8
Numerical Modeling of Combustion and Gasification Processes using the Discrete Particle Method Mehrdad Shahnam Madhava Syamlal Fluent Incorporated 3647 Collins Ferry Road Suite A Morgantown WV 26505 Daniel Cicero Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown WV 26507 ABSTRACT A methodology for modeling combustion and gasification processes in a transport gasifier is described in this paper. A transport gasifier is an efficient means of converting carbon- based feedstock into synthesis gas, which can be used to produce high-value liquid fuels, value-added chemicals, and hydrogen for fuel cells among other things. The system consists of three main parts: mixing zone, riser, and the solids return loop. The transport gasifier operates as a combustor at startup. Coal is injected into the system at the top part of the mixing zone. The devolatilized species are collected and the remaining unburned carbon in the coal, char, is redirected back to the unit. Additional combustion takes place at the lower portion of the mixing zone where the recycled char and hot burner air meet. As oxygen in the system is depleted, the unit moves from the combustor mode into gasification mode. Steam is injected into the system to promote steam gasification of hot recycle char. Additional gasification can take place with carbon dioxide in the gas stream. The gas-solid flow regimes encountered in the system vary from location to location. Flow in the recycle char return loop can be characterized as a dense flow.Flow in the mixing zone and the riser can be characterized as a dilute flow for input conditions under consideration. The goal of this manuscript is to describe the approach taken to model the combustion and gasification process in the dilute flow zones encountered in the mixing zone and the riser. It is assumed that the unit has reached its steady state condition. Time averaged equations of mass, momentum, energy, and species transport are solved for the gaseous phase with FLUENT TM software. The solid particle flow is simulated using the discrete particle method. In this approach, the solid phase equations of mom entum and energy are solved in a Lagrangian frame of reference. Heat, mass transfer, and momentum exchange to and from the particles are computed and added to the continuos phase as a source or sink term. Coal devolatilization, gasification and combustion reactions were included in the model through user defined functions. The discrete particle method works well when the flow is sufficiently dilute that particle-particle interactions can be neglected. This implies that the flow volume fraction needs to be as low as 10-12 . Although the flow conditions in the current study have volume fractions lower than the recommended volume fraction limit, we found that the large mass flow rate of particles relative to the mass flow rate of the gaseous phase causes numerical instabilities. A novel approach has been implemented which limits the heat transfer rates between the two phases and stabilizes the calculations. The gas phase temperature field obtained with the modified discrete particle method agrees favorably with available data. INTRODUCTION Coal is the most widely used solid fuel consumed by the power generation industry. Because of economic and environmental considerations, the need exists to improve the efficiency of coal combustion process. Computational Fluid Dynamics(CFD) has widely been used as a tool to optimize equipment designs and combustion efficiency of coal combustors. An effective technique in modeling of coal combustion has been the Lagrangian discrete phase technique. In this approach, coal particles of known size distributions and properties are injected into the combustor and tracked in a Proceedings of 2000 International Joint Power Generation Conference Miami Beach, Florida, July 23-26, 2000 IJPGC2000-15089 1 Copyright (C) 2000 by ASME

15089 Numerical Modeling of Combustion -Gasification

  • Upload
    lte002

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 1/8

Numerical Model ing of Combustion and Gasif icat ion Processes using the Discrete Part ic le

Method

Mehrdad Shahnam Madhava Syamlal

Fluent Incorporated

3647 Collins Ferry Road Suite A

Morgantown WV 26505

Daniel Cicero

Department of Energy National Energy Technology Laboratory

P.O. Box 880

Morgantown WV 26507

A B S T R A C T

A methodology for model ing combust ion and gasi f icat ion

proce sses in a transport gasifier is describ ed in this paper. A

t ranspor t gasi f ier i s an eff icient means of conver t ing carbon-

based feedstock in to synthesis gas , which can be used to

produce high-value l iquid fuels , value-added chemicals , and

hydrogen for fuel cel ls amo ng other th ings. The system

consists of three mai n parts: mixing zone, riser, and the solids

return loop. The t ranspor t gasi f ier operates as a comb ustor at

startup. Coal is injected into the syste m at the top part of the

mixing zone. The devolat i l ized species are col lected and the

remaining unburned carbon in the coal , char , i s redi rected back

to the uni t. Addi t ional combu st ion takes p lace at the lower

por t ion of the mixing zon e where the recycled char and hot

burner ai r meet . As oxy gen in the system is depleted , the uni t

moves f rom the combustor mode in to gasi f icat ion mode.

Steam is in jected in to the system to prom ote s team gasi f icat ion

of hot recycle char . Addi t ional gasi f icat ion can take p lace wi th

carbon dioxide in the gas s tream. The gas-sol id f low regimes

encountered in the system vary f rom locat ion to location. Flow

in the recycle char return loop can be character ized as a dense

f low.Flow in the mixing zone and the r i ser can be character ized

as a dilute flow for input condit ions under consideration. The

goal of th is manus cr ip t i s to descr ibe the ap proach taken to

model the combust ion and gasi f icat ion process in the d i lu te

f low zones encountered in the mixing zone a nd the r i ser . I t is

assumed that the unit has reached i ts steady state condit ion.

Ti me averaged equat i ons o f mass , momen t um, energy , and

species t ranspor t are solved for the gaseous phase wi th

F L U E N T TM sof tware. The sol id par t icle f low is s imulated

using the discrete part icle metho d. In this approac h, the solid

phase equat ions of mom ent um and energy are solved in a

Lagrang ian f rame of reference. Heat , mass t ransfer, and

momen t um exchange t o and f rom t he par t i c l es a r e compu t ed

and added to the cont inuos phase as a source or s ink term

Coal devolat i l izat ion , gasi f icat ion and combust ion react ions

were included in the model through user def ined funct ions.

The discrete par t icle method works wel l when the f low is

sufficiently dilute that part icle-part icle interactions can be

neglected . This impl ies that the f low volume f ract ion needs to

be as low as 10-12 . Alth oug h the flow condit ions in the

current s tudy have volume f ract ions lower than the

recommended volume f ract ion l imi t , we found that the large

mass f low rate of par t icles relat ive to the mass f low rate of the

gaseous phase causes numerical instabi l i t ies . A novel approach

has been implemented which l imi ts the heat t ransfer rates

betwe en the two phases and s tabi lizes the calculat ions. The gas

phase tempera ture f ield obtained wi th the modif ied d iscrete

par t icle method agrees fav orably wi th avai lable data.

I N T R O D U C T I O N

Coal i s the most widely used sol id fuel consumed by the

powe r generat ion indust ry . Because of economic and

envi ronmental considerat ions, the need exis t s to improve the

eff iciency of coal comb ust ion process . Computat ional Fluid

Dynamics(CFD) has widely been used as a tool to opt imize

equipment designs and combust ion eff iciency of coa

combustors . An effect ive technique in model ing of coa

combust ion has been the Lagrangian discrete phase technique.

In th is approach, coal par t icles o f known size d is t r ibut ions and

proper t ies are in jected in to the combustor and t racked in a

Proceedings of2000 International Joint Power Generation Conference

Miami Beach, Florida, July 23-26, 2000

IJPGC2000-15089

1 Copyright (C) 2000 by ASME

Page 2: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 2/8

L a g ra ng i a n f a s h i on t h roughou t t h e c om pu t a t i ona l dom a in .

Hea t and mass t rans fe r to / f rom pa r t i c le s a re ca lcu la ted a long

each t ra jec to ry and a re used a s the coupl ing mechanism

be tw een the gas phase and the so l id phase . A ma jor

as sumpt ion in the Lagrang ian d i s c re te phase mode l i s tha t the

in te rac t ion of so l id pa r t i c le s i s neg lected . As a re su lt th is

approach i s on ly app l icab le to d i lu te f lu id -pa r t i c le f lows w here

the so l id phase vo lume f rac t ion i s l e s s than 10%. S ince mos t

coa l burn ing com bus tors a re ope ra ted in the d i lu te f low reg ion ,

(e . g . low vo lume f rac t ion and low so l id - to -gas phase mass

load ing) , the Lagrang ian d i s c re te phase mode l can be used to

cap ture the rma l and hydrodynamic cha rac te r i s t i c s o f typ ica l

coa l burn ing com bus tors . How ever , i f so l id to gas phase mass

load ing i s h igh enough , th i s mode l may ove r -pred ic t the

• t empera tu re f ie ld . This work has bee n unde r taken to fo rmula te

and implement a me thodology which wi l l e l im ina te the

tempera ture ove rpred ic t ion encounte red in Lagra ng ian d i s c re te

phase mode l .

Coupled S olution

In the Lagrang ian d i s c re te phase mode l , pa r t i c le

mo me ntum and ene rg y equa t ions a re so lved a long each pa r t i c le

t ra jec to ry . Cons ide r the pa r t i cle ene rgy equa t ion :

d T p = h a p ( T f - T p + S p

(1)

mpCp d'--7

W here the f i r s t te rm o n the r igh t hand s ide i s the in te rphase

hea t t rans fe r be tween the so l ids and the sur rounding gas and

the s econd te rm on the r igh t ha nd s ide , Sp . represen t s any

addi t iona l hea t source o r s ink con t r ibu t ions . Dur ing the t ime

in tegra t ion of the pa r t i c le ene rgy equa t ion in each

compu ta t iona l con t ro l vo lume , the loca l gas phase t empera tu re ,

T f

i s he ld cons tan t . I f the hea t t rans fe r ra te be tween the two

phases i s sma l l , keep ing the gas phase t empera tu re cons tan t

dur ing t ime in tegra t ion of pa r t i c le ene rgy equa t ion i s

accep tab le . How ever , i f the hea t trans fe r rate be tween the so l id

and the gas phase i s l a rge , ho ld ing the loca l gas t empera tu re

cons tan t dur ing t ime in tegra t ion of equa t ion (1 ) l eads to

exces s ive ene rgy t rans fe r be tween the pa r t i c le s and the gas

phase . The exces s ive ene rgy t rans fe r causes unrea l is t i c ho t o r

co ld spo t s in the gas t em pera tu re f i e ld .

I t i s pos s ib le to p reven t such unrea l i s t i c hea t t rans fe r

be tween the phases by a t igh te r the rma l coupl ing be tween the

so l id phase and the gas phase . The ma in idea i s to so lve the

f lu id -phase ene rgy equa t ion coupled wi th the pa r t i c le -phase

ene rgy equa t ion du r ing the pa r t i c le - t rack ing phase on a ce l l -by-

ce l l bas i s. To ach ieve th i s goa l , f i r s t cons ide r the f lu id phase

ene rgy equa t ion :

,O f Cpf v f .V T f = V .k f V T f -F J transfer+ S f ( 2 )

W h e r e Y t r a n s f e r i s the in te rphase hea t t rans fe r be tween the

so l id and the gas phases . By in tegra t ing th i s equa t ion ove r a

con t ro l vo lume , the d i s c re f i zed fo rm of the f lu id phase en e rgy

equa t ion i s ob ta ined :

a c ( T f ) C = Z a n b ( T f ) n b + b + J tra nsfe rA V C ( 3 )

nb

Where ac , anb and b are the center coeffic ient , the

ne ighbor ing coe f f i c ien t , and the source t e rm respec t ive ly and

A V e i s ce l l vo lume . The pa r t i c le ene rgy equa t ion is so lved by

tak ing seve ral t ime s teps wi th in a computa t iona l ce l l. The

d isc re t ized fo rm of equa t ion (1) ov e r a time s tep i i s

i

m p C p T ~ T ~ - - h A p ( T f - T ~ ) + S p

A t ~

(4)

The in te rphase hea t t rans fe r fe l t by the f lu id phase f rom the

part ic le t rack ove r t ime s tep i is

J~r ans f erAVc = h A p ( T t~ T f ) (r h ~ / /~ p ) A t i

( 5 )

where / rhP /m ] i s the num ber f l °w ra te ° f pa r t i cle s f ° r

the pa r t i c le t rack under cons ide ra t ion . The accumula ted

in te rphase hea t t rans fe r f rom a l l the t ime s teps N with in the

ce l l can be found by in tegra t ing ( summing) the above

express ion:

i=N

J, ,~, , :erA V e = Z h A p (T ip T I ) (r h ~ /~ p ] A t i

(6)

i=1

By combin ing equa t ions (3 ) and (6 ) , the fo l lowing

disc re t ized fo rm o f the f lu id phase ene rgy equa t ion i s ob ta ined :

i=N

a c T = Z a n b ( Tf )nb + b + Z h A p ( T] - T f) lr h P ~ m p ) A t i

nb i=1

( 7 )

Equa t ions (4 ) and (7 ) fo rm a s e t o f N + 1 equa tions fo r

T f

a nd

T i

( i = 1 , N ) . S imul taneous so lu t ion of the above

P

equa t ions wi l l ensure tha t the numer ica l so lu t ion wi l l no t

pe rmi t any unrea l i s t i c hea t t rans fe r. The above eq ua t ion s e t can

be eas i ly gene ra l i zed fo r mul t ip le pa r ti c le t racks. How ever ,

so lv ing such an equa t ion s e t i s cpu in tens ive and imprac t i ca l .

An a l t e rna te approach fo r so lv ing equa t ions (4 ) and (7 ) i s

desc r ibed be low.

2 Copyright (C) 2000 by ASME

Page 3: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 3/8

Temp erature Limiter Algorithm

I t i s p roposed t ha t dur i ng t he pa r t i c l e t r ack ing ca l cu l a t i on ,

t he i n t e rphase hea t t r ans f e r t e rm,

J t r a n s f e r be

b o u n d e d b y a

l o w e r a n d a n u p p e r th r e s h o l d w h i c h a r e c h a r a c t e r iz e d b y

m i n i m u m a n d m a x i m u m c o n v e c t i v e he a t t r an s f e r co e f f ic i e n t

b e t w e e n th e g a s a n d s o li d p h a s e s . T h e m i n i m u m i n t e rp h a s e

h e a t t r a n s f e r t e r m o c c u r s w h e n t h e h e a t t r a n s f e r c o e f f i c ie n t , h ,

a p p r o a c h e s z e r o . T h e p a r t ic l e te m p e r a t u r e c a n b e c a l c u l a te d

f r o m ( 4 ) to b e

S ; A t i

T ; ] mm

T; 1

I - -

(8)

m p C p

T o d e t e r m i n e t h e u p p e r t e m p e r a t u r e t h r e s h o l d w h e n t h e

c o n v e c t i v e h e a t t ra n s f e r c o e f f i c i e n t a p p r o a c h i ts m a x i m u m , a n

aux i l i a ry gas t emp era tu r e fi e l d , T} , is de fm ed . The aux i l i a ry

gas t empera tu r e can i nc r ease o r dec r ease dur i ng pa r t i c l e

t r ac k i n g c a l c u l a ti o n s d e p e n d i n g o n w h e t h e r h e a t i s t r a n s f e r re d

t o o r f r o m t h e g a s p h a s e . T h e d i s c r e t iz e d p a r t ic l e e n e r g y

equa t i on i n te rms o f t he aux i l i a ry gas t empe ra tu r e i s

i

m p C p T ; T ; - I - h A p : - T ; ) S p

A t ~

(9)

Us ing t he f l u i d phase ene rgy equa t i on , ( 7 ) , t he aux i l i a ry

gas t empe ra tu r e can be w r i t t en a s:

i N

a c T : = Z a n b T f ) n b + b + Z h A p T ; - T f ) l h P ~ m I t i

n b

i=1 P

Or

a c T } = a c r : - 1 + h A p T ; - T f ) p

( 10)

w h e r e

a c t ~ = Z a n b ( T f )nb + b

n b

C o m b i n i n g e q u a t i o n s ( 9 ) a n d ( 1 0 ) a n d n o t i n g t h a t a t

m a x i m u m i n te r p h a s e h e a t t r a n s f e r c o n d i ti o n , b o t h t h e p a r t i c l e

t e m p e r a t u r e a n d t h e a u x i l i a r y g a s t e m p e r a t u r e a p p r o a c h t h e

same equ i l i b r i um va lue , Tp = T} ,

T; Jm~ --

c ( r h p / ~ T i - l+ S ; ( r h P ~ m e ) A t i

a c T : - ' + m p

k

/ m p J P

( 11)

E q u a t i o n s ( 8 ) a n d ( 1 1 ) c a n b e u s e d a s l o w e r a n d u p p e r

boun ds fo r t he pa r t i c l e t emp era tu r e f i e ld . I n t he t echn iqu e

d e s c r i b e d a b o v e , t h e l o w e r a n d u p p e r p a r t i c l e t e m p e r a t u r e

t h r e sh o l d s a r e o n l y u s e d i f p a r ti c l e t e m p e r a t u r e c a l c u l a te d b y

equa t i on (4 ) a r e ou t s i de o f t he t emp era tu r e l imi t s.

Oxidizer Limiter Algorithm

I n t h e L a g r a n g i a n d i s c r e t e p h a s e m o d e l , g a s e o u s p h a s e

prope r t i e s , ( i .e . ox id i ze r mass f r ac t i on) a r e he ld cons t an t dur i ng

pa r t i c l e t r a j ec t o r i e s ca l cu l a t i ons . For com bus t i ng pa r t i c l e s th i s

a s s u m p t i o n w i l l l e a d t o a n e x c e s s i v e a m o u n t o f o x i d i z e r b e i n g

ava i l ab l e f o r com bus t i on dur i ng pa r t i c l e t r a j ec t o ry ca l cu l a ti ons

i n pa r t i cu l a r i f mu l t i p l e t r a j ec t o r i e s tr ave l t h rough a con t ro

v o l u m e . T h i s p r o b l e m c a n b e e l i m i n a t e d b y n o t i n g th a t t h e

r a te , a t w h i c h o x i d i z e r i s s u p p l ie d t o e a c h c o n t r o l v o l u m e h a s t o

b e e q u a l o r g r e a t e r t h a n t h e r a te a t w h i c h o x i d i z e r i s c o n s u m e d

i n t h e s a m e c o n t r o l v o l u m e d u r i n g c o m b u s t io n . I n a g i v e n

c o n t r o l v o l u m e , o n c e t h e r a t e o f c o n s u m p t i o n o f o x i d i z e r

becomes g r ea t e r t han t he supp ly r a t e , combus t i on i s ha l t ed .

P a r t i c l e s t r a v e l i n g t h r o u g h t h e c o n t r o l v o l u m e s w i t h d e p l e t e d

ox id i ze r , w i l l no t co mbu s t .

Results

The t echn iq ue ou t l i ned a~bove i s i ncorpora t ed i n t o

F L U E N T 5 .4 C F D s o f t w a r e . C o a l c o m b u s t i o n a n d g a s i f ic a t io n

ins i de a t r anspor t gas i f i e r a r e used t o va l i da t e t he approach

presen t ed i n t h i s man usc r i p t . ; r he t r anspor t gas i f i e r ope r a t ed by

t h e E n e r g y & E n v i r o n m e n t a l R e s e a r c h C e n t e r a t t h e U n i v e r s it y

of No r t h Dakot a i s s e l ec t ed fo r t h i s purpose . The gas i f i e r i

used t o conver t coa l i n t o syn thes i s gas. F igure 1 shows t he

g e o m e t r y o f th e c o m b u s t o r / g a s if i e r u n i t. C h a r e n t er s t h e

m i x i n g z o n e a n d c o m b u s t w i t h t h e b u r n e r a ir , w h i c h e n t e rs t h e

mix in g zone on t he s ide . The un i t i s ope r a t ed a t sub-

s t o i c h io m e t r i c c o n d i t io n s w h i c h l e a d s t o b u r n i n g o f a s m a l

f r ac t i on o f t he cha r . I nc r eases i n t he gas t empera tu r e w i l l he l p

w i t h g a s i f ic a t i o n o f t h e r e m i n d e r o f t h e c h a r. C h a r m a s s

l o a d i n g w h i c h i s d e f m e d a s m a s s f l o w r a te o f c h a r t o m a s s f l o w

r a t e o f c h a r a n d b u r n e r a i r c o m b i n e d i s 0 . 8 8 . A s i t is s e e n in

f i g u r e 1 , tw o s e c o n d a r y a i r p o r t s a r e u s e d d o w n s t r e a m o f t h e

burn e r a i r en t ry t o a s s i s t w i t h cha r comb us t i on . F r esh

p u l v e r i z e d c o a l i s i n t r o d u c e d a t t h e u p p e r p o r t i o n o f th e m i x i n g

zone t o rep l en i sh t he cha r s tock . F igure 2 i ll us t ra t e s t he

l oca t i on o f c ros s s ec t i ona l p l anes wh ere t he t empera tu r e f i e lds

a r e r epor t ed . F igure 3 shows t he t empera tu r e f i e l ds a l ong t he

t r ave r se d i r ec t i on on p l ane s A t h rou gh F , ( r e f e r to f i gure 2 )

A l t h o u g h t h e m a j o r i t y o f t e m p e r a t u r e d a t a p o i n t s l a y a l o n g t h e

a v e r a g e t e m p e r a t u r e a t e a c h p l a n e , t h e p r e s e n c e o f s p u r io u s h o

3 Copyright (C) 2000 by ASME

Page 4: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 4/8

and co ld spot s on e ach p l ane c an be se en . F igu re 4 shows the

t empe ra tu re f i e ld a c ross t he same c ross se c t iona l p l ane s when

the tempe ra tu re l im i t e r i s u sed . The un rea l i s ti c ho t and co ld

spo t s o f f i gu re 3 a re e limina t ed . Wh en the ox id i z e r l im i t e r i s

a l so a c t iva t ed , t he t empe ra tu re f i e ld va r i ance on p l ane s A

th rough E becomes ev en le ss a s i t i s show n in f i gu re 5. A

compa r i son o f t he a c tua l t empe ra tu re va lue s w i th the th re e

s imu la t ions pe r fo rme d i s g iven by t ab l e 1 . W hen the concep t

o f t empe ra tu re and o x id i z e r l im i te r s a re u sed , t he t empe ra tu re

f i e ld is p red ic t ed more a ccu ra t e ly . As d i scussed e a r l ie r , a t h igh

so l id to ga s mass load ing , t he a ssumpt ion o f cons t an t ga s pha se

p rope r t i e s , ( cons t an t ga s s t e am t empe ra tu re and ox id i z e r mass

f ra c t ion ) l e ads to unphys i c a l t empe ra tu re pa t t ems . W hen the

the rma l mass o f pa r t i c le s i s no t g re a t , ( l ow pa r t i c l e mass

load ing ) , t he d i sc re t e pha se mode l c an p red ic t t he t empe ra tu re

f i e ld r e a sonab ly w e l l .

Conclusion

A m e thod o logy ha s been in t roduced to e limina t e

un rea l is i t c tempe ra tu re va lue s . The concep t o f t empe ra tu re and

ox id i z e r l im i te r s ha s succe ss fu l ly been imp lem en ted and t e s t ed .

A com pa r i son o f meas u red and s imu la t ed t empe ra tu re f i e ld s

ind ic a te s t ha t t empe ra tu re s a re p red ic t ed more a ccu ra t e ly when

the t empe ra tu re and ox id i z e r l im i t er s a re u sed .

Acknowledgments

T h i s w o r k h a s b e e n p e r f o r m e d u n d e r c o n t r a c t D E - A M 26

9 9 F T 4 0 5 7 5 f o r D e p a r t m e n t o f E n e r g y , N a t i o n a l E n e r g y

Techn o log y Labora to ry . The au tho rs wou ld l ike to t hank th

s t a f f o f F luen t W es t V i rg in i a o f f i c e i n pa r t icu l a r Dr . Mike

Pr inkey fo r a l l t he inva luab le d i scuss ions on fo rmu l i z ing th i s

app roach .

N O M E N C L A T U R E

A area

Cp spec i f i c hea t

h convec t ive hea t t r ans fe r coe f f i c i en t

m pa r t i c l e mass

m mass f l ow ra t e

S sou rce o r s ink t e rm

T Tempe ra tu re

t t ime

Subscripts

f f lu id

p par t ic le

L o c a t i o n

P lane D

N o l i m i te r W i t h t e m p e r a t u re W i t h t e m p e r a tu r e a n d M e a su r m e n t

(°k) l imi te r (°k) oxid izer l imi te rs (°k) (°k)

2000 1400 1310 1223

Tab le 1. A compa r i son o f s imu la t ed and a c tua l t empe ra tu re f i e ld in t he mix ing zone .

4

4 Copyright (C) 2000 by ASME

Page 5: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 5/8

Coal injection j _

Secondary

a ir in le t s ~ _ ~ ~gv Coa) in j ec t io n ~ / /

~ r ~ po r t ~ ~ / O utle t

Bum er air A v/ \ 1~'-

Figure 1. Com bustor/gasifiergeometry.

Mixing zone

Ciiiiiii~

plane F

plane E

plane D

plane C

plane B

plane A

Secondary air

inlets

~k

Figure 2.

Cross sectiona lplanes along he mixingzone w here temperaturevalu es are reported.

5 Copyright (C) 2000 by ASME

Page 6: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 6/8

3 0 0 0

2 5 0 0

2 0 0 0

1500

1000

500

u *

• 1 1

• I • : %

n ' ; , -

. . . ~ : ' .

- t ~

. . ~ •

• * ~ . ~ - - . . e ~ : ' r , . . : - b

. ' I t

-g

plane A

-0.05 0 0.05 0.1

Dis tance a lon g the t raverse di rect ion (m)

3 0 0 0

2 5 0 0

2 0 0 0

,~ 1500

E

1000

500

mm

ml

N

. g % , .

; . ; . % r - . r . ', r , . ~ . , ~ . . ~ . . . . .

• - ~ .

. ' '

plane C

, , , , I , , , , I , , , , I , , , ,

-0.05 0 0.05 0,1

Dis tance a lon g the t raverse di rect ion (m)

3 0 0 0

2 5 0 0

~ '

2 0 0 0 • •

E

lOOO . .

500

plane E

0 ' r ~ ~ I , , , , I r r i , [ r I , ,

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec t ion (m)

3 0 0 0

2 5 0 0

~ 2 o o o

1500

1000

500

u

• • m

o

ee

• o ° . ° ° ° t

. . . , 5 - : : : ; , - 5

° o w

e e

plane B

0 I i i i I I i i i I i r i r I i i i i

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec t i on (m)

3 0 0 0

2 5 0 0

, ~ . 2 o o o

~ 1 5 0 0

~ 1 0 0 0

500

, . . .

~ . . ~ . . ''w '~ 8 / • I . . .

plane D

t ~ i r I i i i r I T i i i I i i r I

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec ti on (m)

3 0 0 0

2 5 0 0

. ~ 2 0 0 0 - . .

ee

~ 1 0 0 0

%

500

plane F

0 , I r , , i l l r i r I r , r I

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec ti on (m)

F igure 3 .

Tem pera tu r e f i e l d a t c ros s s ec t i ona l p l anes A t h roug h E wi t ho u t t he t empera tu r e and ox id i ze r limi t er s .

6 Copyright (C) 2000 by ASME

Page 7: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 7/8

3000 3000

2500

2000

~ 1 5 0 0

E l

l o o o

. . • ~ - ~

• v

# ~

• • • i i . i

500

plane A

0

i i ~ r I r i ~ i I i i ~ i I i i ~ i

-0.05 0 0.05 0.1

Distan ce along the traverse direction (m )

3000

2500

,~, 200 0

~d

1500

~.

~ - . , : .- ~ - - ~ ~ ' ¢ 4 % ' , .' d ' h ' . - , r % - . . , , . .

1000

500

plane C

0

~ i r r I i i , , I , ~ , , I ~ , ~ ~

-0.05 0 0.05 0.

Dis tance a long the t raverse direction (m)

2500

~,~2000

1500

~ 1 0 0 0

500

3000

. : - . -

plane B

r I r l I i i r 1 [ 1 i i 1 I i I I I

-0.05 0 0.05 0.1

Dis tance a long the t raverse direct ion (m)

2500

2000

5OO

~ 1 0 0 0

500

plane D

0 ~ r I , , , , I , r , r I ~ ~ , ,

-0.05 0 0.05 0.1

Dis tance a lon g the t raverse direct ion (m)

3000

2500

2

~ 1 5 0 0

. d . ~ . . m l ~ I l q l V l l t ql ~ , ~ l m l l l , m w l ~ , ~ 8 D *

1000

500

plane E

0 , , , , I , r , , I , , ,

I r ~ ~

-0.05 0 0.05 0.1

Dis tance a long the t raverse direct ion (m)

3000

2500

~ 2 0 0 0

E

1500

~ 1 0 0 0

500

plane F

0 ~ r r I ~ ~ I r ~ I ~ r

-0.05 0 0.05 0.1

Dis tance a long the t raverse direct ion (m)

F igure 4. Tempera ture f i e ld a t c ros s s ec t iona l p lanes A th roug h E wi th the t empera tu re l im i te r .

7 Copyright (C) 2000 by ASME

Page 8: 15089 Numerical Modeling of Combustion -Gasification

8/9/2019 15089 Numerical Modeling of Combustion -Gasification

http://slidepdf.com/reader/full/15089-numerical-modeling-of-combustion-gasification 8/8

3 0 0 0 3 0 0 0

2 5 0 0

~ ' 2 0 0 0

1500

E

1000

500

plane A

0

I t I I I I I I I I I I 1 I I I I I I

lO105 0 0105 On1

Distance a lon g the t raverse di rect ion (m)

3 0 0 0

2 5 0 0

2 0 0 0

1500

E

1000

500

plane C

0

, I , , l , I l , i l I ~ l l l

-0.05 0 0.05 0.1

Dis tance a lo ng the t raverse di rect ion (m)

2 5 0 0

~,~ 20 00

E

~ 1 5 0 0

1000

500

plane B

0

I I I I I I I I I I I I I r l l I I I

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec t i on (m)

3 0 0 0

2 5 0 0

2 o o o

1 5 o o

1000

P h ~ r w . , u q ' ' q l Y ' l. , . l~ F ' . l ~ . . ~ Il i l , ,/ d u ~

5OO

plane D

0

l l l l I l i l i i i l l , i , l t l

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec ti on (m)

3 0 0 0

2 5 0 0

2 0 0 0

1500

1000

500

u ~ p m a u n d ~ ~ ~ l ~ a m ~ ( n l ~ i ~ m n m ~ p l N m m ~ m J l ~ l am a ml ~ m l ~ im m q m l I N •

plane E

, , , , I ~ r r , I , , , , I ~ , r r

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec t ion (m)

3 0 0 0

2 5 0 0

2 0 0 0

~ 1 5 0 0

gm,4w,O~l~ll~O~ , I~tl ,'ll p dmO~ilClFllm,llsm~,lwm,~bdm ~ e

~ 1 0 0 0

500

plane F

0 r r , I I r , ,

i i 1 , 1

l l , , , ,

-0.05 0 0.05 0.1

Di s t ance a l ong t he t r ave r se d i r ec ti on (m)

F igure 5 . Tem pera tu r e f i e l d a t c ros s s ec t i ona l p l anes A t h rough E wi t h t he tem pera tu r e and ox id i ze r l imi te r s .

8 Copyright (C) 2000 by ASME