1995 Proteolysis during tempe fermentation.pdf

Embed Size (px)

Citation preview

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    1/9

    Food M icrobiology

    1995 12 39-47

    Proteolysis du r ing tem pe ferm en tat ion

    U B a u m a n n a n d B B i s p in g t

    T h e p r o t e o l y t i c c a p a c i t y o f 3 6 s tr a i n s o f t he g e n u s

    Rhizopus

    i s o la t e d f r o m I n d o n e s ia n t e m p e

    o r t e m p e i n o c u l a w a s e x a m i n e d . N o s i g n i f i c a n t c h a n g e s i n t he t o t a l a m o u n t o r p a t t e r n o f

    a m i n o a c i d s c o u l d b e f o u n d , b u t t h e re w a s a d i s t i n c t in c r e a s e in t h e a m o u n t o f f re e a m i n o

    a c id s . S t r a i n s w i t h a h ig h p r o t e o l y t i c a c t i v i t y w e r e f o u n d , w h i c h w e r e a b l e t o r el e as e n e a r l y

    f iv e t i m e s m o r e a m i n o a c i d s a f t e r s t a n d a r d f e r m e n t a t i o n t h a n o t h e rs . C h a n g e s i n f e r m e n t a -

    t i o n p a r a m e t e r s s u c h a s t e m p e r a t u r e o r r e l a t i v e h u m i d i t y i m p r o v e d t h e s e r e s u l t s .

    F e r m e n t a t i o n s w i t h m i x e d p o p u l a t i o n s o f b a c te r ia a n d Rhizopus y i e l d e d a l o w e r l e v e l o f f r e e

    a m i n o a c i ds , b u t an i n c re a s e d t o t a l a m o u n t o f a m i n o a c i ds . Ex a m i n a t i o n o f p r o t e a s e s y s -

    t e m s o f t h r e e

    Rhizopus

    s p e c i es s h o w e d t h a t t h e p r o t e a s e s o f t h e c e ll w a l l f r a c t io n w e r e

    m o s t r e s p o n s i b l e f o r p r o t e o l y t i c c a p a c i t y o f t h e d i f f e r e n t s t r ai n s . O n a v e r a ge t h e i r a c t i v it y

    a m o u n t e d t o 7 1 o f t h e t o t a l p r o t e o l y t i c ca p a c it y .

    I n t r o d u c t i o n

    T e m p e k e d e l a i i s a n I n d o n e s i a n f o o d s t u f f

    b a s e d o n s o y b e a n s , w h i c h h a s a t r a d i t i o n d a t -

    i n g b a c k m a n y c e n t u r i e s i n J a v a . T o d a y i t i s

    a l s o b e c o m i n g m o r e p o p u l a r o n t h e o t h e r

    I n d o n e s i a n i s la n d s , i n J a p a n , i n t h e U S A , a n d

    i n W e s t e r n E u r o p e . I t i s m a d e b y a t w o - s t e p

    f e r m e n t a t i o n i n v o l v in g a hizopus s p e c i e s p l u s

    m a n y d i f f e r e n t b a c t e r i a a n d y e a s t s . T h i s f e r -

    m e n t a t i o n i m p r o v e s s o m e f e a t u r e s o f s o y b e a n s

    i n c l u d i n g f a t t y a c i d c o m p o s i t i o n ( H e r i n g e t a l .

    1 9 91 ) , t h e l e v e l a n d p a t t e r n o f o l i g o sa c c h a -

    r i d e s ( B a r z e t a l . 1 9 9 0 ) , a n d t h e a m o u n t o f

    s e v e r a l v i t a m i n s , e s p e c i a l ly v i t a m i n B 12 a n d

    v i t a m i n D ( K e u t h a n d B i s p i n g 1 9 9 3 , D e n t e r

    a n d B i s p i n g 1 9 9 3 ) . T h e p r o d u c t i s a s o l i d c a k e ,

    w h i c h i s c o n s u m e d i n t h e f o r m o f f r i e d s li c e s ,

    a s a k i n d o f I n d o n e s i a n s a t a y , a s p e p p e r e d

    *Dedica ted to Pro fesso r Dr H. -J . Rehm, on the

    occasion of his 67 th bir thda y.

    tCorrespond ing au thor .

    p a s t e ( s a m b a l ) , o r a s v e g e t a r i a n t e m p e b u r g e r .

    I t m a y b e a d d e d t o d r i n k s a n d t o s o u p s , o r

    o f f e r e d a s c r a c k e r s ( S h u r t l e f f a n d A o y a g i 1 9 79 ,

    S t e i n k r a u s 1 9 83 ). T o d a y 7 6 5 0 0 0 t o n n e s a r e

    p r o d u c e d b y a r o u n d 4 0 0 0 0 h o m e m a n u f a c t u r -

    e r s w i t h 1 3 0 0 0 0 e m p l o y e e s i n I n d o n e s i a a l o n e

    ( W i n a r n o a n d R e d d y 1 98 6 , K a r t a 1 9 8 7) .

    O n e o f t e m p e ' s m o s t im p o r t a n t q u a l i t i e s is

    t h e h ig h p r o t e i n l e v el u p to 4 0 o f t h e d r y

    m a s s . D u e t o t h i s h i g h p r o t e i n c o n t e n t , t h e

    a m i n o a c i d c o m p o s i t i o n o f t e m p e s u r p a s s e s

    t h e F A O / W H O a m i n o a c i d r e f e r e n c e p a t t e r n

    w i t h t h e e x c e p t i o n o f m e t h i o n i n e a n d c y s t e i n e

    ( M u r a t a e t a l. 1 9 67 , W i n a r n o a n d R e d d y

    1 9 8 6 ) . T h i s f a c t e x p l a i n s t h e g r e a t i n t e r e s t i n

    t h i s f o o d i n m a n y d e v e l o p i n g c o u n t ri e s , w h i c h

    f i g h t a g a i n s t p r o t e i n d e f i c i e n c y , e s p e c i a l l y o f

    t h e y o u n g p o p u l a t i o n .

    O n e c h a r a c t e r is t ic o f t e m p e f e r m e n t a t i o n i s

    t h e p r o d u c t i o n o f l o w e r m o l e c u l a r w e i g h t

    c o m p o u n d s s u c h a s f r e e f a t t y a c i d s a n d f r e e

    a m i n o a c i d s ( W a g e n k n e c h t e t al . 1 96 1 , S t i ll -

    i n g s a n d H a c k l e r 1 9 6 5 , M u r a t a e t a l . 1 9 6 7 ,

    Re ce i ve d :

    1 7 M a y 1 9 94

    t n s t i tu t f r M i k r o -

    b i o l o g ie ,

    We s t f l i s ch e Wi l -

    h e l m s - U n i v e r s i t t

    M S n s t e r ,

    Co r r e n ss t r a sse 3 ,

    D - 4 8 1 4 9 M S n s t e r ,

    G e r m a n y

    0 7 4 0 - 0 0 2 0 / 9 5 / 0 1 0 0 3 9 + 0 9 0 8 . 0 0 /0 © 1 9 9 5 A c a d e m i c P r e s s L i m i t e d

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    2/9

    4 0 U B a u m a n n a n d B B is p in g

    Heri ng et al. 1991). An increase of the protein

    efficiency ratio PER) of tempe was .attr ibute d

    to a better availability of amino acids. Mu-

    rat a et al. 1971) found in a rat feeding test

    that the PER value of tempe was not

    significantly different from that of unfer-

    mented soybeans, hox~ever Zamora and

    Veum 1979) reporte d an increase in the av-

    erage daily weight gain for weaning rats fed

    soybeans fermented with Rhizopus oligosporus

    compared with the daily weight gain for rats

    fed soybeans given the same heat treatment

    but not fermented. The fermented soybeans

    also had a greater apparent biological value

    and net protein utilization.

    Vitamin levels may also increase during

    tempe fermentation. Keuth and Bisping 1993)

    found t hat vita min B~2 format ion by Citrobac-

    ter freundii during tempe fermentation was

    strongly dependent on the metabolic activity

    of Rhizopus.

    The aim of this work was to find some Rhi-

    zopus strains with high proteolytic activity

    isolated from Indonesian tempe or tempe

    starters, and to assess methods which could

    improve the content of free amino acids in

    tempe by changing the fermenta tion process.

    Some aspects of the Rhizopus protease system

    were characterized. Further, the influence of

    co-fermenting bacteria on the amount of free

    amino acids in tempe was i nvestigated.

    a t e r ia l s a n d e t h o d s

    Micro o rgan isms and cu l tu re cond i t ions

    All Rhizopus strains used were isolated from In-

    donesian or Dutch tempe samples, Indonesian

    commercial tempe starters, or Indonesian Hibis-

    cus leaves used as tempe inoculum. They were

    identified as Rhizopus oligosporus synonym R.

    microsporus var. oligosporus , R. stolonifer and R.

    oryzae synonym R. arrhizus by Hering et al.

    1991), Keuth and Bisping 1993), and by the cur-

    rent authors, according to the taxonomies of Zycha

    et al. 1969) and Schipper 1984). In this work, 27

    strains of R. oligosporus, six of R. stolonifer and

    three ofR. oryzae were tested Table 1). All Rhizo-

    pus strains were cultivated on malt peptone agar

    or liquid medium 40 g 1-1 malt, 3 g 1 ~ soypeptone,

    17 g 1 l agar) and Czapek-Dox agar or liquid

    medium. The pH of all media was adjusted to 5.5.

    Citrobacter freundii and Micrococcus luteus were

    cultivated on Standard I agar or liquid medium

    Merck, Darmstadt, Germany).

    Tabl e 1. Origin of tempe and tempe inoculum samples from which Rhizopus strains were

    isolated

    Species Place Strain

    R. oligosporus Bandar Lampung, Sumatra

    Bandung, Java

    Bogor, Java

    Denpasar, Bali

    Jakarta, Java

    Medan, Sumatra

    Pontianak, Kalimantan

    Purwokerto, Java

    Samarinda, Kalimantan

    Serpong, Java

    Surabaya, Java

    Tegal, Java

    Tulung Agung, Java

    Ujung Pandang, Sulawesi

    Yogyakarta, Java

    Bogor, Java

    Enschede, Netherlands

    Malang, Java

    Bundung, Java

    Bogor, Java

    Jakarta, Java

    R. oryzae

    R. stolonifer

    Balu

    Heba, Hepla

    Bogo, CN, IN, Tebo

    Bali, Denl, Den2

    Jaba, Jap, Liga, Sja, Teja

    MS1, MS2, MS5

    Pon

    Purwo

    Sama

    Serp

    Sur

    Tegal

    Q1, Tup

    ju

    CD

    Fi

    EN

    Mala

    Hib

    IK, J16

    CM, GT

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    3/9

    P r o t e o ly s i s d u r i n g t e m p e f e r m e n t a t i o n 4

    Fermenta t ion cond i t ions

    Tempe fermentations were carried out under stan-

    dardized conditions (Hering et al. 1991). Soybeans

    were acidified with lactic acid to pH 5.0, cooked for

    30 min, hulled and cooked again for 30 min (pH

    5.0). After surface drying, beans (300 g wet

    weight) were packed into plastic foils (13 × 13 cm),

    and autoclaved at 121°C for 20 min. The plastic

    bags were then perforated and the beans inocu-

    lated with a spore suspension (1.8 ml) of a

    Rhizopus st rai n (106 spores ml -l of 0.9 NaC1, cor-

    responding to 6 x 103 spores g-1 of beans). In

    fermentations with

    Citrobacter freundii

    or

    Micro

    coccus luteus

    1.8 ml of a suspension (10 T cells m1-1

    of 0.9 NaC1, corresponding to 6 × 104 cells g-1 of

    beans) was added. Beans were fermented in an incu-

    bator (Cytoperm 8088, Heraeus, Hanau, Germany)

    at a relative humid ity (RH) of 90 and a tempera-

    ture of 32°C for a period of 30 h. For experiments

    with reduced RH the incubator was adjusted to 60

    RH. In experiments with lowered fermentation

    temperatures (24°C) the process was stopped after

    40 h, when a sliceable tempe cake was obtained.

    na lys is o f am ino ac ids

    Tempe samples were frozen at -70°C and lyophilized

    at -52°C, 0.16 mbar in a freeze dryer (Lyolab C

    3021, LSL Secfroid Sa., Aclens -Lousanne, Swit zer-

    land) for 72 h, and pulverized in a household

    mixer. For det ermination of free amino acids 1 g

    powder was boiled in 30 ml water for 1 h and cen-

    trifuged for 10 min at 4000 g (Sorvall RC-5 B

    centrifuge, GSA rotor, Du Pont, Wilmington, DE,

    USA). The precipitate was diluted with 30 ml of

    water and the process repeated. The liquid phases

    were combined, concentrated, and calibrated to 10

    ml at pH 2.2 with citrate buffer. Total amino acids

    were determined by an acid extraction (Allen

    1989). Extracts were defatted using acetone/dichloro-

    methane (1:1 v/v). Amino acid analysis was feasible

    after a pre-column derivatization with the Edman

    reagent phenylisothiocyanate (PITC) following the

    method of Spatz et al. (1989). With this method all

    common amino acids were detectable with the ex-

    ception of trypto phane and proline/alanine and

    glutamic acid/asparagine, which could only be detected

    together. A Merck-Hitachi HPLC (Darmstadt, FRG;

    Tokyo, Japan) with a L-620 intelligent pump, a chro-

    mato integrator D-2000, a UV-detector L-4000,

    and a LiChrospher RP-select B, 5/~m column was

    used. A mixture of sodium acetate 70 mM,

    tetraethylammonium bromide 3.5 mM, tetrabuty-

    lammonium hydrogen sulphat e 3-5 mM, acetonitrile

    249.0 ml, and methanol 39.0 ml, distilled water to

    1000 ml, pH 6.5 was used. The sample size was 10

    /~1 and the flow rate was adjusted to 1 ml min -1.

    Detection was at 254 nm at a tempera tur e of 56°C.

    Enzyme ac t iv i ty

    For enzymatic tests submerged fermentations

    were performed in 450 ml Fernbach flasks con-

    taining 100 ml malt peptone medium at 32°C for

    24-70 h. The cultures were shaken in an incubator

    shaker (model G25, New Brunswick Scientific,

    Edison, NJ, USA) at 200 r min -1. For intra cell ular

    and cell wall bound enzymes, pretreatment was

    necessary. Exoproteases were concentrated out of

    the medium by precipitation with 70 ammon ium

    sulphate. After that the medium was centrifuged

    at 26 000 g (Sorvall RC-5B centrifuge, SS-34 rotor,

    Du Pont, Wilmington, DE, USA) for 20 min. The

    precipitate was solubilized in 2 ml sodium acetate

    buffer and desalted using a PD-10 column (Phar-

    macia, Piscataway, NJ, USA). For intracellular

    enzymes the mycelium was washed at pH 5.5,

    then homogenized in a precooled mortar by step-

    wise addition of 40 ml sodium acet ate buffer. The

    homogenate was centrifuged as described above.

    The separated raw extract contained the intracel-

    lular enzymes. For cell wall bound enzymes the

    precipitate was washed three times and cen-

    trifuged, then homogenized with 25 ml buffer.

    This suspension was stirred with 0-5, 1.0, 2.0, 3.0

    and 4-0 M LiC1 solution and at different pH values

    at 4°C for 12 h. Then the suspensions were cen-

    trifuged again and the precipitate and solutions

    tested. Fractional precipitations were used to fur-

    ther characterize the proteases. The precipitates

    were desalted using PD-10 columns and used for

    the enzymatic tests. Enzy matic activity was tested

    by the methods of Bergmeyer (1970) and Kurono

    et al. (1971). Casein solution, 0-6 (Hamma rst en

    casein, Merck, Darmstadt, Germany) was used as

    substrate. Various experimental conditions were

    used, i.e. tartarate, citrate, or Tris-HC1 buffer at

    pH values from 2.0 to 9-0 and 35°C. EDTA (5

    mmol 1-1), pepst atin A from

    Streptomyces

    spp.

    (10 -v mol l-l), and pheny lmeth ylsu lphon yl fluoride

    (PMFS) (1 mmol 1-1) were tested as p rotease in-

    hibitors. All tests were performed at pH values of

    3.0 and 7-0. Protein content was tested with the

    method of Bradford (1976).

    De te rm ina t ion o f mo lec u la r we igh t

    Molecular weights were determined by discontinu-

    ous sodium dodecyl sulphate (SDS) gel electro-

    phoresis (Lugtenberg et al. 1975) and silver stain-

    ing (Merril et al. 1981). Glycoproteins were detected

    by the periodic acid sta ining (PAS) method of Kap-

    itan y and Zebrowski (1973). A mixture of mar ke r

    proteins (Dalton Mark VII-L, Sigma, St Louis,

    MO, USA) was included, together with Rhizopus

    protease (P-5027, Sigma, St Louis, MO, USA).

    Electrophoretic bands were only detected in the 20

    and 70 ammoni um sulphate precipitations.

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    4/9

    42 U Baum ann and B B isp ing

    R e s u l t s

    P r o t e o l y ti c a c t i v i ty o f d i f f e r e n t h zopus

    s t ra ins

    T h e r e w a s n o i m p o r t a n t c h a n g e i n to t a l a m i n o

    a c i d s a s w e l l a s i n t h e ~ a m i n o a c i d p a t t e r n o f

    t e m p e in c o m p a r is o n w i t h u n f e r m e n t e d b e a n s .

    A s l ig h t d e c r e a s e o f 6 - 7 w a s o b s e r v e d f o r

    t o t a l a m i n o a c i d s . T h e o p p o s i t e e f f e c t w a s

    o b s e r v e d a f t e r r e l e a s e o f a m i n o a c i d s b y

    R h i z o p u s s t r a i n s . F r e e a m i n o a c i d c o n c e n t r a -

    t i o n s i n c r e a s e d u p t o f i v e -f o l d a f t e r 3 0 h o f

    s t a n d a r d f e r m e n t a t i o n w i t h R. o l igosporus

    M S 1 . T h i s r e l e a s e c o n t i n u e d a n d t h e a m o u n t

    o f f r e e a m i n o a c i d s i n c r e a s e d u p t o 6 . 5 - fo l d

    a f t e r 4 5 h a n d u p t o 8 . 3 -f o l d a f t e r 7 0 h .

    I n a c o m p a r i s o n o f 3 6 s t r a i n s e x a m i n e d , a l l

    s t r a i n s o f

    R. s to loni fer

    s h o w e d l o w a c t i v i t y

    a f t e r 3 0 h o f s t a n d a r d f e r m e n t a t i o n . T h e y

    r e l e a s e d f r o m 5 . 0 - 1 0 . 2 m g a m i n o a c i d s g - 1

    d r y w e i g h t ( d w ) , w h e r e a s

    R. oryzae

    s t r a i n s

    r e a c h e d a m o u n t s u p t o 1 5 .1 m g g-~ d w , a n d

    R. oligosporus u p t o 1 9 . 6 mg g - 1 d w . T h e

    R. oryzae

    s t r a i n s b e l o n g e d t o t h e g r o u p o f t h e

    1 2 m o s t p r o t e o l y t i c s t r a i n s . R e l a t i n g t o R .

    oryzae and R. o l igosporus i t c a n b e s a i d t h a t

    t h e p r o t e o l y t ic c a p a c i t y d e p e n d s o n t h e s t r a i n

    a n d n o t o n t h e s p e c i e s u s e d . F i g . 1 s h o w s 1 6

    o u t o f 3 6 s t r a i n s a s a n e x a m p l e . A n a l y s i s o f

    t h e f r e e a m i n o a c i d s p a t t e r n s h o w e d g r e a t

    d i f f e re n c e s a m o n g t h e s t r a i n s . O n a v e r a g e ,

    h i g h e r p r o t e o l y t ic a c t i v i t y r e s u l t s i n a h i g h e r

    a m o u n t o f a l l a m i n o a c i d s ( F i g. 2 ) .

    V a r ia t io n o f fe r m e n t a t i o n p a r a m e t e r s

    T h e l o w e r f e r m e n t a t i o n t e m p e r a t u r e ( 24 ° C)

    r e d u c e d f e r m e n t a t i o n v e l o c i ty a n d a g o o d

    t e m p e c a k e w a s o b t a i n e d o n l y a f t e r 4 0 h .

    N e v e r t h e l e s s , t h e a m o u n t o f f r e e a m i n o a c i d s

    w a s i m p r o v e d b y u p t o 1 3 0 ( s t r a i n H i b) . T h e

    h i g h e s t a m o u n t w a s a g a i n o b t a i n e d w i t h R .

    ol igosporus M S 1 ( 2 4 m g g - 11 d w ) ( T a b l e 2 ). A

    s i m i l a r s i t u a t io n w a s o b s e r v e d w h e n f e r m e n -

    t a t i o n w a s c a r ri e d o u t a t 6 0 R H . F r e e

    a m i n o a c i d c o n c e n t r a t i o n s i n c r e a s e d t o 1 1 5

    a f t e r 3 0 h a n d t o 1 5 7 a f t e r 4 5 h c o m p a r e d to

    f e r m e n t a t i o n a t 9 0 R H f o r t h e s a m e t i m e .

    n f lu e n c e o f m i x e d c u l t u r e s o n f re e

    a m i n o a c i d c o n c e n tr a t io n

    W h e n t h e f e r m e n t a t i o n w a s c a r r ie d o u t w i t h

    m i x e d c u l t u r e s o f R . ol igosporus a n d b a c t e r i a ,

    t o t a l a m i n o a c i d s i n c r e a s e d s l ig h t l y c o m p a r e d

    w i t h u n f e r m e n t e d b e a n s . I n c o n t r a s t t o t h is ,

    t h e a m o u n t o f f r e e a m i n o a c i d s d e c r e a s e d t o a

    l e v e l o f 4 3 a n d 3 5 , r e s p e c t i v e l y , w h e n Cit

    robacter f reundi i

    o r

    Micrococcus lu teus

    w e r e

    2 0

    16

    ~ 12

    E

    8

    C M J 1 6 I K

    H i b G T

    R s to lon i fer

    xx

    E N F i S u r M S 2 M S 5 T e g a l

    M a l a S a m a T e bo T e j a M S 1

    R oryzae R o l igosporus

    igure

    1 . E x e m p l a r y r a n k o f p r o t e o ly t i c a c t i v it y o f 1 6 o u t o f 3 6 R h i z o p u s s t r a i n s . T h e t o t a l

    a m o u n t o f a m i n o a c i d s re l e a s e d g -1 d r y w e i g h t ( d w ) a f te r s t a n d a r d f e r m e n t a t i o n i s s h o w n .

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    5/9

    P r o te o ly s is d u r in g t e m p e f e r m e n t a t i o n 4

    V] :Gr.1

    :Gr.2

    ~q : Gr.3

    R H E/D S G T PIA Y V M L F K

    A m i n o acids

    F i g u r e 2 , P a t t e r n o f a m i n o a c i d s r e l ea s e d b y s t r ai n s o f

    h i z o p u s

    s p. T o s h o w t h a t a h i g h e r

    h y d r o ly t i c c a p a c i t y l e a d s t o a n e q u a l r e l e a s e o f a ll a m i n o a c i ds , t h e a v e r a g e p e r f o r m a n c e s a r e

    g i v e n a s G r o u p 1 [ 4 - 2 - 7 - 8 m g a m i n o a c i ds r e l ea s e d g - 1 d r y w e i g h t d w )] , G r o u p 2 7 . 9 -1 2 . 1 m g

    a m i n o a c i d s r e l e a s e d g - 1 d w ) , a n d G r o u p 3 1 2 . 5- 1 9 .6 m g a m i n o a c i d s r e l ea s e d g - ~ d w ) . T h e

    a m i n o a c i d s a r e c o d e d w i t h t h e i n t e r n a t i o n al o n e l e tt e r a b b r ev i a t i on s .

    added to the fermentation. These species

    were selected from the wide range of bacteria

    isolated from tempe because they have been

    described previo usly as good vitam in B12 pro-

    ducers (Keuth and Bisping 1993).

    haracteristics of the protease system

    Temperature optima for the protease systems

    were found to be 55°C for R o l i g o s p o r u s and

    R o r y z a e

    and 50°C for

    R s t o l o n i f e r

    No differ-

    ences were found between extracellular, cell

    wall bound and intracellular proteins. Maxi-

    mum protease activity was observed to have

    two peaks at pH 2.5-3 and pH 6-7, for all

    species and fractions. An additional maxi-

    mum was observed at pH 4.5-5 for intra-

    cellular and cell wall bound proteases. The

    highest protease activities were found after

    fermentation times of 45-70 h.

    After enrichment of the proteases of the

    three fractions SDS gel electrophoresis indi-

    cated presence of protein band s of 68 and

    48 kDa for the cell wall bound fraction, 48 kDa

    and 36 kDa for the ex tracellul ar fraction, and

    36 kDa for the intracellular fraction. PAS

    indicated that the 68 kDa protein was a gly-

    coprotein. All enriched proteases were total ly

    inhibited by pepstatin A of

    S t r e p t o m y c e s

    spp.

    PMFS reduced activities from 63 to 45 .

    EDTA produced no effect or even a slight in-

    crease of activity (Table 3).

    To check the relevance of the different

    protease fractions for the total prdteolytic

    capacity of the strains, the activities were

    T a b l e 2 Comparison of the amou nt of free amino acids (mg g-' dry weight) found in tempe

    fermented at two different temperatu res

    Fermentation Stain

    temperature

    R oligosporus R oryzae R stolonife r

    MS1 CN En Fi Hib IK

    32°C 19.7 8.3 13.6 15-4 5.4 10.0

    24°C 24.0 13.0 17-5 17.2 12.5 12.9

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    6/9

    4 4 U B a u m a n n a n d B B is p in g

    T a b l e 3. Effect of differ ent protease inhibito rs on t he activi ty (U ml -~) of cell wall bound, ex-

    tracellular, and intra cellular prote~ses o f R h i z o p u s o l i g o sp o r u s (MS 1)

    Enzyme Protease inhibitor

    No. EDTA PEP PMFS

    Cell wall bound 0.21 0.21 0.00 0.15

    Extracellular 0,'21 0.22 0.00 0.13

    Intracellular 0.11 0.11 0.00 0.05

    relat ed to protein g-~ dw of each fraction. The

    cell wall bound proteases (debris) were most

    important for the proteolytic capacity of R h i z o -

    p u s . In Fig. 3 the tur nover ra te of the three

    fractions in relation to the dw is shown for

    seven strains. On an average of all strains

    76 of the total proteolytic capacity belonged

    to this fraction, 14 to the extracel lular sys-

    tem, and 10 to the intr acel lula r proteases.

    iscuss ion

    We were able to find several

    R. o l igos por us

    and R. o r yz ae strains with high proteolytic

    capacities. R. s to lon i f e r strains were less

    active. The superiority of

    R. o l igos por us

    found in this work agrees with reports of

    Wang and Hesseltine (1965) and Winarno

    and Reddy (1986), who described the impor-

    tance of this species for tempe fermenta tion.

    We showed that tempe with a good amino

    acid release can be produced also with R.

    or yz ae

    and with regard to taste and slice-

    ability even with R. s to lon i f e r .

    The efficiency of proteolytic activity could

    be improved by reducing fermentation tem-

    perature and RH. This was connected with

    an increased production of proteases, which

    can be observed when molds are forced to

    grow under suboptimal temperature and

    wat er activit y (aw). This effect was fir st

    described by Maxwell (1952) and Yamamoto

    (1957) for A s p e r g i l l u s o r y z a e and A. s o jae

    and by Wang et al. (1974) for R. o l igos por us .

    The optimal temperature for

    R h i z o p u s

    is in

    120

    240 El : Debris

    [] : Extracellular

    200 ~ : Intracellular

    160

    80

    40

    ~

    ~

    J a p Ma l a

    Teja MS1 MS2

    Rhizopus strains

    Tegal MS

    F i g u r e

    3 Turno ver rate s of the seven mos t active strain s of our collection. On an ave rage 76

    of the total proteolytic capacity of R h i z o p u s belonged to the cell wall bound fraction (debris).

    With the exception of the str ain coded Mala, which was a memb er of R. o r yz ae all the other

    str ains given in this figure belonged to R. o l igos por us .

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    7/9

    Proteolysis during tem pe fermen tation 5

    t h e r a n g e o f 3 0 ° C d e p e n d e n t o n t h e s p e c i es ,

    a n d t h e a w s h o u l d b e h i g h e r t h a n 0 . 9 4 G e r -

    v a i s e t a l . 1 9 8 8 ) . H i g h e r e x p r e s s i o n o f

    p r o t e a s e s c o m b i n e d w i t h a r e d u c e d g r o w t h

    v e l o c i ty l e a d s t o a h i g h e r a m o u n t o f a m i n o

    a c id s r e l e a se d . F u r t h e r m o r e , f e r m e n t a t i o n a t

    a l o w e r R H s h o u l d p a r t l y p r o t e c t a g a i n s t b a c -

    t e r ia l c o n t a m i n a t i o n , b e c a u s e b a c t e r i a a r e

    m o r e s e n s i t i v e t o r e d u c e d aw t h a n f u n g i.

    T o i n c r e a s e t h e f r e e a m i n o a c i d s i n p r a c -

    t i c e , I n d o n e s i a n t e m p e p r o d u c e r s s h o u l d

    e i t h e r u s e f a n s t o c o ol f e r m e n t a t i o n s h e l v e s ,

    o r r e d u c e t h e t h i c k n e s s o f t e m p e c a k e s . T h i s

    w o u l d re d u c e t h e t e m p e r a t u r e i n s id e t h e

    c a k e b y 3 °C p e r c e n t i m e t r e R a t h b u n a n d

    S h u l e r 1 9 83 ) . T h e r e d u c t i o n o f f e r m e n t a t i o n

    t e m p e r a t u r e a n d a w i s a l so r e c o m m e n d e d b y

    H e r i n g e t al . 1 9 9 1 ), w h o o b s e r v e d a b e t t e r

    p r o d u c t i o n o f ~ , -l in o le n ic a c i d u n d e r t h e s e

    c o n d i t i o n s .

    I n c r e a s e d r e l e a s e o f a m i n o a c id s s h o w n

    h e r e c o u l d i m p r o v e t h e n u t r i t i o n a l v a l u e o f

    t e m p e i n c o m p a r i s o n t o u n f e r m e n t e d s oy -

    b e a n s M u r a t a e t a l. 1 9 67 , I s m a i l 1 9 81 ). T h e

    f a c t t h a t b a c t e r i a s u c h a s Citrobacter freundii

    o r Micrococcus luteus w h i c h f o r m v i t a m i n B ~ 2

    i n t e m p e a r e d e p e n d e n t o n t h e m e t a b o l i c

    a c t i v i t y o f Rhizopus s p p . h a s p r e v i o u s l y b e e n

    s h o w n K e u t h a n d B i s p i n g 19 9 3) . N o w w e

    h a v e f o u n d t h a t h i g h c o n c e n t r a t i o n s o f f r e e

    a m i n o a c i d s r e l e a s e d b y

    Rhizopus

    a s s i s t

    g r o w t h a n d v i t a m i n B~2 f o r m a t i o n , a s s h o w n

    b y th e l o w e r e d a m o u n t o f f r e e a m i n o a c i d s in

    t e m p e a f t e r c o - f er m e n t a t i o n

    of Rhizopus

    w i t h

    C. freundii

    o r

    M. luteus.

    T h e p r o t e a s e s y s t e m w a s i n v e s t i g a t e d t o

    g a i n a b e t t e r i n s i g h t i n t o t h e m e c h a n i s m s o f

    t h e p r o t e o l y t i c a c t i v i t y o f

    Rhizopus.

    T h e

    b e h a v i o u r o f c e ll w a l l b o u n d , i n t r a c e l l u l a r ,

    a n d e x t r a c e l l u l a r p r o t e a s e s w a s s i m i l a r i n

    r e la t io n t o p H , t e m p e r a t u r e a n d p r o t e a s e

    i n h i b i t o r s . Rhizopus s t r a i n s i n v e s t i g a t e d

    s e e m e d t o p o s s e s s o n l y o n e p r o t e a s e t y p e .

    I n h i b i t io n o f p r o t e a s e s b y p e p s t a t i n A a n d

    l a c k o f e f f e c t o f E D T A c o n f i r m e d t h a t t h e Rhi-

    zopus s t r a i n s s t u d i e d p o s s e s s a n a s p a r t y l

    p r o t e a s e . O u r r e s u l t s a g r e e w i t h t h o s e o f

    F u k u m o t o e t a l . 1 9 6 7 ) , B o t t e t a l . 1 9 8 2 ) a n d

    T a k a h a s h i 1 9 8 8 ) w i t h R. chinensis. T h e

    m o l e c u l a r w e i g h t o f p r o t e a s e s d e s c r i b e d b y

    t h e s e a u t h o r s w a s r e p o r t e d t o b e 3 5 k D a a n d

    a p H o p t i m u m o f 2 - 5- 3 -3 w a s i n d i ca t e d . T h e

    t e m p e r a t u r e o p t i m a r a n g e d f ro m 5 0 - 6 0 ° C fo r

    t h i s s p e ci e s . W e a ls o f o u n d a p H m a x i m u m i n

    t h e n e u t r a l a r e a , w h i c h w a s d e s c r i b e d b y

    W a n g a n d H e s s e l t i n e 1 9 65 ) a n d S c h i n d l e r e t

    a l . 1 9 8 2 ) f o r

    R. chinensis

    a n d

    R. oligosporus

    r e s p e ct iv e l y . T h i s a d d i t io n a l p H m a x i m u m i s

    n e c e s s a r y f o r d e g r a d a t i o n o f s o y p ro t e i n a t

    p H v a l u e s o f 6 - 7 t h a t a r e f o u n d in t e m p e ju s t

    a fe w h o u r s a f t e r t h e s t a r t o f f e r m e n t a t i o n .

    T h e e l e c t r o p h o r e t ic b a n d s a t 4 5 a n d 6 8 k D a ,

    r e s p e c t i v e l y , s h o u l d b e f u r t h e r i n v e s t i g a t e d .

    W e s u g g e s t t h a t t h e l a r g e m o l e c u l e s a r e g l y -

    c o p r o t e i n s , w h i c h w a s v e r i f ie d f o r t h e 6 8 k D a

    p r o t e i n b y P A S s t a i n i n g . T s u j i t a a n d E n d o

    1 9 8 0 ) d e s c r i b e d h i g h m o l e c u l a r w e i g h t p r o -

    t e a s e s o f

    Aspergillus oryzae

    w i t h a h i g h

    a m o u n t o f c o v a l e n tl y b o u n d s u g a r s , w h i c h f ix

    t h e p r o t e a s e a t t h e c e l l w a l l . T h e s a m e e f f e c t

    c o u l d b e t r u e i n o u r c a s e .

    E n z y m a t i c t e s t s a n d a n a l y s i s o f t h e

    t u r n o v c r r a t e s h o w e d t h a t c e ll w a l l b o u n d

    p r o t e a s e s a r e p r i m a r i l y r e s p o n s i b l e f o r t h e

    p r o t e o l y t ic c a p a c i t y o f f e r m e n t i n g Rhizopus.

    T h i s f a c t i s a g r e a t a d v a n t a g e f o r

    Rhizopus

    i n

    s o li d s u b s t r a t e f e r m e n t a t i o n s s u c h a s t h e

    t e m p e f e r m e n t a t i o n . T h e m a i n b e n e f i t o f t h e

    p r o t e o l y t ic a c t i v i t y i s m a d e b y t h e d i r e c t c o n-

    t a c t b e t w e e n t h e s o y b e a n a n d t h e m y c e l i u m

    w h i l e th e f u n g u s i s g r o w i n g t h r o u g h t h e s u r -

    f a c e o f t h e s o y b e a n s . D e t e r m i n a t i o n o f t h e

    s p e c if i c a c t i v i t y o f c e ll w a l l b o u n d p r o t e a s e s

    w i t h a s i m p l e t e s t s y s t e m s h o u l d g i v e a n e a s y

    m e t h o d t o f in d m o r e s t r a i n s w i t h a h i g h

    p r o t e o l y t i c a c t i v i t y , a n d h e l p t o c o n t r o l f e r -

    m e n t a t i o n q u a l i t i e s o f i n o c u l a u s e d i n

    I n d o n e s i a .

    A c k n o w l e d g e m e n t s

    W e a c k n o w l e d g e t h e w o r k o f D r M i e n M a h -

    m u d a n d D r H e r m a n a N u t r it io n R e s e a rc h

    a n d D e v e l o p m e n t C e n t r e , B o g o r) , o f D r

    S u y a n t o P a w i r o h a r s o n o a n d M r E f fe n d i S ir e -

    g a r B P P T e k n o l o g i, J a k a r t a ) , a n d o f M r B .

    K l e i n s t e u b e r T ~ - V - R h e i n l an d , K S ln ) , w h o

    c o l le c t e d a l a r g e p r o p o r t i o n o f t h e t e m p e s a m -

    p le s . W e t h a n k t h e F e d e r a l M i n i s tr y o f

    R e s e a r c h a n d T e c h n o l o g y in B o n n f o r s u p -

    p o r t i n g t h e s e i n v e s t i g a t i o n s .

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    8/9

    4 6 U B a u m a n n a n d B B is p in g

    eferences

    Allen , G. 1989) Sequencing of protein and pep-

    tides E d s B u r d o n , R . H . a n d V a n K n i p p e n b e r g ,

    P . H . ). A m s t e r d a m , E l s e v i e r .

    B a r z , W . H . , B ~ r g e r - P a p e n d o r f , G . a n d R e h m s , H .

    1 9 9 0) C h a r a c t e r i z a t i o n o f g l y c o h y d r o l a s e s ,

    p h o s p h a t a s e s a n d l s o f l av o n e m e t a b o l i s m i n

    t e m p e - f o r m i n g Rhizopus-strains. I n Second

    Asian symposium on non-salted soybean fermen-

    tation 1 3 - 1 5 F e b r u a r y 1 99 0, J a k a r t a , I n d o n e s i a

    E d s H e r m a n a , M i e n M a h m u d , K . M . S . a n d

    K a r y a d i , D . ) p p . 2 0 - 3 2 . B o g o r , I n d o n e s i a ,

    M i n i s t r y o f H e a l t h , N u t r i t i o n R e s e a r c h a n d

    D e v e l o p m e n t C e n t r e.

    B e r g m e y e r , H . U . 1 9 7 0 ) M e t h o d e n der enzymatis-

    chen Analyse. 2 n d e d n . p p . 9 6 6 - 9 6 7 . W e i n h e i m /

    B e r g s t r a s s e , V C H V e r l a g C h e m i e .

    B o t t , R . , S u b r a m a n i a n , E . a n d D a v i e s , D . R . 1 9 8 2 )

    T h r e e - d i m e n s i o n a l s t r u c t u r e o f t h e c o m p l e x o f

    t h e

    Rhizopus chinensis

    c a r b o x y l p r o t e i n a s e a n d

    p e p s t a t i n a t 2 . 5 /~ r e s o l u t i o n .

    Biochemistry

    21 ,

    6 9 5 6 - 6 9 6 2 .

    B r a d f o r d , M . M . 1 9 7 6 ) A r a p i d a n d s e n s i t i v e

    m e t h o d f o r th e q u a n t i t a ti o n o f m i c r o g r a m

    q u a n t i t i e s o f p r o t e i n u t i l i z i n g t h e p r i n c i p l e o f

    p r o t e i n - d y e - b i n d i n g .

    Anal. Biochem.

    72,

    2 4 8 - 2 5 4 .

    D e n t e r , J . a n d B i s p i n g , B . 1 9 93 ). F o r m a t i o n o f f a t

    s o l u b l e v i t a m i n s d u r i n g t h e t e m p e f e r m e n t a -

    t ion . In Sixth European congress on

    biotechnology. F l o r e n c e , 1 3 - 1 7 J u n e 1 9 93 . A b -

    s t r a c t B o o k s V o l I M o 2 5 0 .

    F u k u m o t o , J ., T s u r u , D . a n d Y a m a m o t o , T . 1 9 6 7)

    S t u d i e s o n m o l d p r o t e a s e - - P a r t I . P u r i f ic a t i o n ,

    c r y s t a l l iz a t i o n a n d s o m e e n z y m a t i c p r o p e r t i e s o f

    a c i d p r o t e a s e o f Rhizopus chinensis. Agric. Biol.

    Chem. 3 1 , 7 1 0 - 7 1 7 .

    G e r v a i s , P . , M o l i n , P . , G r a j e k , W . a n d B e n s o u s s a n

    M . 1 9 8 8 ) I n f l u e n c e o f t h e w a t e r a c t i v i t y o f a

    s o li d s u b s t r a t e o n t h e g r o w t h r a t e a n d s p o r o g e n -

    e s i s o f f i l a m e n t o u s f u n g i . Biotechnol. Bioeng. 31 ,

    4 5 7 - 4 6 3 .

    H e r i n g , L ., B i s p i n g , B . a n d R e h m , H . J . 1 9 9 1 ) P a t -

    t e r n s a n d f o r m a t i o n o f f a t t y a c id s a t t e m p e

    f e r m e n t a t i o n b y s e v e r a l s t r a i n s o f Rhizopus sp.

    Fat Sci. Technol. 8 , 3 0 3 - 3 0 8 .

    I s m a i l , M . 1 9 8 1) P r e l i m i n a r y s t u d i e s o n n u t r i -

    t i o n a l q u a li t ie s o n M a l a y s i a n t e m p e h . Pertanika

    4 , 1 2 9 - 1 3 2 .

    K a p i t a n y , R . A . a n d Z e b r o w s k i , E . J . 1 9 7 3 ) H i g h

    r e s o l u ti o n P A S - s t a i n f o r p o l y a c r y l a m i d e g el

    e l e c t r o p h o r e s i s . Anal. Biochem. 5 6 , 3 6 1 - 3 6 9 .

    K a r t a , S . K . 1 9 8 7) T e m p e h t h e g e m o f t h e v e g e -

    t a r i a n d i e t .

    Notes from ASA

    3, 1--8.

    K e u t h , S . a n d B i s p i n g , B . 1 9 9 3 ) F o r m a t i o n o f v i -

    t a m i n s b y p u r e c u l t u r es o f t e m p e m o u l d s a n d

    b a c t e r i a d u r i n g t h e t e m p e s o l i d s u b s t r a t e f e r -

    m e n t a t i o n .

    J. Appl. Bacterial.

    7 5 , 4 2 7 - 4 3 4 .

    K u r o n o , Y . , C h i m i d a t s u , M . , H o r i k o s h i , K . a ~ d

    i k e d a , Y . 1 9 7 1 ) Is o l a t i o n o f a p r o t e a s e f r o m

    a Rhizopus

    p r o d u c t .

    Agric. Biol. Chem.

    35 ,

    1 6 6 8 - 1 6 7 5 .

    L u g t e n b e r g , B . , M e j e r s , J . , P e t e r s , R . , v a n d e r

    H o e k , P . a n d v a n A l p h e n , H . 1 9 7 5 ) E l e c -

    t r o p h o r e t i c r e s o l u t i o n o f t h e m a j o r o u t e r

    m e m b r a n e p r o t e i n s o f Escherichia coli K 1 2 i n t o

    f o u r b a n d s . FEB S Lett. 5 8 , 2 5 4 - 2 5 8 .

    M a x w e l l , M . E . 1 9 5 2 ) E n z y m e s o f Aspergillus

    oryzae. Aust. J. Sci. Res. Ser. B. 5 , 5 3 9 - 5 5 0 .

    M e r r i l , C . R . , G o l d m a n n , D . , S e d m a n n , S . A . a n d

    E b e r t , M . H . { 19 8 1) U l t r a s e n s i t i v e s t a i n f o r p r o -

    t e i n s i n p o l y a c r y l a m i d e g el s sh o w s r e g i o n a l

    v a r i a t i o n i n c e r e b r o s p i n a l f l ui d p r o t e i n s . Science

    2 1 1 , 1 4 7 3 - 2 4 3 8 .

    M u r a t a , K . , I k e h a t a , H . a n d M i y a m o t o , T . 1 9 6 7 )

    S t u d i e s o f t h e n u t r i t i o n a l v a l u e o f t e m p e h . J .

    Food. Sci.

    3 2 , 5 8 0 - 5 8 6 .

    M u r a t a , K . , I k e h a t a , H . , E d a n i , Y . a n d K o y a n a g i

    K . 1 9 7 1) S t u d i e s o f t h e n u t r i t i o n a l v a l u e o f

    t e m p e h . I I . R a t f e e d i n g t e s t w i t h t e m p e h ,

    u n f e r m e n t e d s o y b e a n s , a n d t e m p e h s u p p l e -

    m e n t e d w i t h a m i n o a c i d s . J. Agric. Biol. Chem.

    3 5 , 2 3 3 - 2 4 1 .

    R a t h b u n , B . L . a n d S h u l e r , M . L . 1 9 8 3 ) H e a t a n d

    m a s s t r a n s f e r e f f e c t s i n s t a t i c s o l i d - s u b s t r a t e

    f e r m e n t a t i o n s : d e s ig n o f f e r m e n t a t i o n c h a m -

    b e r s . Biotechnol. Bioeng. 2 5 , 9 2 9 - 9 3 8 .

    S c h i n d l e r , J . , L e h m a n n , R . , P f e i f f e r , H . a n d

    S c h m i d , R . 1 9 8 2 ) E x t r a c e l l u l a r a c i d p r o t e a s e o f

    Rhizopus rhizopodiformis. I n Enzyme technol-

    ogy III. Rotenburg fermentation symposium

    2 2 - 2 4 S e p t e m b e r 1 9 8 2, K a s s e l F R G . E d . L a f -

    f e r t y R . M . ) p p. 6 9 - 7 7 . B e r l i n , S p r i n g e r .

    S c h i p p e r , M . A . A . a n d S t a l p e r s , J . A . 1 9 8 4 ) A

    r e v i s io n o f t h e g e n u s Rhizopus. Studies in My-

    cology Baarn 25 , 1 -34 .

    S h u r t l e f f , W . a n d A o y a g i , A . 1 9 7 9 ) The book of

    tempeh. N e w Y o r k , H a r p e r a n d R o w .

    S p a t z , R . , B e i n e r t , W . D . a n d B u c h h o l z , K . 1 9 8 9 )

    Isocratic HPLC separation of amino acids as

    phenylisothiocarbamyl derivatives pp . 1 -4 .

    D a r m s t a d t , E . M e r c k .

    S t e i n k r a u s , K . H . 1 9 8 3) I n d o n e s i a n t e m p e a n d r e-

    l a t e d f e r m e n t a t i o n s : p r o t e i n - r i c h v e g e t a r i a n

    m e a t s u b s t i t u t e s . I n

    Handbook of indigenous

    fermented foods microbiology series

    Vol 9. Ed.

    S t e i n k r a u s K H ) p p . 1 - 9 4 , N e w Y o r k , M a r c e l

    D e k k e r .

    S t i l l in g s , R . B . a n d H a c k l e r , L . R . 1 9 6 5 ) A m i n o

    a c id s t u d i e s o n t h e e f f e ct o f f e r m e n t a t i o n t i m e

    a n d h e a t - p r o c e s s i n g o f t e m p e h .

    J. Food Sci.

    30 ,

    1 0 4 3 - 1 0 4 8 .

    T a k a h a s h i , K . 1 9 8 8) D e t e r m i n a t i o n o f t h e a m i n o

    a c id s e q u e n c e s o f t h e t w o m a j o r i s o z y m e s o f rh i -

    z o p u s p e p s i n .

    J. Biochem.

    1 0 3 , 1 6 2 - 1 6 7 .

    T s u j i t a , Y . a n d E n d o , A . 1 9 8 0 ) I n t r a c e l l u l a r l o c al -

    i z a t io n o f tw o m o l e c u l a r f o r m s o f m e m b r a n e a c id

    p r o t e a s e i n

    Aspergillus oryzae. J. Biochem.

    88,

    1 1 3 - 1 2 0 .

    W a g e n k n e c h t , A . C . , M a t t i c k L . R . , L e w i n , L . M . ,

  • 8/18/2019 1995 Proteolysis during tempe fermentation.pdf

    9/9

    P r o t eo l y s is d u r i n g t e m p e f e r m e n t a t i o n 4 7

    Hand, D. B. and Steinkraus, K. H. 1961)

    Changes in soybean lipids during tempeh fer-

    mentation. J. Food Sci. 26, 373-376.

    Wang, H. L. and Hesselt ine, C. W. 1965) Studies

    on the extracel lular proteolytic enzymes of Rhizo

    pus oligosporus. Can. J. Microbiol.

    11,727-732.

    Wang, H. L., Vespa, J. B. and Hesseltine, C. W.

    1974) Acid prose production by fungi used in

    soybean food fermentation.

    Appl. Microbiol.

    27,

    906-911.

    Winarno, F. G. and Reddy, N. R. 1986) Tempe. In

    Legume based fermented foods Eds Reddy, N.

    R., Pierson, M. D. and Salunkhe, D. K.) pp.

    95-117. Boca Raton, CRC Press.

    Yamamoto, K. 1957) Koji III. Effect of cultural

    temperatures on the production of mold pro-

    tease.

    Bull. Agr. Chem. Soc. Jpn

    21 319-324.

    Zamora, R. G. and Veum, T. L. 1979) The nutri-

    tive value of dehulled soybeans fermented with

    Aspergillus oryzae or Rhizopus oligosporus as

    evaluated by rats. J. Nutr. 109, 1333-1339.

    Zycha, H., Siepmann, R. and Linnemann, G. 1969)

    Mucorales. Eine Beschreibung aller Gattungen

    und Arten dieser Pilzgruppe. Lehr J. Cramer.

    E d i t e d b y J I P i t t