1ghoniem1198

Embed Size (px)

Citation preview

  • 8/22/2019 1ghoniem1198

    1/17

    1 Ghoniem - UCLA

    HIGH TEMPERATURE OXIDATION

    OF TUNGSTEN AND MOLYBDENUM

    NN

    .

    .MM

    .

    .GG

    hh

    oo

    nn

    iiee

    mm

    TThhee UUnniivveerrssiittyy ooffCCaalliiffoorrnniiaa aatt LLooss AAnnggeelleess ((UUCCLLAA))

    LLooss AAnnggeelleess,, CCAA.. 9900009955--11559977,, UUSSAA

    APEX STUDY GROUP MEETING

    UCLA

    November 2-3, 1998

    Research Sponsored by

    US Department of Energy (DOE/OFE)

  • 8/22/2019 1ghoniem1198

    2/17

    2 Ghoniem - UCLA

    PRESENTATION OUTLINE

    (1) IMPACT OF OXIDATION ON DESIGN WITH REFRACTORY ALLOYS.

    (2) MODELING OF HIGH-TEMPERATURE OXIDATION.

    2.1. Thermodynamics of Reactions

    2.2. Non-equili brium Analysis

    (3) RESULTS FOR TUNGSTEN.

    (4)RESULTS FOR MOLYBDENUM.

    (5)CONCLUSIONS.

  • 8/22/2019 1ghoniem1198

    3/17

    3 Ghoniem - UCLA

    DESIGN IMPACT

    @ At Normal temperatures and pressures, the chemical reaction of a gas

    with the solid generally results in condensed products.

    @ At high temperatures and low pressures, the formation of volatile

    products is thermodynamically favored over the growth of the condensedphase.

    @ The upper temperature limit for design with refractory metals with a

    helium coolant will be influenced by the formation of volatile oxides.

    @ The present investigation is concerned with W/He and Mo/He designs.

  • 8/22/2019 1ghoniem1198

    4/17

    4 Ghoniem - UCLA

    MODELING HIGH-TEMPERATURE OXIDATION

    APPROACH:

    @ Quasi-equilibrium Treatment of Heterogeneous Reactions for the

    systems: O-W and O-Mo.

    @ Rate Limiting Step is the Trapping (adsorption) of Oxygen atoms until

    equilibrium.

    @ Assume that the helium pressure is Psys, and its temperature T*. The

    oxygen partial pressure is given by:

    P appm PO sys2 106

    ' =

  • 8/22/2019 1ghoniem1198

    5/17

    5 Ghoniem - UCLA

    THERMODYNAMICS OF CHEMICAL REACTIONS

    @ The rate at which oxygen molecules collide with unit area of the wall

    surface is given by:

    Z P M RTO O O2 2 22= @ For Tungsten, the following thermodynamic reactions take place:

    x W s y O g W O gx y( ) ( ) ( )+ 1

    22

    @ For Molybdenum, similar reactions occur. In addition, for T~1500-

    2500 K:

    Mo s O g Mo O g Mo O g( ) ( ( ) ( ) ( ) ( )+ + 1

    212 2 33- )

  • 8/22/2019 1ghoniem1198

    6/17

    6 Ghoniem - UCLA

    FORMATION ENTHALPIES & ENTROPIES OF OXIDES

    Tungsten Molybdenum

    Species Hf298.15 (kcal/g.mole) Species Hf298.15(kcal/g.mole)

    Sf298.15(cal/g.mole.K)

    O(g) 59.559 O(g) 6611..33 1166

    W O(g) 101.6 Mo O(g) 9955 2255..55

    WO2 (g) 18.3 MoO2 (g) 1111..00 99..00

    W O3 (g) -70.0 Mo O3 (g) --8800 --1155..55

    W2 O6 (g) -278.2 Mo2 O6 (g) --227700 --7722

    W3O8 (g) -408.7 Mo3O8 (g) --440000 --111188

    W3O

    9(g) -483.6 Mo

    3O

    9(g) --446633 --113322

    W4O12 (g) -670.2 Mo4O12 (g) --664400 --119900

  • 8/22/2019 1ghoniem1198

    7/17

    7 Ghoniem - UCLA

    QUASI-EQUILIBRIUM TREATMENT OF BATTY &

    STICKNEY

    *

    @ Collisions of O2 with the surface can lead to either: (1) adsorption and

    equilibration, or (2) reflection.

    @ Define the equilibration probability as:

    i i iZ= /@@ FFoorr ooxxyyggeenn mmoolleeccuulleess aatt aa tteemmppeerraattuurree TT

    **,, ddiiffffeerreenntt ffrroomm tthhee wwaallll

    tteemmppeerraattuurree TT,, tthhee eeqquuiilliibbrraatteedd ooxxyyggeenn fflluuxx iiss::

    O O OZ2 2 2' ' '=

    J.C. Batty and R.E. Stickney, Jour n. Chem. Physics, Volume 51, No. 10, (1969) p 4475

  • 8/22/2019 1ghoniem1198

    8/17

    8 Ghoniem - UCLA

    QUASI-EQUILIBRIUM TREATMENT OF BATTY &

    STICKNEY

    *

    (Cont.)

    @ Let i W O g x y ( ), and the Gibbs Energy as: G T T T S T i i i( ) ( ) ( )=

    @ Now, we have the following system:

    K PP

    G T RT

    P G RT

    P P P P

    ii

    O

    y i

    O O

    O O O i

    N

    = =

    =

    = + +

    ( )exp( ( ) / )

    exp( / )

    /

    '

    2

    2

    2 2

    2

    1

    i = 1,2,..., N

    PO

    @ PO2 is obtained from O2. Requires equilibration probability

  • 8/22/2019 1ghoniem1198

    9/17

    9 Ghoniem - UCLA

    EQUILIBRATION PROBABILITY IS DETERMINED

    EXPERIMENTALLY

    For W OT2

    1034982 7607 104

    =

    exp[ ..

    ] , T (oK)

  • 8/22/2019 1ghoniem1198

    10/17

    10 Ghoniem - UCLA

  • 8/22/2019 1ghoniem1198

    11/17

    11 Ghoniem - UCLA

    Experimental Data on W OxidationZ

    O2'=1.2x10

    17cm

    -2s

    -1

    Temperatur e (K)

    1000 1500 2000 2500 3000 3500

    Evapora

    tion

    Ra

    te(c

    m-2s

    -1)

    10

    12

    1013

    1014

    1015

    1016

    W2O6

    WO

    WO3

    WO2

  • 8/22/2019 1ghoniem1198

    12/17

    12 Ghoniem - UCLA

    Experimental Data on W Oxidation

    ZO2

    '=1.2x1017

    cm-2

    s-1

    Temperature (K)

    1000 1500 2000 2500 3000 3500

    To

    talEvapora

    tion

    Ra

    te(cm

    -2s

    -1)

    1012

    1013

    1014

    1015

    1016

  • 8/22/2019 1ghoniem1198

    13/17

    13 Ghoniem - UCLA

    Experimental Data on W Oxidation

    ZO2

    '=1.2x1017

    cm-2

    s-1

    Temperature (K)

    1000 1500 2000 2500 3000 3500

    Evapora

    tion

    Ra

    te(micron

    /yr)

    0

    1000

    2000

    3000

    4000

    5000

  • 8/22/2019 1ghoniem1198

    14/17

    14 Ghoniem - UCLA

    Calculated W Oxidation Rates

    Experiment at ZO2

    '=1.2x1017

    cm-2

    s-1

    Temperature (K)

    1000 1500 2000 2500 3000 3500

    Ca

    lcua

    lte

    dEvapora

    tion

    Ra

    te(mm

    /yr

    )

    0

    5

    10

    15

    20

    2550 atm helium, 0.1ppm O2

    Experimental

  • 8/22/2019 1ghoniem1198

    15/17

    15 Ghoniem - UCLA

    EXPERIMENTAL RESULTS FOR MOLYBDENUM

  • 8/22/2019 1ghoniem1198

    16/17

    16 Ghoniem - UCLA

  • 8/22/2019 1ghoniem1198

    17/17

    17 Ghoniem - UCLA

    CONCLUSIONS

    (1) HIGH-TEMPERATURE OXIDATION SETS SEVERE LIMITS ONHELIUM COOLING OF REFRACTORY ALLOYS.

    (2) FOR TUNGSTEN AND MOLYBDENUM OPERATING AT 50 ATM.HELIUM COOLANT, AT 0.1 PPM OXYGEN, THE UPPER

    TEMPERATURE IS ESTIMATED AT 1200- 1300 OC.

    (3) IF HIGHER TEMPERATURES ARE BENIFICIAL TO DESIGNOBJECTIVES, THE FOLLOWING IS TO BE IMPLEMENTED:

    @ Reduce the oxygen impurity concentration to the ppp range.

    @ use oxidation-resistant coatings in the high-temperature zones.