1451-93721000038O

Embed Size (px)

Citation preview

  • 8/2/2019 1451-93721000038O

    1/6

    Availableonlineat

    AssociationoftheChemicalEngineersAChE

    www.ache.org.rs/CICEQ

    ChemicalIndustry&ChemicalEngineeringQuarterly16(4)373378(2010) CI&CEQ

    373

    OGBEMUDIA JOSEPHOGBEBOR1UZOMA NDUBUISI OKWU1FELIX EBHODAGHEOKIEIMEN2DANIEL OKUONGHAE21Rubber Technology Department,Rubber Research Institute ofNigeria, Benin City, Nigeria2University of Benin, Center forBiomaterials Research, Benin City,

    NigeriaSCIENTIFIC PAPER

    UDC 678:678.074

    DOI 10.2298/CICEQ100110038O

    PHYSICO-MECHANICAL PROPERTIES OFELASTOMERS BASED ON NATURAL RUBBERFILLED WITH SILICA AND CLAYElastomersbasedonnaturalrubber(NR)andsilicaandclayfillershavebeen

    investigatedfor theirphysico-mechanical properties.Thevariousmixeswere

    compoundedinaBanbury-Pullenlaboratorymillandvulcanizedusingtheeffi-

    cientvulcanizationsystem.Theoscillatingdiscrheometer(ODR)wasusedfor

    determinationofcurecharacteristics.Itwasestimatedthatreplacementofsi-

    licawith clay upto30phr(50%replacement) increased thecompoundcure

    ratewithareductioninabsolutetorquelevel(Tmax)ofthenaturalrubbermix.

    Scorchtime(Ts2)wasobservedtobethehighestata30/30fillerratio.Hard-ness and tensile propertiesof obtained elastomericmaterials werestudied.

    Theresultsshowadecreaseinparametersasthereplacementofsilicawith

    naturalclay progresses.Therewasimprovement inelongationatbreakwith

    theincreaseofclaycontent.Thereplacementofsilicafillerwithclayreduced

    theabrasionproperties(mgloss/1000rev.)

    Keywords: silica;clay;rubber;processingsafety;physico-mechanicalproperties.

    Claysarederivedfromnaturaldepositsandare

    essentially hydrated aluminium silicates, containing

    certain groupsofhydrousmagnesium, iron,sodium,

    calcium,potassium,andotherions[1]. Theyareinex-pensivenaturalmineralsandhavebeenusedasnon-

    black fillerfor rubber and plastic toimproveproces-

    sabilitybyreducingnerveinimprovingshapingopera-

    tionsandensuringdimensionalstabilityinunvulcani-

    zed stocks [2,3] formanyyears. Ithasalso recently

    beenused infoundrysandmouldswhere itwas re-

    portedtosubstantiallyimprovemechanicalproperties

    [4].Theconsumptionofnonblackfillersintherubber

    industryisknowntobeinmillionsoftonsperyear[5].

    Silica,ontheotherhand,isprominentlyusedasfiller

    inmanyrubberwaresduetoitsappreciableabilityto

    reinforce the elastomerswhilemaintainingexcellent

    abrasionresistance.But,itshighcostandheatbuild-

    up problems which cause deterioration of material

    propertieshavebeenofconcerntoitsusers[69].In

    this study the clay and silicawereusedas fillers in

    natural rubber compounds. The aim of the project

    Correspondeningauthor:O.J.Ogbebor,RubberTechnologyDe-

    partment,RubberResearchInstituteofNigeria,PMB1049,

    300001BeninCity,Nigeria.E-mail:[email protected]:10January,2010

    Paperrevised:22June,2010Paperaccepted:1July,2010

    was to determine the influence of filler mass ratio,

    silica/clay ratio on curingandmechanicalproperties

    ofelastomersbasedonnaturalrubber.

    EXPERIMENTALNaturalrubber(NR)wasobtainedfromtheRub-

    ber Research InstituteofNigeria (RRIN) plantations

    situated at Iyanomo, near Benin City, Nigeria. The

    claywascollectedformadepositinEdoCentralSe-

    natorialdistrictofNigeria.Airdried(495C),pulve-

    rized and sieved throughmesh size 300 m. X-ray

    diffraction (XRD) recorded from monochromatic X-

    -rays(MD10minidiffractometer),withNi-filterCuK

    radiation and automatic slit analyzed using Bragg-

    -Wulf equation ( = 2dsin), where is the X-raywavelength,d isthe interlayer spacing,andisthe

    angle of diffraction in combination with the Interna-

    tionalCenterforDiffractionData(ICDD)identification

    chartshowedamineralcomplexcomprisingofchon-

    drodite, Mg3FeSiO4H2O, titanian, TiO4SiO4H2O

    and kaesutite, NaCa2MgFe)4TiSi6Al2O22(OH)2,witha

    1:1tetrahedrallattice[5].Somephysico-chemicalpro-

    pertiesoftheclaysamplearegiveninTable1.For-

    mulations of five types of compounds are given in

    Table 2. The compounding ingredients (zinc oxide,

    stearic acid,paraffinoil,silica, etc.)were purchased

    fromBerkChemicalsUK.Silica(vulkasilS)havinga

  • 8/2/2019 1451-93721000038O

    2/6

    O.J.OGBEBORetal.:PHYSICO-MECHANICALPROPERTIESOFELASTOMERS... CI&CEQ16(4)373378(2010)

    374

    particlesizearound 30nm,and density2.00gcm-3

    wasusedintheexperiments.

    Table1.Physicochemicalcharacteristicofclay

    Particlesizedistribution(PSA)a

    Content,mass%

    Clay 83

    Sand 10

    Silt 7

    Colour Grayish-brown

    Densityofclay,gcc-3 2.62

    Densityofsilica,gcc-3 2.00

    SiO2 38.48

    Al2O3 12.46

    Fe2O3 6.18

    TiO2 1.85

    MgO 14.67

    CaO 12.05

    Na2O 1.42

    K2O 9.57

    Lossonignition 13.5

    pH 7.43aAccordingtotheUSDA[22]

    MixingMixingofrubbercompoundswascarriedoutin

    a laboratory two roll mill (Banbury-Pullen, model,

    35100).Themillopeningwassetat1.4mm,andthe

    initialtemperatureofthemillwassetat805C.Themixinginvolvedatwostageoperation.Inthefirststep

    aninitialbandingofnaturalrubberonthefrontrollof

    atworoll-mill,followedbycutsonbothsidesofthe

    band, followed by adding the half content of fillers,

    thenzincoxide,stearicacid,paraffinoilandwax,al-

    lowedtomixproperlyfor5min.Thiswasfollowedby

    the incorporation of the remaining ingredients and

    6PPDforafurther3.5min.Inthefinalsteptheaddi-

    tionofacceleratorandvulcanizingagents(CBSand

    sulphur)for2.0minwasdoneafterthestockwasal-

    lowedtocoolto70C.

    Cure behavior determination and sample preparationThe aptitude to vulcanization of rubber com-

    pounds was determined on Alpha Oscillating Disc

    Rheometer (ODR 2000) using a 1 rotor oscillating

    amplitudeandfrequency50Hz[10].Thecureratein-

    dex(CRI)[11]andotherparametersofthecurewere

    estimatedfromobtainedrheographs.Theelastomeric

    sampleswereobtainedbycompressionmouldingat

    140 C using electric heated hydraulically operated

    press for various times extrapolated from the

    rheographs.

    Mechanical properties characterizationHardness

    The hardness tests of the rubber vulcanizates

    werecarriedoutinaccordancetoBS903(ISO7619),

    with an international rubber hardness tester. Speci-

    menswith a thickness of6mmwere tested at room

    temperature. The reported values are basedon the

    averageoffivemeasurements[12].

    Tensileproperties

    Dumbbell-shaped samples were cut from the

    molded sheets, according to BS 903, Part A2 (DIN

    53504). Tensile properties:M100,M200 and tensilestrength (TS)were determined at room temperature

    onZwick/RoelltestingmachineZ005withcrosshead

    speedof200mm/min[13].Abrasionresistancetest

    Theabrasiontestwascarriedoutinaccordance

    toBS903,PartA9,consistingofatrialrun,arunning-

    Table2.Formulationforinvestigatingclay/silicafilledNRrubbercompounds(adoptedmodelformulationfromMalaysianNaturalRubbe

    ProducersResearchAssociation(MRPRA)TechnicalbulletinsheetD105D117,formanufactureofgeneralmechanicalgoods,which

    includevarietyofproductslikehose,conveyorbelts,rubberlinings,gasketseals,rubberrolls,rubberizedfabricsetc.)

    Component Phr Phr Phr Phr Phr

    1.NaturalRubber 100 100 100 100 100

    2.Paraffinoil 10 10 10 10 10

    3.Clay 0 20 30 40 60

    4.Silicaa 60 40 30 20 0

    5.ZincOxide 10 10 10 10 10

    6.Stearicacid 2 2 2 2 2

    7.6PPDb 1.5 1.5 1.5 1.5 1.5

    8.Wax 1.5 1.5 1.5 1.5 1.5

    9.CBSc 0.6 0.6 0.6 0.6 0.6

    10.Sulphur 2.8 2.8 2.8 2.8 2.8a

    Silica(vulkasilS);particlesize:30nm;b

    N-(1,3-dimethylbutyl)N-phenyl-p-phenylenediamine;c

    N-cyclohexyl-2-benzothiazolesulfenamide.(AllchemicalswerepurchasedfromBerkchemicalsUK,Ltd.)

  • 8/2/2019 1451-93721000038O

    3/6

    O.J.OGBEBORetal.:PHYSICO-MECHANICALPROPERTIESOFELASTOMERS... CI&CEQ16(4)373378(2010)

    375

    -inperiodandfive testruns.Absolutevalueofabra-

    sion losswas themean value determined from the

    fivetestrunsexpressedasmilligramsper1000revo-

    lutionsoftheabrasivewheel[14].

    RESULTS AND DISCUSSIONThe rheological properties during cross-linking

    of the natural rubber filledwithmixcompositionsof

    silicaandclayareshowninFigure1 andallestima-

    teddataaregiveninTable3.Ithasbeenstatedthat

    ODR is a convenient technique for the functional

    evaluationoffillersfortheirreinforcingpotentials[15

    17].Thesilicafilledcompoundhadthehighestmini-

    mumtorque(ML=22.23dNm),MLforothercom-

    pounds silica/clay loading, were at 40/20 phr (40%

    replacement loading);13.98d Nm,30/30phr (50%

    replacementloading);9.42dNm,20/40phr(60%re-

    placementloading);7.89dNm,and0/60phr(100%

    replacementloading);3.91dNm,respectively.Since

    MLisameasureofeffectiveviscosityofunvulcanized

    mix,theresultsshowthatthestiffnessaswellasthe

    viscosityoftheuncuredcompoundisreducedasthe

    clay content increases. This effect correlates the

    hydrodynamicequation[15]:

    f=u(1+2.5c+14.1c2) (1)

    Figure1.Rheographsat140C(arc.1)ofvaryingfillermixcompositionsinphr;silica/clay60/0,silica/clay40/20,

    silica/clay30/30,xsilica/clay20/40,silica/clay0/60.

    Table3.Curecharacteristicsofnaturalclay/silicafilledNR(compoundmix:rubber,NR(100),paraffinoil10,Stearicacid2.0)rubbe

    compounds;MLminimumtorque;MHmaximumtorque;CRIcurerateindex,100/(T90Ts2);ts1timeto1unitriseaboveML;ts2ti-

    meto2unitriseaboveML;ts10timeto10unitsriseaboveML;t90timetomaximumcrosslinking

    Cureproperties Mix1 Mix2 Mix3 Mix4 Mix5

    Clay 0 20 30 40 60

    Silica 60 40 30 20 0

    ts1/min 3.19 3.05 6.53 3.44 3.55

    ts2/min 3.50 3.51 7.49 4.18 4.13

    t10/min 4.48 4.28 8.33 12.30 6.21

    t50/min 16.53 21.21 13.03 12.30 6.21

    t90/min 41.46 48.02 30.19 34.25 12.14

    Absolutetorquelevel(T90+ML),Tmax 63.69 62.0 36.61 42.14 16.05

    CRI 2.63 2.25 4.41 3.33 12.48

    ML/kgcm 22.23 13.98 9.42 7.89 3.91

    MH/kgcm 62.74 41.34 42.23 32.57 37.46

    (MHML)/kgcm 40.51 27.36 32.81 24.68 33.55

  • 8/2/2019 1451-93721000038O

    4/6

    O.J.OGBEBORetal.:PHYSICO-MECHANICALPROPERTIESOFELASTOMERS... CI&CEQ16(4)373378(2010)

    376

    wheref andu are the viscositiesof the filledand

    unfilled compounds,andc isthevolume fraction of

    the fillers.FromEq.(1) itis obvious thatviscosity is

    expected to increase with increase in filler loading

    (volume fraction). However, viscosity is also depen-

    dent on the silica/clay interactions and between the

    elastomernetworkandfillers.

    Scorch times (ts2 inTable 3) for samples with

    various fillerratio ofsilicaand clay (60/0, 40/20,30/

    /30,20/40and0/60)were3.50,3.51,7.49,4.18and

    4.13min,respectively.Thehighestvaluewasobser-

    vedat30/30phr(50%replacementloading).Thisisa

    valuableassessmenttothecompoundingrecipeasit

    givescompoundsprocessingsafety[18].Thisscorch

    retardingeffectcanbeobservedastheclayfraction

    increases in the mix formulation. Some acids sub-

    stanceslikephthalicanhydride(at0.5-2.0phr),other

    been N-nitrosodiphnylamine (at 1-5 phr) have been

    usedasretarders[19]inNRmix.Silicaisknownto

    exhibit a cure retardingeffect when incorporatedas

    filler inmixes curedusing the efficientvulcanization

    system[20].Theextentofvulcanizationismeasured

    bymaximumtorque(MH).Ahighrheometrictorque,

    which isameasureofcrosslinkingdegree,was ob-

    servedforthecontrolmix(60phrsilica)withoutclay.

    Replacement of silicawith clay up to 50% replace-

    ment,i.e.30/30phrincreasedthecurerateofnatural

    rubberaswellastheirMH.

    ThevulcanizatepropertiesofNRfilledwithmixblendsofsilicaandclayusedinthisinvestigationare

    showninFigures2-7.Theall-silica,0%clay(control

    mix) exhibited the characteristic reinforcingproperty

    ofsilicafillers.Ingeneral,therewasanobservedde-

    crease intensilepropertiesastheclaygraduallyre-

    placedsilicaincompounds.Hardness(Figure1)and

    tensilestressproperties(Figures3-5)whichincluded

    M100,M200,and tensile strength (TS) followed the

    samesequenceof reduction.Therewasmarked re-

    duction in hardness (from 24-54%) as replacement

    progressedthrough40/20,30/30,20/40,and0/60phr

    of silica/clay in the filler mix. The M100 showed areductionfrom11to74%,whileM200showedare-

    ductionfrom20to86.4%andtensilestrength(TS)in-

    dicated a reduction from 12.3 to 78.7% as the clay

    increasedinthemix,respectively.Particlesizesoffil-

    lersplaysignificantroleincouplingoffillertopolymer.

    As theparticlesizeoffillersinapolymercompound

    decreases, its resilience and strength decreases

    while the abrasion is increased [21]. This also by

    extensioncorroborates the effect on the abrasion in

    mgloss/1000revolutions,Figure7,astheclayinthe

    filler mix increases. However, there was improved

    extensioninthemixesastheclayin the formulation

    increases.AsitcanbeseenfromFigure6elongation

    atbreakwere190,223,238,245and 350% for the

    60/0 phr (100% silica loading), 40/20 phr (40%

    replacement loading), 30/30 phr (50% replacement

    loading), 20/40 phr (60% replacement loading) and

    0/60phr(100%replacementloading),respectively.

    0

    10

    20

    30

    40

    50

    60

    70

    80

    60/0 40/20 30/30 20/40 0/60

    silica/clay, phr

    IRH

    Figure2.ComparativevaluesforhardnessofNRvulcanizates

    filledwithdifferentratiomixofsilicaandclay.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    60/0 40/20 30/30 20/40 0/60

    silica/clay, phr

    M100,MPa

    Figure3.ComparativevaluesforM100ofNRvulcanizatefilled

    withdifferentratiomixofsilicaandclay.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    60/0 40/20 30/30 20/40 0/60

    silica/clay, phr

    M200,

    MPa

    Figure4.ComparativevaluesforM200ofNRvulcanizatefilled

    withdifferentratiomixofsilicaandclay.

  • 8/2/2019 1451-93721000038O

    5/6

    O.J.OGBEBORetal.:PHYSICO-MECHANICALPROPERTIESOFELASTOMERS... CI&CEQ16(4)373378(2010)

    377

    0

    2

    4

    6

    8

    10

    12

    14

    60/0 40/20 30/30 20/40 0/60

    silica/clay, phr

    TS,MP

    a

    Figure5.Comparativevaluesfortensilestrength,TSofNR

    vulcanizatesfilledwithdifferentratiomixofsilicaandclay.

    0

    50

    100

    150

    200

    250

    300

    350

    400

    60/0 40/20 30/30 20/40 0/60

    silica/clay, ph r

    EB,

    Figure6.ComparativevaluesforelongationatBreakEB(%)of

    NRvulcanizatesfilledwithdifferentratiomixofsilicaandclay.

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    60/0 40/20 30/30 20/40 0/60

    silica/clay, phr

    mg.

    loss/1000rev.

    Figure7.Comparativevaluesforabrasion(mgloss/1000rev.)

    ofNRvulcanizatefilledwithdifferentratiomixofsilicaandclay.

    CONCLUSIONIn this study, elastomeric materials reinforced

    withsilicaandclaymixeswerepreparedbychanging

    filler ratio in natural rubber compound formulations.For the five fillermixesstudied, the fillerratio30/30

    phr (50% clay replacement) exhibited the optimal

    scorchtime(7.49min),aconditionindicativeforgood

    processingsafety.Silicafillersareusedinalotofrub-

    ber articles such as hose, cables, footwearuppers,

    mechanicalgoodsandthereforetheuseofclaypar-

    ticlestogetherwithsilicamayfindacceptabilityinrub-

    berindustryinareasrequiringprocessingsafety.Acknowledgements

    The financial assistance of the Management

    under the leadership of Mrs. M.U.B. Mokwunye as

    wellasthetechnicalassistanceofstaffoftheRubber

    TechnologyDepartmentofRubberResearchInstitute

    ofNigeriaisgratefullyacknowledged.

    REFERENCES[1] H.HMurray,inClaysinIndustry,E.Dominguez,G.Mas,

    F.Cravero(Eds.),Elsevier,Amsterdam(2003),pp.3-25.[2] A.Barbour,inProceedingsof4 thRubberDivisionMeet-

    ing,ACS,OH,1979,pp.1-15.

    [3] N.Hewitt,inProceedingsof4 thRubberDivisionMeeting,ACS,Cleveland,1979,pp.17-21.

    [4] N.A.Ademoh,Int.J.Phys.Sci.3 (2008)240-244.[5] O.J.Ogbebor,F.E.Okieimen,U.N.Okwu,Inter.J.Chem.

    Res.(2010),acceptedforpublication.

    [6] J.A.E. Bice, S.D. Patkar, T.A. Okel, in Proceedings of151

    stRubberDivisionMeeting,ACS,Anaheim,1997,pp.

    29-32.

    [7] M.P.Wagner,Rubber Chem.Technol.49 (1976) 703-708.

    [8] F.Bomo,J.C.Morawski,inProceedingsof131stRubberDivisionACSMeeting,Montreal,2001,pp.18-22.

    [9] R.J.Young,P.A.Lovell,IntroductiontoPolymers,Chap-man&Hall,London,1997,pp.350-362.

    [10] ISO 3417 (2000-E), Rubber Measurementof Vulcani-sationCharacteristicsDiscRheometer.

    [11] A.A. Yehia, B. Stoll. Kaunts, Gummi Kuntz. 40 (1987)327-331.

    [12] British Standards Institute, BS 903, Part A57: Deter-minationofHardness(ISO7619).

    [13] British Standards Institute, BS 903; Part A2: Determi-nationofTensileStress-StrainProperties(DIN53504).

    [14] British Standards Institute, BS 903; Part A9: Determi-nationofAbrasionResistance.

    [15] Rubber TechnologyandManufacture, C.M.Blow (Ed).,Butterworths,London,1971,pp.188-193.

    [16] A.C.Patel,J.T.Byers,Elastomerics114(1982)29-33.[17] Z.A.M. Ishak, A.A. Baker, Eur. Polym. J.3 (1995) 259-

    265.

    [18] U.N. Okwu,O.J. Ogbebor,O.Wilison, I.Y. Azikiwe, M.Ohimai,Niger.J.Appl.Sci.22(2004)240-245.

    [19] Rubber Technology, M. Morton (Ed)., Van NostrandReinhold,NewYork,1997,pp.89-150.

  • 8/2/2019 1451-93721000038O

    6/6

    O.J.OGBEBORetal.:PHYSICO-MECHANICALPROPERTIESOFELASTOMERS... CI&CEQ16(4)373378(2010)

    378

    [20] W.H.Waddel,L.R.Evans,J.R.Parker,inProceedingsof19

    th Rubber DivisionMeeting,ACS, Chicago, IL, 1994,

    pp.39-45.

    [21] J.U.Iyasele,F.E.Okieimen,J.Chem.Soc.Nig.33(2008)162-165.

    [22] A. Klute,G.S.Campbell,R.D.Jackson,M.M.Mortland,D.R.Nielsen,MethodsofSoilAnalysisPart1:ASA,Inc.,

    Madison,1986,pp.307-450.

    OGBEMUDIA JOSEPHOGBEBOR1UZOMA NDUBUISI OKWU1FELIX EBHODAGHE OKIEIMEN2DANIEL OKUONGHAE2

    1Rubber Technology Department,Rubber Research Institute ofNigeria, Benin City, Nigeria2University of Benin, Center forBiomaterials Research, Benin City,NigeriaNAUNI RAD

    FIZIKO-MEHANIKA SVOJSTVA MEAVINAPRIRODNOG KAUUKA, SILICIJUM-DIOKSIDA IPRIRODNE GLINEIspitivanesufiziko-mehanikasvojstvaelastomerabaziranimnaprirodnomkauukui

    puniocimatipasilicijumdioksidaigline.UlaboratorijiBanbury-Pullenpripemljenesuraz-

    liitemeavine kojesu podvrgnutevulkanizaciji. Karakterizacija vulkanizata je vrena

    pomouoscilujuogdiskreometra(ODR).Utvrenojedazamenasilicijumdioksidagli-

    nom do30 phr (50%zamene) poveavabrzinu vulkanizacijemeavine uzsmanjenje

    stepenaobrtnogmomenta(Tmax)prirodnegume.Vremesuenja (Ts2)jenajveepri

    odnosupunilaca30/30.Prouavanesu,takoe,tvrdoaisilazatezanjadobijenihelasto-

    mera.Rezultatipokazujusmanjenjenavedenihparametarazamenomsilicijum-dioksida

    prirodnomglinom.Postojiizvesnopoboljanjeuprekidnomistezanjusapoveanjemko-

    liine gline. Zamena silicijumovog punioca prirodnom glinom smanjuje abrazivne

    osobine(mggubitaka/1000rev.).

    Kljunerei:silicijum-dioksid;glina;guma;bezbednaobrada;fiziko-mehanike

    karakteristike.