`

where

a0 =1

`

∫ `

−`

f(x)dx (or)

=2

`

∫ `

0

f(x)dx

an =1

`

∫ `

−`

f(x) cosnπx

`dx (or)

=2

`

∫ `

0

f(x) cosnπx

`dx

f(x) =a02

+∞∑n=1

an cosnx

where

a0 =1

π

∫ π

−π

f(x)dx (or)

=2

π

∫ π

0

f(x)dx

an =1

π

∫ π

−π

f(x) cosnxdx (or)

=2

π

∫ π

0

f(x) cosnxdx

If f(x) is odd,⇒a0 = an = 0

f(x) =∞∑n=1

bn sinnπx

`

where

bn =1

`

∫ `

−`

f(x) sinnπx

`dx (or)

=2

`

∫ `

0

f(x) sinnπx

`dx

f(x) =∞∑n=1

bn sinnx

where

bn =1

π

∫ π

−π

f(x) sinnxdx (or)

=2

π

∫ π

0

f(x) sinnxdx

If f(x) is none(neither odd noreven)

f(x) =a02

+∞∑n=1

an cosnπx

`

+∞∑n=1

bn sinnπx

`

where

a0 =1

`

∫ `

−`

f(x)dx

an =1

`

∫ `

−`

f(x) cosnπx

`dx

bn =1

`

∫ `

−`

f(x) sinnπx

`dx

f(x) =a02

+∞∑n=1

an cosnx

+∞∑n=1

bn sinnx

where

a0 =1

π

∫ π

−π

f(x)dx

an =1

π

∫ π

−π

f(x) cosnxdx

bn =1

π

∫ π

−π

f(x) sinnxdx

Page 19: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 107

2.3.2 Root Mean Square Value

Root mean square value (RMS value) of f(x) in (a, b) is

y =

√1

(b− a)

∫ b

a

[f (x)]2 dx

Eg: Find R.M.S. for f(x) = x in (0, π) is

y =

√1

(π − 0)

∫ π

0

[f (x)]2 dx =

√π2

3=

π√3

2.4 Parseval’s Identity

If the power of n in Fourier series expansion < the power of n indeduction part, then use appropriate Parseval’s Identity.

Interval Simplified Parseval’s Identity for deduction

(−`, `) 1

`

∫ `

−`

[f(x)]2 dx =a202+

∞∑n=1

(a2n + b2n

)(−π, π) 1

π

∫ π

−π

[f(x)]2 dx =a202+

∞∑n=1

(a2n + b2n

)(0, 2`)

1

`

∫ 2`

0

[f(x)]2 dx =a202+

∞∑n=1

(a2n + b2n

)(0, 2π)

1

π

∫ 2π

0

[f(x)]2 dx =a202+

∞∑n=1

(a2n + b2n

)

2.4.1 Examples under (−π, π)

Example 2.13. Find the Fourier series for the function f (x) = x+ x2 in(−π, π) and deduce that 1

12 +122 +

132 + · · · = π2

6 ·

Solution: Given f (x) = x+ x2 in (−π, π).Take f1(x) = x. Clearly f1(x) = x is an odd function in (−π, π).

Page 20: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

108 Unit II - FOURIER SERIES (F.S.)

The Fourier series for the function of f(x) in (−π, π) is given by

f (x) =∞∑n=1

bn sinnx (1)

where bn =1

π

π∫−π

f (x) sinnxdx

i.e., bn =2

π

π∫0

f (x) sinnxdx [∵ f(x) is odd function]

bn =2

π

π∫0

x sinnxdx

=2

π

[x

(− cosnx

n

)− (1)

(− sinnx

n2

)]π0

=2

π

[−x(cosnx

n

)+ (1)

(sinnx

n2

)]π0

=2

π

[−π(−1)n

n+ 0− (0 + 0)

]bn =

−2(−1)n

n

Fourier series of f1(x) = x is given by f1 (x) = −2∞∑n=1

(−1)n

n sinnx

Take f2(x) = x2. Clearly f2(x) = x2 is an even function in (−π, π).The Fourier series for f(x) in (−π, π) is given by

f (x) =a02+

∞∑n=1

an cosnx (2)

where a0 =1

π

π∫−π

f (x) dx, an =1

π

π∫−π

f (x) cosnxdx

i.e., a0 =2

π

π∫0

f (x) dx, an =2

π

π∫0

f (x) cosnxdx [∵ f(x) is even function]

Page 21: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 109

a0 =2

π

π∫0

x2dx =2

π

[x3

3

]π0

=2

π

[π3

3− 0

]

a0 =2π2

an =2

π

π∫0

x2 cosnxdx

=2

π

[x2(sinnx

n

)− 2x

(− cosnx

n2

)+ 2

(− sinnx

n3

)]π0

=2

π

[x2 sinnx

n+

2x cosnx

n2− 2 sinnx

n3

]π0

=2

π

[(0 +

2π (−1)n

n2− 0

)− (0 + 0− 0)

]=

2

π

[2π (−1)n

n2

]an =

4 (−1)n

n2

Fourier series of f2(x) = x2 is given by

f2 (x) =π2

3+ 4

∞∑n=1

(−1)n

n2cosnx

Since f (x) = x+ x2

The Fourier series of f (x) is

f (x) = −2∞∑n=1

(−1)n

nsinnx+

π2

3+ 4

∞∑n=1

(−1)n

n2cosnx

f (x) =π2

3− 2

∞∑n=1

(−1)n

nsinnx+ 4

∞∑n=1

(−1)n

n2cosnx.

Deduction : Put x = π. Here x = π is a point of discontinuity whichis one end of the given interval (−π, π).

Sum of the Fourier series of f(x) isf (−π) + f (π)

2

Page 22: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

110 Unit II - FOURIER SERIES (F.S.)

∴f (−π) + f (π)

2=π2

3− 0 + 4

∞∑n=1

(−1)n

n2(−1)n

−π + π2 + π + π2

2=π2

3+ 4

∞∑n=1

(−1)2n

n2

π2 =π2

3+ 4

∞∑n=1

1

n2

π2 − π2

3= 4

∞∑n=1

1

n2

2π2

3= 4

∞∑n=1

1

n2

π2

6=

∞∑n=1

1

n2

1

12+

1

22+

1

32+ · · · = π2

Example 2.14. Find the Fourier series for the function f(x) = x2 in[−π, π]with period 2π and deduce

(i)1

12+

1

22+

1

32+ ... =

π2

6(ii)

1

12− 1

22+

1

32− ... =

π2

12

(iii)1

12+

1

32+

1

52+ ... =

π2

8(iv)

1

14+

1

24+

1

34+ ... =

π4

90{a0 =

2

3π2, an =

4 (−1)n

n2, bn = 0(∵ even)

}{

(i)x = π(or − π) (ii)x = 0 (iii) add i and ii(iv) Use Parseval′s identity

}Solution: Given f(x) = x2 in [−π, π].We know that, the Fourier series of f(x) is given by (Refer above example),

f (x) =π2

3+ 4

∞∑n=1

(−1)n

n2cosnx (1)

Deduction:(i) Put x = π. [Here x = π is a point of discontinuity which is one end ofthe given interval (−π, π)]

∴ Sum of the Fourier series of f(x) isf (−π) + f (π)

2

Page 23: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 111

i.e.,f (−π) + f (π)

2=π2

3+ 4

∞∑n=1

(−1)n

n2(−1)n

π2 + π2

2=π2

3+ 4

∞∑n=1

(−1)2n

n2

2π2

2=π2

3+ 4

∞∑n=1

1

n2

π2 − π2

3= 4

∞∑n=1

1

n2

2π2

3= 4

∞∑n=1

1

n2

π2

6=

∞∑n=1

1

n2

1

12+

1

22+

1

32+ · · · = π2

6(2)

(ii) Put x = 0

0 =π2

3+ 4

∞∑n=1

(−1)n

n2

−π2

3= 4

[−1

12+

1

22− 1

32+ · · ·

]−π2

3= −4

[1

12− 1

22+

1

32− · · ·

]π2

12=

1

12− 1

22+

1

32− · · ·

1

12− 1

22+

1

32− · · · = π2

12(3)

(iii) (1) + (2) ⇒

2

12+ 0 +

2

32+ 0 + · · · = π2

6+π2

12

2

(1

12+

1

32+

1

52+ · · ·

)=

3π2

12

1

12+

1

32+

1

52+ · · · = π2

Page 24: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

112 Unit II - FOURIER SERIES (F.S.)

Example 2.15. * Find the Fourier series for f(x) = x in(−π, π)with

period 2π.

{a0 = 0(∵ odd), an = 0(∵ odd), bn =

−2

n(−1)n

}

Example 2.16. * Find the Fourier series for f(x) = x2 − x in(−π, π).{a0 =

2

3π2, an =

4

n2(−1)n, bn =

2

n(−1)n

}

Example 2.17. Find the Fourier series for

f(x) =

{x− 1, −π < x < 0x+ 1, 0 < x < π

and deduce 1− 1

3+

1

5− · · · = π

4.

Solution : Given f(x) =

{x− 1, −π < x < 0x+ 1, 0 < x < π

f(−x) ={

−x− 1, −π < −x < 0−x+ 1, 0 < −x < π

=

{−x− 1, 0 < x < π−x+ 1, −π < x < 0

=

{−x+ 1, −π < x < 0−x− 1, 0 < x < π

=−{x− 1, −π < x < 0x+ 1, 0 < x < π

f(−x) =− f(x)∴ f(x) is an odd function in −π < x < π.∴ The Fourier series for the odd function f(x) is given by

f (x) =∞∑n=1

bn sinnx (1)

where bn =2

π

∫ π

0

f (x) sinnxdx

=2

π

∫ π

0

(x+ 1) sinnxdx

Page 25: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 113

=2

π

[(x+ 1)

(− cosnx

n

)− 1

(− sinnx

n2

)]π0

=2

π

[− (x+ 1)

cosnx

n+

sinnx

n2

]π0

=2

π

[(− (π + 1)

(−1)n

n+ 0

)−(−1

n+ 0

)]=2

π

[1

n− (π + 1)

(−1)n

n

]∴ bn =

2

nπ[1− (π + 1) (−1)n]

From (1), the Fourier series of f(x) is

f(x) =∞∑n=1

2

nπ[1− (π + 1) (−1)n] sinnx

=2

π

∞∑n=1

[1− (π + 1) (−1)n]sinnx

n

Example 2.18. * Find the Fourier series for

f(x) =

{π + x, −π < x < 0π − x, 0 < x < π

and deduce∞∑n=1

1

(2n− 1)2=π2

8.{

a0 = π, an =4

πn2(n = odd), bn = 0(∵ even) & x = 0

}

Example 2.19. Expand f(x) = | cosx| in a Fourier series for in theinterval (−π, π).

Solution : Given f(x) =|cosx|f(−x) = |cos(−x)| = |cosx|f(−x) =f(x)

∴ f(x) is an even function in −π < x < π.∴ The Fourier series for the even function f(x) is given by

f (x) =a02+

∞∑n=1

an cosnx (1)

where a0 =2

π

∫ π

0

f (x)dx, an =2

π

∫ π

0

f (x) cosnxdx

Page 26: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

114 Unit II - FOURIER SERIES (F.S.)

Now, a0 =2

π

∫ π

0

|cosx|dx

=2

π

∫ π

2

0

|cosx| dx+∫ π

π

2

|cosx| dx

=2

π

∫ π

2

0

cosxdx+

∫ π

π

2

(− cosx)dx

=2

π

∫ π

2

0

cosxdx−∫ π

π

2

cosxdx

=2

π

(sinx)π20 − (sinx)ππ

2

=2

π[(1− 0)− (0− 1)] =

2

π[1 + 1]

∴ a0 =4

π

an =2

π

∫ π

0

|cosx| cosnxdx

=2

π

∫ π

2

0

|cosx| cosnxdx+∫ π

π

2

|cosx| cosnxdx

=2

π

∫ π

2

0

cosx cosnxdx+

∫ π

π

2

(− cosx) cosnxdx

=2

π

∫ π

2

0

cosnx cosxdx−∫ π

π

2

cosnx cosxdx

=2

π

∫ π

2

0

1

2[cos (n+ 1)x+ cos (n− 1)x] dx

−∫ π

π

2

1

2[cos (n+ 1)x+ cos (n− 1)x] dx

[∵ cosA cosB =

1

2cos (A+B) + cos (A−B)

]

Page 27: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 115

=1

π

∫ π

2

0

[cos (n+ 1)x+ cos (n− 1)x] dx

−∫ π

π

2

[cos (n+ 1)x+ cos (n− 1)x] dx

=1

π

(sin (n+ 1)x

n+ 1+

sin (n− 1)x

n− 1

)π2

0

−(sin (n+ 1)x

n+ 1+

sin (n− 1)x

n− 1

π

2

=1

π

sin (n+ 1)

π

2n+ 1

+sin (n− 1)

π

2n− 1

− 0

0−sin (n+ 1)

π

2n+ 1

+sin (n− 1)

π

2n− 1

=1

π

2 sin (n+ 1)π

2n+ 1

+2 sin (n− 1)

π

2n− 1

=2

π

sin(nπ

2+π

2

)n+ 1

+sin(nπ

2− π

2

)n− 1

=2

π

sin nπ2 cosπ

2+ cosn

π

2sin

π

2n+ 1

+sin

2cos

π

2− cosn

π

2sin

π

2n− 1

=2

π

cos nπ2n+ 1

−cos

2n− 1

=2 cos

[1

n+ 1− 1

n− 1

]=

2 cosnπ

[−1− (+1)

n2 − 1

]

∴ an =−4 cos

2π (n2 − 1)

,n 6= 1

Page 28: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

116 Unit II - FOURIER SERIES (F.S.)

Now, a1 =2

π

∫ π

0

|cosx| cosxdx

∵ an =2

π

∫ π

0

|cosx| cosnxdx

∴ a1 =2

π

∫ π

0

|cosx| cosxdx

=2

π

∫ π

2

0

cosx cosxdx+

∫ π

π

2

− cosx cosxdx

=2

π

∫ π

2

0

cos2 xdx−∫ π

π

2

cos2 xdx

=2

π

∫ π

2

0

1

2(1 + cos 2x) dx−

∫ π

π

2

1

2(1 + cos 2x) dx

=1

π

∫ π

2

0

(1 + cos 2x) dx−∫ π

π

2

1

2(1 + cos 2x) dx

=1

π

(x+ sin 2x

2

)π2

0

−(x+

sin 2x

2

π

2

=1

π

[[(π2− 0)− 0]−[(π + 0)−

(π2+ 0)]]

=1

π

[π2− π

2

]∴ a1 =0From (1), the Fourier series of f(x) is

f(x) =a02+ a1 cosx+

∞∑n=2

an cosnx

=1

2

(4

π

)+ 0 +

∞∑n=2

−4 cosnπ

2π (n2 − 1)

cosnx

=2

π− 4

π

∞∑n=1

cosnπ

2n2 − 1

cosnx.

Example 2.20. * Find the Fourier series forf(x) = | sinx| in the interval (−π, π).a0 = 4

π, an =

−4

π (n2 − 1), (n = even)

0, (n = odd), bn = 0(∵ even)

Page 29: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 117

Example 2.21. Find the Fourier series for f(x) =√1− cosx in

(−π, π).

Solution : Given f(x) =√1− cosx

f(−x) =√1− cos(−x) =

√1− cosx

f(−x) =f(x)∴ f(x) =

√1− cosx is an even function in −π < x < π.

∴ The Fourier series for the even function f(x) is given by

f (x) =a02+

∞∑n=1

an cosnx (1)

where a0 =2

π

∫ π

0

f (x)dxan =2

π

∫ π

0

f (x) cosnxdx

Now, a0 =2

π

∫ π

0

√1− cosxdx

∵√1− cosx =

√2 sin2

x

2

=√2 sin

x

2

=2

π

∫ π

0

√2 sin

x

2dx =

2√2

π

∫ π

0

sinx

2dx

=2√2

π

− cosx

21

2

π

0

=−4

√2

π

[cos

x

2

]π0

=−4

√2

π[0− 1]

[∵ cos

π

2= 0, cos 0 = 1

]∴ a0 =

4√2

π

Page 30: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

118 Unit II - FOURIER SERIES (F.S.)

an =2

π

∫ π

0

√1− cosx cosnxdx

=2

π

∫ π

0

√2 sin

x

2cosnxdx

=2√2

π

∫ π

0

cosnx sinx

2dx

=2√2

π

∫ π

0

1

2

(sin

(n+

1

2

)x− sin

(n− 1

2

)x

)dx

=

√2

π

∫ π

0

(sin

(n+

1

2

)x− sin

(n− 1

2

)x

)dx

=

√2

π

−cos

(n+

1

2

)x

n+1

2

+

cos

(n− 1

2

)x

n− 1

2

π

0

=

√2

π

− cos

(n+

1

2

n+1

2

+

cos

(n− 1

2

n− 1

2

−1

n+1

2

+1

n− 1

2

Page 31: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 119

=

√2

π

cos(nπ − π

2

)n− 1

2

−cos(nπ +

π

2

)n+

1

2

+1

n+1

2

− 1

n− 1

2

=

√2

π

cosnπ cos

π

2+ sinnπ sin

π

2

n− 1

2

−cosnπ cos

π

2− sinnπ sin

π

2

n+1

2

+

n− 1

2−(n+

1

2

)n2 − 1

4

=

√2

π

0− 0 +

−1

2− 1

2

n2 − 1

4

[∵ cos

π

2= 0, sinnπ = 0

]

=

√2

π

−1

n2 − 1

4

an =

−√2

π

(n2 − 1

4

)Sub. the value of a0 and an in (1)

f(x) =1

2

(4√2

π

)+

∞∑n=1

−√2

π

(n2 − 1

4

) cosnx

=2√2

π−

√2

π

∞∑n=1

cosnx

n2 − 1

4

Example 2.22. Find the Fourier series for the function f(x) = x cosx inthe interval (−π, π).

Solution : Given f(x) =x cosx

f(−x) =(−x) cos(−x) = −x cosxf(−x) =− f(x)

∴ f(x) = x cosx is an odd function in −π < x < π.∴ The Fourier series for the odd function f(x) is given by

Page 32: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

120 Unit II - FOURIER SERIES (F.S.)

f (x) =∞∑n=1

bn sinnx (1)

where bn =2

π

∫ π

0

f (x) sinnxdx

=2

π

∫ π

0

x cosx sinnxdx

=2

π

∫ π

0

x sinnx cosxdx

=2

π

∫ π

0

x1

2(sin (n+ 1)x+ sin (n− 1)x) dx

=1

π

∫ π

0

x (sin (n+ 1)x+ sin (n− 1)x) dx

=1

π

{x

(− cos(n+1)x

n+1− cos(n− 1)x

n− 1

)−1(− sin(n+1)x

(n+1)2− sin(n−1)x

(n−1)2

)}π

0

=1

π

{−x(cos (n+ 1)x

n+ 1+

cos (n− 1)x

n− 1

)+

(sin (n+ 1)x

(n+ 1)2+

sin (n− 1)x

(n− 1)2

)}π

0

=1

π

[[−π

((−1)n+1

n+ 1+

(−1)n−1

n− 1

)+ 0

]− [0 + 0]

]

=−

((−1)n+1

n+ 1+

(−1)n−1

n− 1

)= −

((−1) (−1)n

n+ 1+

(−1)n

(−1) (n− 1)

)=−

(− (−1)n

n+ 1− (−1)n

n− 1

)= (−1)n

(1

n+ 1+

1

n− 1

)=(−1)n

(n− 1 + n+ 1

n2 − 1

)∴ bn =

2n (−1)n

n2 − 1, n 6= 1

Now, b1 =2

π

∫ π

0

x cosx sinxdx

[∵ bn =

2

π

∫ π

0

x cosx sinxdx

]=1

π

∫ π

0

x2 sin x cosxdx

=1

π

∫ π

0

x sin 2xdx

Page 33: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 121

=1

π

[x

(− cos 2x

2

)− 1

(− sin 2x

4

)]π0

=1

π

[x

(− cos 2x

2

)− 1

(− sin 2x

4

)]π0

=1

π

[−x cos 2x

2+

sin 2x

4

]π0

=1

π

[(−π2+ 0)− (0 + 0)

]∴ b1 =−1

2From (1), the Fourier series of f(x) is

f(x) =b1 sinx+∞∑n=2

bn sinnx

=−1

2sinx+

∞∑n=2

2n (−1)n

n2 − 1sinnx

=−1

2sinx+ 2

∞∑n=2

n (−1)n

n2 − 1sinnx

Example 2.23. Obtain Fourier series for f (x) =

{0, −π < x < 0

sinx, 0 < x < π

and deduce that1

1.3+

1

3.5+

1

5.7+ · · · = 1

2.

Solution :

Given f(x) =

{0, −π < x < 0

sinx, 0 < x < π

f(−x) ={

0, 0 ≤ x ≤ πsin(−x), −π ≤ x ≤ 0

=

{0, 0 ≤ x ≤ π

− sinx, −π ≤ x ≤ 0

=

{− sinx, −π ≤ x ≤ 0

0, 0 ≤ x ≤ π

f(−x) 6={

f(x)−f(x)

∴ f(x) is neither even function nor odd function.The Fourier series for[ neither odd nor even function(none function)] f(x)

is given by

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx) (1)

Page 34: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

122 Unit II - FOURIER SERIES (F.S.)

where

a0 =1

π

∫ π

−π

f(x)dx, an =1

π

∫ π

−π

f(x) cosnxdx, bn =1

π

∫ π

−π

f(x) sinnxdx

Now, a0 =1

π

[∫ 0

−π

0dx+

∫ π

0

sinxdx

]=

1

π

∫ π

0

sinxdx

=1

π[− cosx]π0 = −1

π[cosx]π0 = −1

π[−1− 1]

∴ a0 =2

π

an =1

π

[∫ 0

−π

0 cosnxdx+

∫ π

0

sinx cosnxdx

]=1

π

∫ π

0

cosnx sinxdx

=1

π

∫ π

0

1

2[sin (n+ 1)x− sin (n− 1)x] dx

=1

∫ π

0

[sin (n+ 1)x− sin (n− 1)x] dx

=1

[− cos (n+ 1)x

n+ 1+

cos (n− 1)x

n− 1

]π0

=1

[(− (−1)n+1

n+ 1+

− (−1)n−1

n− 1

)−(

−1

n+ 1− 1

n− 1

)]

=1

[(− (−1) (−1)n

n+ 1+

(−1)n

(−1) (n− 1)

)+

(1

n+ 1− 1

n− 1

)]=

1

[(− (−1) (−1)n

n+ 1+

(−1)n

(−1) (n− 1)

)+

(1

n+ 1− 1

n− 1

)]=

1

[((−1)n

n+ 1− (−1)n

n− 1

)+

(1

n+ 1− 1

n− 1

)]=

1

[(−1)n

(1

n+ 1− 1

n− 1

)+

(1

n+ 1− 1

n− 1

)]=

1

[1

n+ 1− 1

n− 1

]((−1)n + 1)

=1

[n− 1− (n+ 1)

n2 − 1

]((−1)n + 1)

=1

(−2 ((−1)n + 1)

n2 − 1

)∴ an =−1

π

((−1)n + 1

n2 − 1

), n 6= 1

Page 35: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 123

a1 =1

π

∫ π

−π

f (x) cos xdx =1

π

[∫ 0

−π

0 cos xdx+

∫ π

0

sinx cosxdx

]=

1

∫ π

0

2 sin x cosxdx =1

∫ π

0

sin 2xdx

=1

[− cos 2x

2

]π0

=−1

4π[cos 2x]π0 =

−1

4π[1− 1]

∴ a1 =0

bn =1

π

[∫ 0

−π

0 sinnxdx+

∫ π

0

sinx sinnxdx

]=1

π

∫ π

0

sinnx sinxdx

=1

π

∫ π

0

1

2[cos (n− 1)x− cos (n+ 1)x] dx

=1

∫ π

0

[cos (n− 1)x− cos (n+ 1)x] dx

=1

[sin (n− 1)x

n− 1− sin (n+ 1)x

n+ 1

]π0

, n 6= 1

=1

2π[(0− 0)− (0− 0)] , n 6= 1

∴ bn =0, n 6= 1

b1 =1

π

∫ π

−π

f (x) sin xdx =1

π

[∫ 0

π

0 sin xdx+

∫ π

0

sinx sinxdx

]=1

π

∫ π

0

sin2 xdx

=1

π

∫ π

0

1

2(1− cos 2x) dx =

1

∫ π

0

(1− cos 2x) dx

=1

[x− sin 2x

2

]π0

=1

2π[(π − 0)− (0− 0)]

∴ b1 =1

2From (1),

f(x) =a02+

∞∑n=1

an cosnx+∞∑n=1

bn sinnx

=a02+ a1 cosx+

∞∑n=2

an cosnx+b1 sinx+∞∑n=2

bn sinnx

=1

2

(2

π

)+ 0 +

∞∑n=2

−1

n

((−1)n + 1

n2 − 1

)cosnx+

1

2sinx+ 0

Page 36: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

124 Unit II - FOURIER SERIES (F.S.)

∴ f(x) =1

π− 1

π

∞∑n=2

((−1)n + 1

n2 − 1

)cosnx+

sinx

2(2)

This is required Fourier series of the given f(x).For deduction partLet x = 0 is point of discontinuity at middle of the interval.

∴ f(x) value is calculated by as follows:

f(x = 0) =f(0−) + f(0+)

2

=limh→0

f(0− h) + limh→0

f(0 + h)

2

=limh→0

f(−h) + limh→0

f(+h)

2

=limh→0

0 + limh→0

sinh

2=

0 + 0

2=0

∴ (2) ⇒ 0 =1

π− 1

π

∞∑n=2

((−1)n + 1

n2 − 1

).1 + 0

−1

π=−1

π

∞∑n=2

((−1)n + 1

n2 − 1

)1 =

∞∑n=2

((−1)n + 1

n2 − 1

)=

2

3+ 0 +

2

15+ 0 +

2

35+ · · ·

1

2=1

3+

1

15+

1

35+ · · ·

1

2=

1

1.3+

1

3.5+

1

5.7+ · · ·

1

1.3+

1

3.5+

1

5.7+· · · =1

2

Example 2.24. * Find the Fourier series for f(x) = e−x in (−π, π) and

hence deduce 2∞∑n=2

(−1)n

(n2 + 1)=

π

sinh π.{

a0 =2 sinh π

π, an =

(−1)n

π (1 + n2)(2 sinh π), bn =

2n (−1)n sinh π

π (1 + n2)&x = 0

}

Page 37: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 125

2.5 Half range Fourier series in (0, `)

Half range cosine series(or) cosine series

Half range sine series(or) sine series

Don’t check for even or odd function, just subtitute thefollowing formulae

bn = 0 a0 = an = 0

f(x) =a02+

∞∑n=1

an cosnπx

`

where

a0 =2

`

∫ `

0

f(x)dx

an =2

`

∫ `

0

f(x) cosnπx

`dx

f(x) =∞∑n=1

an sinnπx

`

where

bn =2

`

∫ `

0

f(x) sinnπx

`dx

Note :Half range Fourier series in (0, π), substitute ` = π in above formulae.

2.6 Parseval’s Identity

(If the power of n in Fourier series expansion < the power of n in deductionpart, then use appropriate Parseval’s Identity)

(0, `)2

`

∫ `

0

[f(x)]2 dx =a202+

∞∑n=1

(a2n + b2n

)(0, π)

2

π

∫ π

0

[f(x)]2 dx =a202+

∞∑n=1

(a2n + b2n

)Example 2.25. Find Half range Fourier sine series for f(x) = x in (0, π)

and deduce1

12+

1

22+

1

32+ ... =

π2

6.{

a0 = 0

(∵ sineseries

), an = 0

(∵ sineseries

), bn =

−2 (−1)n

n&(Par′s id

)}

Page 38: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

126 Unit II - FOURIER SERIES (F.S.)

Example 2.26. * Find Half range Fourier cosine series for f(x) = x in

(0, π) and deduce1

14+

1

34+

1

54+ ... =

π4

96.{

a0 = π, an =

{ −4

πn2, (n = odd)

0, (n = even), bn = 0

(∵ cosseries

)&(

Par′s id)}

Example 2.27. Expand x(π − x) in half range sine series in the interval(0, π).

Solution: Given f(x) = x(π − x) in (0, π)

= πx− x2

The sine series of f(x) is given by

f (x) =∞∑n=1

bn sinnx→ (1)

where bn =2

π

π∫0

f (x) sinnxdx

=2

π

π∫0

(πx− x2

)sinnxdx

=2

π

[(πx− x2

)(− cosnx

n

)− (π − 2x)

(− sinnx

n2

)+(−2)

(cosnxn3

)]π0

=2

π

[−(πx− x2

) cosnxn

+ (π − 2x)sinnx

n2−2

cosnx

n3

]π0

=2

π

[(0 + 0− 2 (−1)n

n3

)−(0 + 0− 2

n3

)]=

2

π

[2

n3− 2 (−1)n

n3

]bn =

4

πn3[1− (−1)n]

Page 39: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 127

Sub. the value of bn in (1)

f (x) =∞∑n=1

4

πn3(1− (−1)n) sinnx

=4

π

∞∑n=1

(1− (−1)n

n3

)sinnx

=4

π

[2

13sinx+ 0 +

2

33sin 3x+ 0 + · · ·

]=

8

π

[sinx

13+

sin 3x

33+

sin 5x

53+ · · ·

]

2.7 Change of Interval {[0, 2`] , [−`, `] , [0, `]}

*Note : Just change π as ` and nx asnπx

`in previous π format formulas.

2.7.1 Examples under (0, 2`)

Example 2.28. Find the Fourier series for f(x) = (`− x)2 in (0, 2`) and

deduce∞∑n=1

1

n2=π2

6.

{a0 =

2`2

3, an =

4`2

n2π2, bn = 0&x = 0

}

Example 2.29. Find the Fourier series for f(x) =

{x, 0 ≤ x ≤ 3

6− x, 3 ≤ x ≤ 6{a0 = 3, an =

−12

n2π2(n = odd), bn = 0

}Example 2.30. * Find the Fourier series for

f(x)=

x

`, 0<x<`

2`−x`

, `<x <2`.

{a0=1, an=

[ −4

n2π2, (n=odd)

0, (n=even)

], bn=0

}

2.7.2 Examples under (−`, `)

Example 2.31. Find the Fourier series for f(x) = e−x in (−1, 1).{a0 = 2 sinh 1, an =

2 (−1)n sinh 1

1 + n2π2, bn =

2nπ (−1)n sinh 1

1 + n2π2

}

Example 2.32. * Find the Fourier series for f(x)=

0, −2<x<−1k, −1<x<10, 1<x<2

.

Page 40: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

128 Unit II - FOURIER SERIES (F.S.)a0=k, an=2k sin

(nπ2

)nπ

, bn=0 (∵ even function)

2.7.3 Examples under (0, `)

Example 2.33. Find the Fourier sine series for

f(x)=

x,

[0,`

2

]`−x,

[`

2, `

] .

a0 = 0

(∵ cosineseries

), an = 0

(∵ cosineseries

), bn =

4` sin(nπ

2

)n2π2

Example 2.34. Find the Fourier cosine series for

f(x) =

{1, 0 ≤ x ≤ a/2

−1, a/2 ≤ x ≤ a.a0 = 0, an =

4 sin(nπ

2

)nπ

, bn = 0 (∵ cosine series)

Example 2.35. * Find the sine series for f(x) = x− x2 in 0 < x < 1.{a0 = an = 0

(∵ cosineseries

), bn =

[ 8

n3π3, n = odd

0, n = even

}

Example 2.36. * Find the Half range cosine series for f(x) = kx(`− x)

in (0, `).

a0 = k`2

3, an =

0, when n is odd−4k`2

n2π2, when n is even

Page 41: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 129

2.8 Complex form of Fourier Series

Interval Fourier Series Complex Fourier coefficient

(0, 2π) f(x) =∞∑

n=−∞Cne

inx Cn =1

∫ 2π

0

f(x) e−inx dx

(−π, π) f(x) =∞∑

n=−∞Cne

inx Cn =1

∫ π

−π

f(x) e−inx dx

(0, 2`) f(x) =∞∑

n=−∞Cne

inπx/` Cn =1

2`

∫ 2`

0

f(x) e−inπx/` dx

(−`, `) f(x) =∞∑

n=−∞Cne

inπx/` Cn =1

2`

∫ `

−`

f(x) e−inπx/` dx

(0, π) f(x) =∞∑

n=−∞Cne

inx Cn =1

π

∫ π

0

f(x) e−inx dx

(0, `) f(x) =∞∑

n=−∞Cne

inπx/` Cn =1

`

∫ `

0

f(x) e−inπx/` dx

Example 2.37. Derive complex form for f(x) = eax in (0, 2π).{cn =

(a+ in)(e2aπ − 1

)2π (a2 + n2)

}Example 2.38. Find the complex form of the series for the function

f(x) = x in (−`, `).{cn =

−` (−1)n

inπ

}

Page 42: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

130 Unit II - FOURIER SERIES (F.S.)

2.9 Harmonic Analysis

So far, we found Fourier series for a function f(x) given by the formulain one (or) more interval. Now, there is a process of finding a Fourier seriesfor the function f(x) given by a Table (or) by numerical values (or) by theGraph is known as Harmonic Analysis.We know that Fourier series for f(x) in (0, 2π) is

f(x) =a02+

∞∑n=1

(an cosnx+ bn sinnx)

(or)

f(x) =a02+

∞∑n=1

an cosnx+∞∑n=1

bn sinnx (1)

where a0 =1

π

∫ 2π

0

f(x) dx

=2

∫ 2π

0

f(x) dx

= 2

[1

(2π − 0)

∫ 2π

0

f(x) dx

][∵

1

b− a

∫ b

a

f(x)dx = Mean value off(x) in (a, b)

]∴ a0 = 2 [ Meanvalueoff(x) in (0, 2π)] = 2

[∑f (x)

n

]=

2

n

[∑f (x)

]Now, an =

1

π

∫ 2π

0

f(x)cosnx dx

=2

∫ 2π

0

f(x) cosnxdx

= 2

[1

(2π − 0)

∫ 2π

0

f(x)cosnx dx

][∵

1

b− a

∫ b

a

f(x) cosnxdx = Mean value off(x) cosnx in (a, b)

]∴ an = 2 [ Mean value off(x) cosnx in (0, 2π)] =

2

n

[∑f (x) cosnx

]lly, bn = 2 [ Mean value off(x) sinnx in (0, 2π)] =

2

n

[∑f (x) sinnx

]Note: In equation (1),

Page 43: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 131

1. The terma02

is called constant term / direct part / direct current part

of Fourier series.

2. In (0, 2π), (i) (a1 cosx+ b1 sinx) is called fundamental (or) firstharmonic. (ii) (a2 cos 2x+ b2 sin 2x) is called octave (or) secondharmonic of F.S.

(i) Fourier series upto first harmonic is

f(x) =a02+ (a1 cosx+ b1 sinx)

(ii) Fourier series upto second harmonic is

f(x) =a02+ (a1 cosx+ b1 sinx) + (a2 cos 2x+ b2 sin 2x)

4.(i) Fourier series upto 2 coefficients in Fourier cosine series is

f(x) =a02+ (a1 cosx+ a2 cos 2x)

(ii) Fourier series upto 2 coefficients in Fourier sine series is

f(x) = b1 sinx+ b2 sin 2x

5. In (0, 2`), Fourier series upto 2nd harmonic is

f(x) =a02+ a1 cos

(πx`

)+ b1 sin

(πx`

)+ a2 cos

(2πx

`

)+ b2 sin

(2πx

`

)6. Amplitude of the nth harmonic = An =

√a2n + b2n

2.9.1 Types of Harmonic Table Data

1. π form (Radian form) →180◦ (Degree form)2. θ◦ form (Degree form)

3. T form

(Use θ◦ =

2πx

T

)4. ` form → 2` = Number of data

⇒ ` =Number of data

2

2.9.2 Examples under π form(Radian form)

Example 2.39. The table of values of the function y = f(x) is given

below:x 0 π/3 2π/3 π 4π/3 5π/3 2π

f(x) 1.0 1.4 1.9 1.7 1.5 1.2 1.0. Find the Fourier

series upto 2nd harmonic to represent y = f(x) in terms of x in (0, 2π).

Page 44: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

132 Unit II - FOURIER SERIES (F.S.)

Solution : Letf(x) =

a02+ a1 cosx+ a2 cos 2x+ b1 sinx+ b2 sin 2x (1)

be the F.S. upto second harmonic.Since the first and last values of y are same in the given table, leave the

first column (or) last column of the table. Hence only the first six columnvalues will be used.

x y cosx cos 2x sinx sin 2x y cosx y cos 2x y sinx y sin 2x

0 1.0 1 1 0 0 1 1 0 0π

31.4 0.5 -0.5 0.866 0.866 0.7 -0.7 1.2124 1.2124

31.9 -0.5 -0.5 0.866 -0.866 -0.95 -0.95 1.6454 -1.6454

π 1.7 -1 1 0 0 -1.7 1.7 0 04π

31.5 -0.5 -0.5 -0.866 0.866 -0.75 -0.75 -1.299 1.299

31.2 0.5 -0.5 -0.866 -0.866 0.6 -0.6 -1.0392 -1.0392

Sum 8.7 - - - - -1.1 -0.3 0.5196 -0.1732

a0 =2× 1

6

[∑y]= 2× 1

6[8.7] = 2.9 ⇒ a0

2=

2.9

2= 1.45

a1 =2× 1

6

[∑y cosx

]= 2× 1

6[−1.1] = −0.37

a2 =2× 1

6

[∑y cos 2x

]= 2× 1

6[−0.3] = −0.1

b1 =2× 1

6

[∑y sinx

]= 2× 1

6[0.5196] = 0.17

b2 =2× 1

6

[∑y sin 2x

]= 2× 1

6[−0.1732] = −0.06

Hence the required Fourier Series upto second harmonic for the data is

(1) ⇒ y = f(x) = 1.45− 0.37 cos x− 0.1 cos 2x+ 0.17 sin x− 0.06 sin 2x

Example 2.40. * Determine upto second harmonic of Fourier series for

the following data:x 0 π/3 2π/3 π 4π/3 5π/3 2π

f(x) 1.98 1.3 1.05 1.3 –0.88 –0.25 1.98{a0 = 1.5, a1 = 0.3733, b1 = 1.00453, a2 = 0.89, b2 = −0.109693}

2.9.3 Examples under θ◦ form(Degree form)

Example 2.41. Find an emprical form of the functionf(x) = a0+ a1 cosx+ b1 sinx with period 2π.

xo: 0 60 120 180 240 300 360

y = f(x) 40 31 –13 20 3.7 –21 40

Page 45: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 133

{a0 = 20.233, a1 = 9.883, b1 = 10.18993}

Example 2.42. Compute the first two harmonic of the Fourier series forf(x) from the following data. Expand f(x) as series of sine.

θ : x 0 30 60 90 120 150 180

T : f(x) 0 5224 8097 7850 5499 2626 0

{b1 = 7849.712, b2 = 1499.91067}

2.9.4 Examples under T form: (θ = 2πx/T )

Example 2.43. The following table gives the vibration of periodic currentover a period. Find Fourier series upto 1st harmonic.

T(sec) 0 T/6 T/3 T/2 2T/3 5T/6 T

I(Amp) 1.98 1.3 1.05 1.3 –0.88 –0.25 1.98

{a0 = 1.5, a1 = 0.373, b1 = 1.0045}

2.9.5 Problems under ` form: (2` = Number of data)

Example 2.44. Find the first harmonic of the Fourier series for f(x) for

the data.x 0 1 2 3 4 5

f(x) 9 18 24 28 26 20{a0 = 41.67, a1 = −8.33, b1 = −1.16}

Page 46: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

134 Unit II - FOURIER SERIES (F.S.)

Exceptional Problems in (0, 2`) format

Example 2.45. Find the Fourier series for

f(x) =

{sinx, 0 ≤ x ≤ π/4cosx, π/4 ≤ x ≤ π/2{

a0 =−8√2π, an =

8

π (16n2 − 1)

[(−1)n√

2− 1

], bn = 0

}Example 2.46. * Find the Fourier series for the function

f(x) =

{x, 0 < x < `/2

`− x, `/2 < x < `and the series

∞∑n=1

1

(2n− 1)4.

2.10 Assignment I[Fourier series]

1. Find the Fourier series of f(x) =1

2(π − x) in the interval (0, 2π).

Hence deduce that 1− 1

3+

1

5− 1

7+ · · ·∞ =

π

4.

2. Find the Fourier series expansion of f(x) = ex in the interval (0, 2`).

3. Obtain the Fourier series for the function

f (x) =

{1− x, −π < x < 01 + x, 0 < x < π

. Hence deduce that

1

12+

1

32+

1

52+ ...∞ =

π2

8.

4. Find the Fourier series for the function given by

f (x) =

1 +

2x

`, −` ≤ x ≤ 0

1− 2x

`, 0 ≤ x ≤ `

. Hence deduce that

∞∑n=1

1

(2n− 1)2=π2

8.

5. Express f(x) as a Fourier sine series where

f(x) =

1

4− x, 0 < x <

1

2

x− 3

4,1

2< x < 1

.

6. Find the half range Fourier cosine series for the functionf (x) = x (π − x) in 0 < x < π. Deduce that1

14+

1

24+

1

34+ · · ·∞ =

π4

90.

7. Find the complex form of the Fourier series of f (x) = eax,−π < x < π.

Page 47: 2 Fourier series(F.S.) - RMD Engineering CollegeMA6351 Transforms and Partial Di erential Equations by K A Niranjan Kumar 95 a n = 1 ˇ Z2ˇ 0 2ˇx x2 cosnxdx = 1 ˇ 2ˇx x2 sinnx

MA6351 Transforms and Partial Differential Equations by K A Niranjan Kumar 135

8. Obtain a Fourier series upto the second harmonics from the datax: 0 π/3 2π/3 π 4π/3 5π/3 2π

f(x): 0.8 0.6 0.4 0.7 0.9 1.1 0.8

9. The following table gives the vibration of periodic current over aperiod. Find the Fourier upto 2nd harmonic.

T(sec): 0 T/6 T/6 T/2 2T/3 5T/6 T

I(Amp): 1.98 1.3 1.05 1.3 -0.88 -0.25 1.98

10. Find the Fourier series as for as the second harmonic to represent the

function given in the following tablex: 0 1 2 3 4 5

f(x): 9 18 24 28 26 20