23
Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback “Back to reality” Copyright 2001 by Jonathan How. All Rights reserved 1

16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Topic #17

16.31 Feedback Control

State-Space Systems

• Closed-loop control using estimators and regulators.

• Dynamics output feedback

• “Back to reality”

Copyright 2001 by Jonathan How. All Rights reserved

1

Page 2: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—1

Combined Estimators and Regulators

• Can now evaluate the stability and/or performance of a controller

when we design K assuming that u = −Kx, but we implementu = −Kx

• Assume that we have designed a closed-loop estimator with gain L

˙x(t) = Ax(t) +Bu(t) + L(y − y)y(t) = Cx(t)

• Then we have that the closed-loop system dynamics are given by:

x(t) = Ax(t) +Bu(t)˙x(t) = Ax(t) +Bu(t) + L(y − y)y(t) = Cx(t)

y(t) = Cx(t)

u = −Kx

• Which can be compactly written as:∙x˙x

¸=

∙A −BKLC A−BK − LC

¸ ∙x

x

¸⇒ xcl = Aclxcl

• This does not look too good at this point — not even obvious that

the closed-system is stable.

λi(Acl) =??

Page 3: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—2

• Can fix this problem by introducing a new variable x = x− x andthen converting the closed-loop system dynamics using the

similarity transformation T

xcl ,∙x

x

¸=

∙I 0

I −I¸ ∙

x

x

¸= Txcl

— Note that T = T−1

• Now rewrite the system dynamics in terms of the state xcl

Acl ⇒ TAclT−1 , Acl

— Note that similarity transformations preserve the eigenvalues, so

we are guaranteed that

λi(Acl) ≡ λi(Acl)

• Work through the math:

Acl =

∙I 0

I −I¸ ∙

A −BKLC A−BK − LC

¸ ∙I 0

I −I¸

=

∙A −BK

A− LC −A + LC¸ ∙

I 0

I −I¸

=

∙A−BK BK

0 A− LC¸

• Because Acl is block upper triangular, we know that the closed-loop

poles of the system are given by

det(sI − Acl) , det(sI − (A−BK)) · det(sI − (A− LC)) = 0

Page 4: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—3

• Observation: The closed-loop poles for this system con-

sist of the union of the regulator poles and estimator poles.

• So we can just design the estimator/regulator separately and com-

bine them at the end.

— Called the Separation Principle.

— Just keep in mind that the pole locations you are picking for these

two sub-problems will also be the closed-loop pole locations.

• Note: the separation principle means that there will be no ambi-

guity or uncertainty about the stability and/or performance of the

closed-loop system.

— The closed-loop poles will be exactly where you put them!!

— And we have not even said what compensator does this amazing

accomplishment!!!

Page 5: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—4

The Compensator

• Dynamic Output Feedback Compensator is the combina-

tion of the regulator and estimator using u = −Kx˙x(t) = Ax(t) +Bu(t) + L(y − y)

= Ax(t)−BKx + L(y − Cx)

⇒ ˙x(t) = (A− BK − LC)x(t) + Lyu = −Kx

• Rewrite with new state xc ≡ xxc = Acxc +Bcy

u = −Ccxcwhere the compensator dynamics are given by:

Ac , A−BK − LC , Bc , L , Cc , K— Note that the compensator maps sensor measurements to ac-

tuator commands, as expected.

• Closed-loop system stable if regulator/estimator poles placed in the

LHP, but compensator dynamics do not need to be stable.

λi(A−BK − LC) =??

Page 6: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—5

• For consistency in the implementation with the classical approaches,

define the compensator transfer function so that

u = −Gc(s)y— From the state-space model of the compensator:

U(s)

Y (s), −Gc(s)= −Cc(sI −Ac)−1Bc= −K(sI − (A− BK − LC))−1L

⇒ Gc(s) = Cc(sI−Ac)−1Bc

• Note that it is often very easy to provide classical interpretations

(such as lead/lag) for the compensator Gc(s).

• One way to implement this compensator with a reference command

r(t) is to change the feedback to be on e(t) = r(t) − y(t) ratherthan just −y(t)

Gc(s) G(s)- -6

r e yu

⇒ u = Gc(s)e = Gc(s)(r − y)— So we still have u = −Gc(s)y if r = 0.— Intuitively appealing because it is the same approach used for

the classical control, but it turns out not to be the best approach.

More on this later.

Page 7: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—6

Mechanics

• Basics:

e = r − y, u = Gce, y = Gu

Gc(s) : xc = Acxc +Bce , u = Ccxc

G(s) : x = Ax +Bu , y = Cx

• Loop dynamics L = Gc(s)G(s) ⇒ y = L(s)e

x = Ax +BCc xcxc = +Ac xc +Bce

L(s)

∙x

xc

¸=

∙A BCc0 Ac

¸ ∙x

xc

¸+

∙0

Bc

¸e

y =£C 0

¤ ∙ xxc

¸

• To “close the loop”, note that e = r − y, then∙x

xc

¸=

∙A BCc0 Ac

¸ ∙x

xc

¸+

∙0

Bc

¸µr − £ C 0

¤ ∙ xxc

¸¶=

∙A BCc−BcC Ac

¸ ∙x

xc

¸+

∙0

Bc

¸r

y =£C 0

¤ ∙ xxc

¸— Acl is not exactly the same as on page 17-1 because we have re-

arranged where the negative sign enters into the problem. Same

result though.

Page 8: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—7

Simple Example

• Let G(s) = 1/s2 with state-space model given by:

A =

∙0 1

0 0

¸, B =

∙0

1

¸, C =

£1 0

¤, D = 0

• Design the regulator to place the poles at s = −4± 4jλi(A−BK) = −4± 4j ⇒ K =

£32 8

¤— Time constant of regulator poles τc = 1/ζωn ≈ 1/4 = 0.25 sec

• Put estimator poles so that the time constant is faster τe ≈ 1/10— Use real poles, so Φe(s) = (s + 10)

2

L = Φe(A)

∙C

CA

¸−1 ∙0

1

¸=

Ã∙0 1

0 0

¸2+ 20

∙0 1

0 0

¸+

∙100 0

0 100

¸! ∙1 0

0 1

¸−1 ∙0

1

¸=

∙100 20

0 100

¸ ∙0

1

¸=

∙20

100

¸

Page 9: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—8

• Compensator:

Ac = A− BK − LC=

∙0 1

0 0

¸−∙0

1

¸ £32 8

¤− ∙ 20100

¸ £1 0

¤=

∙ −20 1

−132 −8¸

Bc = L =

∙20

100

¸Cc = K =

£32 8

¤

• Compensator transfer function:

Gc(s) = Cc(sI −Ac)−1Bc , UE

= 1440s + 2.222

s2 + 28s + 292

• Note that the compensator has a low frequency real zero and two

higher frequency poles.

— Thus it looks like a “lead” compensator.

Page 10: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—9

10−1

100

101

102

103

100

101

102

Freq (rad/sec)

Mag

Plant G Compensator Gc

10−1

100

101

102

103

−200

−150

−100

−50

0

50

Freq (rad/sec)

Pha

se (

deg)

Plant G Compensator Gc

Figure 1: Plant is pretty simple and the compensator looks like a lead

2—10 rads/sec.

10−1

100

101

102

103

100

101

102

Freq (rad/sec)

Mag

Loop L

10−1

100

101

102

103

−280

−260

−240

−220

−200

−180

−160

−140

−120

Freq (rad/sec)

Pha

se (

deg)

Figure 2: Loop transfer function L(s) shows the slope change near

ωc = 5 rad/sec. Note that we have a large PM and GM.

Page 11: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—10

−15 −10 −5 0 5−15

−10

−5

0

5

10

15

Real Axis

Imag

Axi

s

Figure 3: Freeze the compensator poles and zeros and look at the root

locus of closed-loop poles versus an additional loop gain α (nominally

α = 1.)

10−1

100

101

102

103

10−2

10−1

100

101

102

Freq (rad/sec)

Mag

Plant G closed−loop Gcl

Figure 4: Closed-loop transfer function.

Page 12: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—11

Figure 5: Example #1: G(s) = 8·14·20(s+8)(s+14)(s+20)

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Plant G Compensator Gc

10−1

100

101

102

103

−200

−150

−100

−50

0

50

Freq (rad/sec)

Pha

se (

deg)

Plant G Compensator Gc

10−1

100

101

102

103

10−2

10−1

100

101

102

Freq (rad/sec)

Mag

Plant G closed−loop Gcl

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Loop L

10−1

100

101

102

103

−250

−200

−150

−100

−50

0

Freq (rad/sec)

Pha

se (

deg)

Frequency (rad/sec)

Pha

se (

deg)

; Mag

nitu

de (

dB)

Bode Diagrams

−150

−100

−50

0

50Gm=10.978 dB (at 40.456 rad/sec), Pm=69.724 deg. (at 15.063 rad/sec)

100

101

102

103

−400

−350

−300

−250

−200

−150

−100

−50

0

Page 13: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—12

Figure 6: Example #1: G(s) = 8·14·20(s+8)(s+14)(s+20)

−80 −70 −60 −50 −40 −30 −20 −10 0 10 20−50

−40

−30

−20

−10

0

10

20

30

40

50

Real Axis

Imag

Axi

s

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0−25

−20

−15

−10

−5

0

5

10

15

20

25

Real Axis

Imag

Axi

s

3 — closed-loop poles, 5 — open-loop poles, 2 — Compensator poles, ◦ — Compensator zeros

Page 14: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—13

• Two compensator zeros at -21.54±6.63j draw the two lower fre-quency plant poles further into the LHP.

• Compensator poles are at much higher frequency.

• Looks like a lead compensator.

Page 15: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—14

Figure 7: Example #2: G(s) = 0.94s2−0.0297

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Plant G Compensator Gc

10−1

100

101

102

103

−200

−150

−100

−50

0

50

Freq (rad/sec)

Pha

se (

deg)

Plant G Compensator Gc

10−1

100

101

102

103

10−2

10−1

100

101

102

Freq (rad/sec)

Mag

Plant G closed−loop Gcl

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Loop L

10−1

100

101

102

103

−250

−200

−150

−100

−50

0

Freq (rad/sec)

Pha

se (

deg)

Frequency (rad/sec)

Pha

se (

deg)

; Mag

nitu

de (

dB)

Bode Diagrams

−100

−50

0

50Gm=11.784 dB (at 7.4093 rad/sec), Pm=36.595 deg. (at 2.7612 rad/sec)

10−2

10−1

100

101

102

−300

−250

−200

−150

−100

Page 16: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—15

Figure 8: Example #2: G(s) = 0.94s2−0.0297

−8 −6 −4 −2 0 2−6

−4

−2

0

2

4

6

Real Axis

Imag

Axi

s

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Imag

Axi

s

3 — closed-loop poles, 5 — open-loop poles, 2 — Compensator poles, ◦ — Compensator zeros

Page 17: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—16

• Compensator zero at -1.21 draws the two lower frequency plant poles

further into the LHP.

• Compensator poles are at much higher frequency.

• Looks like a lead compensator.

Page 18: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—17

Figure 9: Example #3: G(s) = 8·14·20(s−8)(s−14)(s−20)

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Plant G Compensator Gc

10−1

100

101

102

103

−200

−150

−100

−50

0

50

Freq (rad/sec)

Pha

se (

deg)

Plant G Compensator Gc

10−1

100

101

102

103

10−2

10−1

100

101

102

Freq (rad/sec)

Mag

Plant G closed−loop Gcl

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Loop L

10−1

100

101

102

103

−250

−200

−150

−100

−50

0

Freq (rad/sec)

Pha

se (

deg)

Frequency (rad/sec)

Pha

se (

deg)

; Mag

nitu

de (

dB)

Bode Diagrams

−100

−50

0

50Gm=−0.90042 dB (at 24.221 rad/sec), Pm=6.6704 deg. (at 35.813 rad/sec)

100

101

102

103

−350

−300

−250

−200

−150

Page 19: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—18

Figure 10: Example #3: G(s) = 8·14·20(s−8)(s−14)(s−20)

−140 −120 −100 −80 −60 −40 −20 0 20 40 60−100

−80

−60

−40

−20

0

20

40

60

80

100

Real Axis

Imag

Axi

s

−25 −20 −15 −10 −5 0 5 10 15 20 25−25

−20

−15

−10

−5

0

5

10

15

20

25

Real Axis

Imag

Axi

s

3 — closed-loop poles, 5 — open-loop poles, 2 — Compensator poles, ◦ — Compensator zeros

Page 20: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—19

• Compensator zeros at 3.72±8.03j draw the two higher frequencyplant poles further into the LHP. Lowest frequency one heads into

the LHP on its own.

• Compensator poles are at much higher frequency.

• Note sure what this looks like.

Page 21: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—20

Figure 11: Example #4: G(s) = (s−1)(s+1)(s−3)

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Plant G Compensator Gc

10−1

100

101

102

103

−200

−150

−100

−50

0

50

Freq (rad/sec)

Pha

se (

deg)

Plant G Compensator Gc

10−1

100

101

102

103

10−2

10−1

100

101

102

Freq (rad/sec)

Mag

Plant G closed−loop Gcl

10−1

100

101

102

103

10−2

10−1

100

101

Freq (rad/sec)

Mag

Loop L

10−1

100

101

102

103

−250

−200

−150

−100

−50

0

Freq (rad/sec)

Pha

se (

deg)

Frequency (rad/sec)

Pha

se (

deg)

; Mag

nitu

de (

dB)

Bode Diagrams

−80

−60

−40

−20

0

20Gm=−3.3976 dB (at 4.5695 rad/sec), Pm=−22.448 deg. (at 1.4064 rad/sec)

10−1

100

101

102

103

140

150

160

170

180

190

200

210

220

Page 22: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—21

Figure 12: Example #4: G(s) = (s−1)(s+1)(s−3)

−40 −30 −20 −10 0 10 20−40

−30

−20

−10

0

10

20

30

40

Real Axis

Imag

Axi

s

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Real Axis

Imag

Axi

s

3 — closed-loop poles, 5 — open-loop poles, 2 — Compensator poles, ◦ — Compensator zeros

Page 23: 16.31 Feedback Control - MITweb.mit.edu/16.31/www/Fall06/1631_topic17.pdf · Fall 2001 16.31 17—4 The Compensator • Dynamic Output Feedback Compensator is the combina-tion of

Fall 2001 16.31 17—22

• Compensator zero at -1 cancels the plant pole. Note the very un-

stable compensator pole at s = 9!!

— Needed to get the RHP plant pole to branch off the real line and

head into the LHP.

• Other compensator pole is at much higher frequency.

• Note sure what this looks like.

• Separation principle gives a very powerful and simple way to develop

a dynamic output feedback controller

• Note that the designer now focuses on selecting the appropriate

regulator and estimator pole locations. Once those are set, the

closed-loop response is specified.

— Can almost consider the compensator to be a by-product.

• These examples show that the design process is extremely simple.