99
COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622 No.2-3,2013 1 MINING ENGIEERING KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA Rudarski radovi je časopis baziran na bogatoj tradiciji stručnog i naučnog rada u oblasti rudarstva, podzemne i površinske eksploatacije, pripreme mineralnih sirovina, geologije, mineralogije, petrologije, geomehanike i povezanih srodnih oblasti. Izlazi dva puta godišnje od 2001.godine, a od 2011. godine četiri puta godišnje. Glavni i odgovorni urednik Prof.dr Mirko Ivković,viši naučni saradnik Komitet za podzemnu eksploataciju mineralnih sirovina Resavica E-mail:[email protected] Tel:035/627-566 Zamenik glavnog i odgovornog urednika Doc.dr Jovo Miljanović Rudarski fakultet Prijedor,Republika Srpska Urednik Vlado Todorović Prevodilac Vasa Garača Dražana Tošić Štamparija:Grafomet,Kragujevac Tiraž:100 primerka Internet adresa www.jppeu.rs Izdavanje časopisa finansijski podržavaju Ministarstvo za prosvetu, nauku i tehnološki razvoj Razvoj Republike Srbije Komitet za podzemnu eksploataciju mineralnih sirovina Resavica ISSN 1451-0162 Indeksiranje časopisa u SCIndeksu i u ISI Sva prava zadržana Izdavač Komitet za podzemnu eksploataciju mineralnih sirovina Resavica E-mail:[email protected] Tel:035/627-566 Naučno-tehnička saradnja sa Inženjerskom Akademijom Srbije ČASOPIS MEĐUNARODNOG ZNAČAJA VERIFIKOVAN POSEBNOM ODLUKOM MINISTARSTVA M24

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 1 MINING ENGIEERING

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA

Rudarski radovi je časopis baziran na bogatoj tradiciji stručnog i naučnog rada u oblasti rudarstva, podzemne i površinske eksploatacije, pripreme mineralnih sirovina, geologije, mineralogije, petrologije, geomehanike i povezanih srodnih oblasti. Izlazi dva puta godišnje od 2001.godine, a od 2011. godine četiri puta godišnje. Glavni i odgovorni urednik Prof.dr Mirko Ivković,viši naučni saradnik Komitet za podzemnu eksploataciju mineralnih sirovina Resavica E-mail:[email protected] Tel:035/627-566 Zamenik glavnog i odgovornog urednika Doc.dr Jovo Miljanović Rudarski fakultet Prijedor,Republika Srpska Urednik Vlado Todorović Prevodilac Vasa Garača Dražana Tošić Štamparija:Grafomet,Kragujevac Tiraž:100 primerka Internet adresa www.jppeu.rs Izdavanje časopisa finansijski podržavaju Ministarstvo za prosvetu, nauku i tehnološki razvoj Razvoj Republike Srbije Komitet za podzemnu eksploataciju mineralnih sirovina Resavica ISSN 1451-0162 Indeksiranje časopisa u SCIndeksu i u ISI Sva prava zadržana Izdavač Komitet za podzemnu eksploataciju mineralnih sirovina Resavica E-mail:[email protected] Tel:035/627-566 Naučno-tehnička saradnja sa Inženjerskom Akademijom Srbije ČASOPIS MEĐUNARODNOG ZNAČAJA VERIFIKOVAN POSEBNOM ODLUKOM MINISTARSTVA M24

Page 2: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 2 MINING ENGIEERING

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA Uređivački odbor Akademik dr Milenko Ljubojev,naučni savetnik Institut za rudarstvo i metalurgiju Bor Akademik Prof.dr Mladen Stjepanović Inženjerska akademija Srbije Prof dr Vladimir Bodarenko Nacionalni rudarski univerzitet, Odeljenje za podzemno rudarstvo, Ukrajina Prof.dr Milivoj Vulić Univerzitet u Ljubljani, Slovenija Akademik Prof.dr Jerzy Kicki Državni institut za mineralne sirovine i energiju, Krakov, Poljska Prof.dr Vencislav Ivanov Rudarski fakultet Univerziteta za rudarstvo i geologiju „St. Ivan Rilski“Sofija Bugarska Prof. Dr Tajduš Antoni Stanislavov univerzitet za rudarstvo i metalurgiju, Krakov, Poljska Dr Dragan Komljenović Nuklearna generatorska stanica G2, Hidro –Quebec, Kanada Dr Ana Kostov, naučni savetnik Institut za rudarstvo i metalurgiju Bor Prof.dr Dušan Gagić Rudarsko-geološki fakultet Beograd Prof.dr Nebojša Vidanović Rudarsko-geološki fakultet Beograd Prof.dr Neđo Đurić Tehnički institut, Bijeljina,Republika Srpska Prof.dr Vitomir Milić Tehnički fakultet Bor Prof. Dr Rodoljub Stanojlović Tehnički fakultet Bor Dr Miroslav R. Ignjatović, viši naučni saradnik Privredna komora Srbije Dr Mile Bugarin, viši naučni saradnik Institut za rudarstvo i metalurgiju Bor Dr Dragan Milanović, naučni saradnik Institut za rudarstvo i metalurgiju Bor Dr Ružica Lekovski, naučni saradnik Institut za rudarstvo i metalurgiju Bor Prof. dr Kemal Gutić RGGF-Univerzitet u Tuzli, BiH

COMMITTE OF UNDERGROUND EXPLOITATUONOF THE MINERAL DEPOSITS

Page 3: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 3 MINING ENGIEERING

MINING ENGINEERING is journal based od the rich tradition of expert and scinetific work from the field of mining, udergound and open-pit mining, mineral processing geology, petrology, geomechanics, as well as related fields of science. Since 2001, published twice a year, and since 2011 four times year. Editor-in-chief Ph D. Mirko Ivković, Senior Research Associate committee of Undergoind Exploitation of the Mineral Deposits Resavica E-mail: [email protected] Phone: +38135/627-566 Co-Editor Ph.D.Jovo Miljanović Faculty of Mining Prijedor, RS Editor Vladimir Todorović English Translation Vasa Garača Dražana Tošić Printed in: Grafopromet Kragujevac Web site: www.jppeu.rs MINING ENGINEERING is financially suported by The Ministry of Education, Science and Tehnological Development of the Republic Serbia Committee of Underground Exploitation of the Mineral Deposits Resavica ISSN 1451-0162 Journal interxing in SCIndex and ISI All righs reserved. Published by Committee of Exploitation of the Mineral Deposits Resavica E-mail: [email protected] Phone: +38135/627-566 Scentific-Tehnical Cooperation with the Engineering Academy of Serbia JOURNAL OF INTERNATIONAL IMPORTANCE, VERIFIED BY SPECIAL DECISION ON THE MINISTRY M24 COMMITTE OF UNDERGROUND EXPLOITATUONOF THE MINERAL DEPOSITS

Page 4: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 4 MINING ENGIEERING

Editorial Board Academic Ph D.Milenko Ljubojev, Principal Reasearch Fellow, Associate member of ESC Mining and Metallurgy Institute Bor E-mail: [email protected] Phone:+38130/454-109, 435-164 Academic Prof.Ph.D. Mladen Stjepanović Engineering Academy of Serbia Prof.Ph.D. Vladimir Bodarenko National Mining University, Deportment of Deposit mining, Ukraine Prof. Ph.D. Milivoj Vulić University of Ljubljana, Slovenia Prof.Ph.D. Jerzy Kicki Gospodarki Suworkami Mineralnymi i Energia, Krakow, Poland Prof.Ph.D.Vencislav Ivanov Mining Fakulty, University of Mining and Geology „St.Ivan Rilski“ Sofia Bulgaria Prof.Ph.D. Tajduš Antoni The Stanislaw University of of Mining and Metalhurgy, Krakow, Poland Ph.D.Dragan Komljenović Nuclear Generating Station G2, Hidro-Qwebec, Canada Ph.D. Ana Kostov Principal Research Felow Mining and Metalhurgy Institut Bor Prof.Ph.D. Dušan Gagić Faculty of Mining and Geology Belgrade Prof.Ph.D.Nebojša Vidanović Faculty of Mining and Geology Belgrade Prof.Ph.D.Neđo Đurić Tehnical Institute, Bijeljina, Republic Srpska Prof.Ph.D.Vitomir Milić Tehnical Faculty Bor Prof.Ph.D. Rodoljub Stanojlović JOURNAL OF INTERNATIONAL IMPORTANCE, VERIFIED BY SPECIAL DECISION ON THE MINISTRY M24

Page 5: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 5 MINING ENGIEERING

COMMITTE OF UNDERGROUND EXPLOITATUONOF THE MINERAL DEPOSITS Ph.D.Miroslav R.Ignjatović Senior Research Assoicate Chamber of Commerce and Industry Serbia Ph.D.Mile Bugarin Senior Research AssoicateMining and Methalurgy Institute Bor Ph.D.Dragan Milanović Senior Research AssoicateMining and Methalurgy Institute Bor Ph.D. Ružica Lekovski Senior Research AssoicateMining and Methalurgy Institute Bor Prof.Ph.D.Kemal Gutić MGCF-University of Tuzla B&H JOURNAL OF INTERNATIONAL IMPORTANCE, VERIFIED BY SPECIAL DECISION ON THE MINISTRY M24

Page 6: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 6 MINING ENGIEERING

SADRŽAJ CONTENS

Nenad Anžel MINING IN MEDIEVAL EAST SERBIA (14TH to 16th Century)…………………… 7 Mirko Ivković, Svjetlana Ivković STANJE MEHANIZOVANOSTI TEHNOLOŠKIH FAZA RADA PODZEMNE EKSPLOATACIJE U RUDNICIMA JP PEU.........................................14 THE STATE OF MACHANIZATION OF TEHNOLOGICAL FAZES IN UNDERGROUND EXPLOITATION IN THE MINES OF JP PEU Jovo Miljanović. Neđo Đurić, Mirko Ivković, Žarko Kovačević PRIMJENA TEHNOLOGIJE KOMBINOVANOG PODGRAĐIVANJA RUDARSKIH PROSTORIJA U RMU“SOKO“..........................................................20 USING OF COMBINET TECHNOLOGYS IN ROOF SUPPORTING IN UNDERGROUND MINE “SOKO” Jovo Miljanović. Dražana Tošić, Tomislav Miljanović, Mirko Ivković VERIFIKACIJA POUZDANOSTI I EFIKASNOSTI SISTEMA ODVODNJAVANJA NA PK „BUHAČ“…………………………………………….31 VERIFICATION OF RELIABILITY AND EFFICIEN CY OF THE DRAINAGE SYSTEM ON THE OPEN PIT „BUHAČ“ Slobodan Majstorović, Vladimir Malbašić. Jelena Trivan, Ljubica Figun, Miodrag Čelebić ASPEKTI BEZBJEDNOSTI I ZAŠTITA ŽIVOTNE SREDINE PRILIKOM UPOTREBE ANFO EKSPLOZIVA U RUDNIKU „SASE“ SREBRENICA............42 SAFETY AND ENVIRONMENT PROTECTION BY USE OF ANFO EXPLOSIVES IN MINE „SASE“ SREBRENICA

Page 7: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 7 MINING ENGIEERING

UDK: 330.1:622:061,5(045)=861 doi:10.593/rudrad 1301175S

*Nenad Anžel MINING IN MEDIEVAL EAST SERBIA (14TH to 16th C entury)

Abstract: This study is an attempt to help in clarifying complex issues concerning the history of medieval mining in Eastern Serbia. Historical sources from the Middle Ages show that there were mining activities in several places in eastern Serbia and that the ores mainly excavated were iron, copper, lead and silver. However, the mines of eastern Serbia did not become as famous as the mines in the other regions of Serbia and did not have the same significance. In eastern Serbia, mining activities took place in areas of Kučajna, Ridan, Raškovica, Petakovica, and villages Rakova Bara, Ćovdin and on Mali Bubanj. . Also, there were mining activities in Resava region, on the mountan of Stara Planina and in the vicinity of Majdanpek, and there is data about gold panning in the Pek river. Unfortunately, contemporary works at active mining sites threaten to permanently destroy the material remains of immense historical and archaeological importance. Key words: Eastern Serbia, mining, Middle age, material remains

Introduction

Eastern Serbia is a very diverse mountainous-basin region, which stretches from Djerdap in the north to the Zaplenjsko-luznicka valley and the Ruj mountains to the south. In the West it leans against the Pomoravlje area and in the east to the borders of Bulgaria and Romania. During the Middle Ages, from the formation of the Serbian medieval state until the fall to the Ottoman Empire, the territory of present-day eastern Serbia and its boundaries were subject to frequent and rapid changes. Expansion or withdrawal of the Serbian authorities in these areas was necessarily conditioned by strengthening or weakening of the power of the Serbian state, as much as the strength and weakness of its eastern neighbors. It is important to point out that the extreme east, along the basin and along the Timok, Negotin Krajna and part of the great bend of the Danube in Djerdap, has never been an integral part of the Serbian medieval state, but the region was often exposed to its powerful influence, primarily because of the ethnic composition of the population in these areas. Historical sources from the Middle Ages show that in several places in the east Serbia, mining was the main and that the main mining operations were of iron ore, copper, lead and silver. However, the mines in eastern Serbia have not reached fame and did not have such an important role as the mines in other Serbian areas had. A rich treasury of the Dubrovnik archives, which gives us the most information related to mining in medieval Serbia, gives very little information about mining in this part of Serbia. *Filozofski fakultet Niš, [email protected] It is known that the Dubrovnik merchants did not often travel often to the areas east of the Great and South Morava, because of their distance and the lack of economic interests. The only exception being the Kučevo and Branicevo areas because of its rich mining operations, therefore we have more information on these areas.

Page 8: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 8 MINING ENGIEERING

Based on the geological composition of the soil, terrain, altitude, and other natural factors, and primarily the mild climate (warmer autumn than spring), the region of eastern Serbia is optimal for mining activities for great part of the year. Due to their significance, prehistoric mining in eastern Serbia, especially the remains of the mine Rudna Glava near Majdanpek, and are among the world's oldest European registries of arheo-metalugic centers, dating back to the time of the Gradac phase of the Vinca culture. Arheometalurgi: the Serbian medieval archeology is a new field of work, so that the study of the mines throughout archaeological research has no tradition in our science. It is very rare that modern mines, with only the remains of old works, performed technical recording, let alone archaeological research. Therefore a unique opportunity to reconstruct the image of a medieval mine has been missed. Minimal remains of the underground mining archeology, tools and equipment for the mining and processing of ore, traces of settlements and cemeteries, communications and fortifications, are collected and recorded in a small number of places exclusively thanks to the supporters of the profession. Only recently the need for the collection of available data was found. 1988 can be marked as the year when serious archaeological researches on medieval mining and metallurgy began. Serious and detailed research of the remains of mines in eastern Serbia, will give concrete answers and the results of this rich but economically neglected area of the medieval Serbian state. When it comes to sites with traces of ancient mining in eastern Serbia, one should bear in mind that it is not easy to determine the exact boundaries of the area, because it does not match the current geographic representations. The accepted division is that of V. Simic five zones: Negotin Region, potes Tupužnica-Rtanj, Kucajna with the surounding area, Resava and Stara Planina.

Kučajna Rudište Kucajna belongs to the Homolje ore field, with mines Ridan and Rešković, and is a direct continuation of the Banat mines and the mines around Dognacke and Moravice. Since ancient times, the mining industry in this region has been very developed, as evidenced by numerous caved shafts, and the remains of ancient and medieval period settlements. The history of the Kučajna mines is a long and reliable and it dates back to Roman times. However, it is possible that there were mining activities before the Romans, during the time of the exploitation of gold mines in the valley and its tributarie Peka. Roman mining works in Kucajna were very extensive. They appear to have gone down to 80 m in depth. Certainly, the main objects of exploitation were gold, silver and copper. Above the Kuceva of today, there was a Roman town Guduskum, which was the center of the mining operations in the area. It is likely that in Kucajna there was a continuity between the Roman and medieval mining. Already in the 10th century the Arabian geographer Masudija writes about Klašaninu (Kucajna) as a live trading site. In the view of V. Simic, this trade could not rely on anything else but on the mining probucts. During the medieval Serbian state, Kucajna is not mentioned explicitly, but in written documents we encounter a place called Zeleznik near Kučeva, as the trading post for iron, copper and lead, which are also visited by merchants from Dubrovnik. At the beginning of the 1359. The Dubrovnik Grgo Skrinić, wrote "in Selesnich in Chuceua" to its government to lead a single consignment merchants from Dubrovnik, seized Prince Vojislav Vojinovic. Another interesting mention of Dubrovnik is found in the 1363, where the will of Dubrovnik Domanje Peter Sparks mentioned two residents Zeleznik, brothers and Hvaloje Dobrohval. Zeleznik .This should not be confused with Recic Zeleznik, west of Majdanpek, where we find the gold-bearing wire, since there was no lead ore present. Question Kučevo field

Page 9: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 9 MINING ENGIEERING

position in the Middle Ages, and therefore the position of the aforementioned square and mine Reflex Kucevo caused in our historiography a lot of controversy and confusion. Only recently has the enigma been successfully resolved. Today Kučevo is a town and municipality in the center of the Branicevo; Peck on the river, which is located in the former medieval parish Zvižd. South of the present day Kučeva is a well known mine, the subject of our investigation - Kucajna. It was difficult to locate Kucevo, mentioned in the Dubrovnik sources and thus the mine of Zeleznik. On the basis of the Ottoman defter of Smederevo Sandzak, particularly on the basis of that from 1476/8, we conclude that the nahija of Kučevo, and therefore the area adjacent to the medieval Braničevo countriside, but not in the mountainous regions of east Kučajske mountains, as it was long considered, but west, respectively on the left bank of Velika Morava. The Imperial has of Zeleznik was listed in 1476/8. The coal basin Kosmaj and Avala, the westernmost part of the area with mines Kučevo, Zeleznik gave primarily silver and lead, with operation continuing since ancient times, the Middle Ages and the Ottoman period to the present day. In the Middle Ages Kucajna was called Kuchou, Cuciaena, Caciena. Between 1459 and 1521 it was the seat of government for the whole region, and at that time referred to as the Kočanji, Kucevo and Cucievo. In Kucajna there was also a Dubrovnik settlement. The charter of Knez Lazar from 1381 refers to "mount Kucajna" and "Saski num" while Hrisovulja of despot Durda Brankovic mentions "the village Sasu" in Kučeva. In Kucajna lead, copper and iron were produced, and it is interesting that the production of gold and silver, whih was done very abundantly, was never mentioned. The great content of precious metals in ores in Kučajna probably could not remain undetected by skilled metallurgist that the Sass were. Dubrovnik’s mentioned in his letters Kucajna for the last time in 143 ,when the mine has almost certainly ceased to woek because it is no longer visited by their merchants. In the Middle Ages in Kucajna, and the other Serbian mines coins and weapons were produced. During knez Lazar here was a mint (a place where coins areproduced) on coins and weapons, supported by the data from various traditions. Aspro has been forged here at the end of the reign of Sultan Suleiman II. After the fall to the Ottomans in 1458, it was on the Hungarian border area almost for a century, and subject to constant hostilities, and in such circumstances it was difficult to organize mining production. After winning the Banat area in 1551 and 1552 , the border is moved to the north and then begin extensive works, which led to the opening of Kucajna in 1553. Kucajna.The decision of Porte made the center a kadiluk, to serve the new mine and surrounding imperial whose landed estates allocated 48 villages, whose inhabitants worked in the mines, delivering wood, ore transporting, guarding roads and more. Then a mass immigration to Kucajna began, and among many ethnic communities special position and role had Jews. They moved to Kucajna 1551 or 1552, and have dealt mainly with financial matters. As skilled traders and financiers, they eventually took the lease of the mine, which was greatly influenced by the recovery and restoration of pre Turkish production volume, in the second half of the sixteenth century. Ridan The remains of the old smelter are placed around Golubac, in the village of Dvorište, and these are are the remains of the old smelter - and in places Ridan remains of old mining works - mostly shafts which were made to depths up to 15 meters. The surface was covered with these works is almost 3 acres. Based on archaeological research the shafts belong undoubtedly to the medieval period. On Ridan in the Middle Ages, iron ore and minerals that are mined are melted in the village of Dvorište.

Page 10: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 10 MINING ENGIEERING

Reškovica (Oreškovica) This mine is named after a small river or Oreskovici or Reškovici (newer name), which spreads from the western branch of the Homoljske mountains and close to Mali Laola flows into Mlava. And this one mine isone of those very uknown to our history. Based on the traces of old mining operations and the amount of residual slag the volume of work on this mine was of greater importance. From here the ores of iron, and copper and lead with gold and silver were mined. Analysis, carried out only partially, indicates only the production of iron. The ore was mined on both sides of the river Rešković. That the iron ore was mined is certifirmed also by the name of the hill Plavčevice, toponyms, which is characteristic for the production and processing of iron. Majdanpek The Majdanpek mine has a lot of tradition and quite an interesting historical development. Opened back in Roman times, worked during the Roman times, the Middle Ages, during the 20 year Austrian rule in the 18th century (1718-1738). Re-opened the 1847 and has been working continuously up to this day. We can say that the Majdanpek mine has worked in all periods of our mining operations. However, while our medieval mines have become famous for their richness, any metal was developed by trade and handicrafts, Majdanpek remained in the shadow of it, and we have very little information from the time. According to V. Simic, Majdanpek has always been a small mine, regardless of the prism of observation: the old, or middle of the new century. In the Middle Ages, when the Serbian mining was then famous throughout Europe, and many of our mines are mentioned in charters, chronicles and guided correspondence between Dubrovnik, Venice and our mines, there is no trace of Majdanpek. Its current name is of Arabic origin (Maden-metal), and was created at the time of the Turks. As for the minerals that are present in the region of Majdanpek, we find copper and iron. The presence of Sasa miners in this region testifies the name of the river Sask. On this river there were many medieval smelting points, as evidenced by the remains of old waste grounds.Old underground works that were found, whose shapes and dimensions comply with the medieval period (dimensions ranging from 0.6 to 1 meter) , provide testimony about mining in this region in the Middle Ages. In addition to these material remains, in many ancient works of Majdanpek well preserved medieval wooden trough were found which were later on used for the transfer of ore and waste rock, and in many places preserved wooden support, which undoubtedly proves the existence of mining activities on the site in the middle ages. Unfortunately, at the present time, work on the exploitation of ore deposits in the Majdanpek are of such proportion that almost nothing of the old works was left. It is unlikely that future archaeological and geological investigations at the site may make some new and important historical discoveries. Petakovica (Melnica) In the surroundings of the villages of Melnice there used to be a large deposit of old slag and plenty of lead ore, and they are still found in small traces even today. A variety of mountain streams (Melnick, and Vitanovačka Branicki river, stream Petkovic and others), gave the power for the smelter. The deposit of iron ore, lead and silver is located about 8 kilometers south of Kucajna. In the neighboring village of Vitanovac, there is a monastery which, according to tradition, was built by King Milutin, and that was probably built becouse of the surrounding mines.

Page 11: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 11 MINING ENGIEERING

Rakova bara, Ćovdin, Mali Bubanj At the village of Rakova Bara, in Sumedj, large amounts of old slag were found, which prove that in their neighborhood there were smelters. Since there was no trace of mining shafts, it is considered that the ore was brought to the smelter from one of kučajna mines. On the western side of the Crnog Vrha, towards Ćovdin, the shoots thicker wire hematite ore are noticed as well as the remains of old mines, which were likely to serve for the mining of iron ores, hematite and limonite. In this area there are no remains of troskišta, but it is assumed to be in the vicinity. In the village of Ranovca, northwest of Kucajna, on Mali Bubalj, there were noticed remains of hematite with limonite "which in the form of bulky rocks are sticking out of the grass." In the immediate vicinity of the site we have not uncovered troskišta, which does not mean that the ore was not mined. V. Simic believes that it is unlikely that the medieval miners, especially experienced Sass, a so favorable ore occurrence near a mining center what was Kucajna, could have remained unknown. The ore from there could be transferred to a suitable place for melting, where there was plenty of water and fuel. Resava The Resava area is divided into Lower (includes the villages of Medvedja - Subotica, down to the river to Velika Morava), Middle (from the village of Medvedja to Despotovac and both banks of the Resavica River) and Upper (an area from Despotovac to the springs of the rivers Resava and Resavica). Turkish census mentions Branicevo Resava as a separate nahija. Since the nahija Resava includes the basin of the river Resava, and in Braničevski subašiluk there were five districts that corresponded to medieval parishes (Lucica, Homolje, Pek, Zdrelo and Zvizd), the conclusion that the district who were referred by the rivers (Resava) were named after the former medieval parishes. In the case of Resava this conclusion is almost certain. To the old mining operations in Resaca the first to drew attention was Felix Hofman. During the 70s of the nineteenth century he examined this region twice: For the first time in 1874 and he described the borders of the fields with the advent of coal betwean Crnica and Resavica for the first time in 1874, and for the second second time in 1879 he examined the occurrence of ore and coal, which gravitate to the track with just established Moravian railway. Both times he came upon the remains of former mining of copper and as he noted "residual ore heaps and hills of slag in the valley of Crnica, then the old mining around Crvene Jabuke and finally slag at Grza and Resavica". Bulk slag was observed in the Valley of the Bigreničke River, then in the region of Dubrave. Thies according to him were the remains of a former copper mine, whose ore was mined in red sandstone. In 30s of the twentieth century, a new mining researchers in Resava could not find Hoffmans sites. It was probably used as a building material, but they survived many medieval mining toponyms: Rupni stream, Gumnishta, Majdan, Kolišta, Rupčine, Kovanica, Mačevac. Beside them were found the remains of mining operations (village Sladaja, Stenjevac, Strmosten, Vrlane, Roćevci, Troponje), and there were even found tools and lamps, coins, pottery in the villages (Gložanj, Troponje, Svilajnac, Medvedja). Interestingly according to tradition from the vilage of Strmosten, in which the Sass lived in Seliste and Serbs in Staaro Selo. At both locations whose pottery was found on the remains of mining tools and money, and there are other small churches.

Page 12: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 12 MINING ENGIEERING

The village Židilje, in several places, Hoffman was first to discover the occurrence of iron ore. In the wider area of about 3 km limonite ore strands were found about 8 feet thick, in which the Fe 2 O 3 (iron) is present even at 84%, and with no harmful ingredients. Examples of these ores were displayed in 1885, on the mining exhibition in Budapest. Certainly, such a high-quality ore could not remain unnoticed during the Middle Ages, especially in an area that is rich in metallurgical resources (forests and mountain streams). Troskišta which Hoffman observed, at least in most cases, are not from melting copper ore. According to the recent studies, the red sandstones were not able to supply copper ore in that number, because it has smaller copper reserves. V. Simic believes that most of these troskišta are from smelting iron ore. Although discovered in the second half of the nineteenth century, about the old iron mining in Resava, very little is known. It was only hinted at, though it was undoubtedly present. During the reign of Despot Stefan Lazarevic, when it Resava fortresses and monasteries Manasija were built, there was a need to revive the production and processing of iron, which certainly existed before. The center of the state shifted to the north, and the manufacture of iron was needed not only to build the fort, but also to defend the country against the Turks. Manasija was in his own estate, and probably had its own iron mines and a village blacksmith, as other monasteries in Serbia. In Veliki Popovic, in the early twentieth century there was still a small blacksmith, and whose descendants carry the surname Kovac, Kovacevic, Kovacic. Stara Planina Of all the medieval mining district in eastern Serbia, there is the least information related to Stara Planina Mountains, which does not necessarily mean that there was a minimum of mining activities there. The traces of iron mining has been detected in the village of Topli Do, just below Midzor, in the heart of Stara Planina, been detected. Geologist and university professor Sava Markovic observed in the river basin of Toplodolska river, troskišta of iron smelters near running water, which means that these were medieval and Ottoman. Mines from which ore is melted were not observed. Heritage Museum in Knjaževac during 1986 conducted investigations of the ancient mining on Stara Planina. And received data for about 30 sites (mines, slag dumps present, processing, etc.) and they all testify to the ruins of ancient mining. However, the fact is that most of the slag dumps are present next to mountain rivers and streams indicate that here, except in antiquity, mining was also performed in the Middle Ages. On this site it is necessary to make additional research. In the period from 1956 to 1962, the pioneer of our modern geology and one of those most important scholars dealing with our mining history,V. Simic, performed the research on the soil terrains of eastern Serbia, namely the gold-bearing area of the river Pek. On this occasion, he encountered many remnants of old mining activities and production of gold, of which the most of them were destroyed. These remains were various hills and mines, barely noticeable traces of water and water tanks, and more. Old mining works at gold-bearing quartz works on most wires were covered again, and the old gold mining works were destroyed both by time and people. The remains of these old works especially destroyed in the twentieth century, when intensive construction of roads and railways through the valley of Pek has begun. Each new work inflicted destruction among new mounds, remaining in the place of former mines.

Page 13: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 13 MINING ENGIEERING

River Pek In parts of eastern Serbia gold production has never ceased. Its residents, regardless of the time when they lived here, were always ready to after heavy rains gather by streams and collect the gold that was washed with water in large mountain areas. Nearly five thousand years, and probably more, it is the addition of gold beads and leaves. The best example of this is the River Pek, where the old works stretch from north to south, a distance of about 30 km. Besides Pek, and its tributaries, Porecka river and Timok were used for washing and collecting of gold. Most of these works is of ancient origin. To enable the smooth operation of the Romans around the gold-bearing areas of eastern Serbia they erected numerous castles. Beside them was a permanent Roman guard. The remains of one of the watchtowers were found in the region of Pekka at Mark's Tavern. The Roman town Pincum (Veliko Gradište), that the mane itself originates from , was probably the center they poured to all the gold obtained in the region of Pek. The Roman presence in the region is confirmed by many remains of materials: ceramic vessels, tools of bronze and iron, money, and more. There is no data on the organized production of gold, in the period of the Middle Ages, in the area. However, unorganized, incidental and secret production must have existed. It conducted by miners, when it was worth more now argue cause and get gold, farmers or agricultural laborers, when they had no other work in the field or around the house. Organized production could be achieved in gold mines, as they were still in Roman times excavated up to 50 feet of deep. In addition, the Romans were not only rich, but almost all gold-bearing placers roomier gold-bearings. Mining in Peka in the Middle Ages is very poorly documented. There are few written sources that say something specific about the mining sector. Gold production in general is not mentioned, but this is not surprising because this metal is not specifically mentioned in another mining areas. Conclusion Mining in the region of Eastern Serbia in the Middle Ages is mainly related to mining and processing of iron ore, on a smaller scale lead and silver and copper and very little washing auriferous particles in rivers. Based on archaeological research in the region of Eastern Serbia many remains of iron and slag dumps were found. Smelters were located next to many rivers, whose fortune was the driving force of production. They were used in the Middle Ages and in the early period of Ottoman rule. Further archeological research requires specialized research division of the old slag dumps, which were unfortunately carried out in a small number of cases. Based on the survey, we can conclude that in the region of Eastern Serbia mining activities were carried out in the areas of Kucajna, Ridana, Reškovića, Petakovice and villages Rakova Bara, Ćovdi and on Mali Bubanj. Mining operations were also carried out in the area of Resava and in the area of Stara Planina. Recent research testifies to the rich mining activities around Majdanpek. Unfortunately, the threat to the remains of medieval mining operations has become more pronounced. Modern works in active mines, mining exploitation in the field, are the main culprits in the destruction of remains of immense historical and archaeological importance. It remains our hope that, in the future, we can develop an awareness of the necessity to preserve these precious monuments of Serbian culture and the material in the region can continue to be test, which will give a full and clear picture of the medieval history of mining in the region of Eastern Europe.

Page 14: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 14 MINING ENGIEERING

UDK: 65.05:519,21:330.23 (0,45)=20 doi:10,5937/rudrad 13011553S

Mirko Ivković*, Svjetlana Ivković **

THE STATE OF MECHANIZATION OF TECHNOLOGICAL FAZES IN UNDERGROUND EXPLOITATION IN THE MINES OF JPPEU

Abstract

Work in underground coal mines is currently based on hard physical labor, with regards to the fact that procurement of equipment was lacking. Practically the current work resembles that of 50 years ago, so that the work jeald is low despite the efforts of the miners.

The last mechanized wide seam stooped working in 1991, the machines for merchandised development of mining facilities is not present in any mine for more then 20 years, and no mine has loading equipment.

For the last twenty years the transport equipment in procured in parts so that brace downs are frequent and work delays, which has as a direct result a reduced yeald in production.

PROBLEMS IN PRODUCTION AND EQUIPMENT MAINTENANCE

1. The equipment for the development of mining facilities

Currently in the mines of JPPEU there is no working equipment of this type. How ever unbelievable that seams we can conclude that we are, in terms of using mechanization in the development of mining facilities, far below the level at which we were more then 30 years ago, which means that we have rapidly dearest. We have to mention that over the past years according to the program of operations, procurement of this type of equipment was planed but never completed. It is clear that thirty years ago we have developed mining facilities in a more modern fashion and if all around us in the region modern machinery is employed, we have a problem to first of all get back to the level at which we once were and then to follow the modern developments and use of this type of equipment as to achieve adequate levels in this aspect.

In different times it was attempted to make functional two machines of this type the ALPINA F6A and the AM50. The first was even functional for a short period of time in 1995, but as it was made functional with inadequate parts produced in coordination local developers which was evident in the quality and reliability in the machine operations, this machines work was of short duration and marked with frequent delays and other problems, all thou the results, while the machine was operational were acceptable, and better then the classical method of developing mining facilities.

*Prof.dr Mirko Ivković, JP PEU –Resavica

**Svjetlana Ivković, Ugaljprojekt-Beograd

Page 15: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 15 MINING ENGIEERING

2. Equipment for mechanized coal exploitation

In the nineties of the last century in some of the mines which are now part of JPPEU there was mechanized steal hydraulic support of different world developers.

This equipment worked with high production levels which resulted in higher production and financial results. The equipment was operated and maintained by workers which, with the help of developers and foreign experts were trained specifically for this task.

As of 1992 there have bean no further attempts in introducing technology of mechanical exploitation because of inadequate finances.

3. Transport equipment for the transport of men and coal

Racкe Transporters

Racke Transporters are transport equipment which is most prevalent in the mines of JPPEU and it is deployed in the transport of coal close to the excavation points. In our country there are no more companies, of the type GEOMASINE, which completely develop this type of equipment, therefore we are forced to complete these machines ourselves by buying separate parts from different vendors. This type of equipment works closest to the excavation points, therefore it is subject to the greatest pressures and therefore the most breakdowns, and it is hence the subject of constant monitoring and repair. The repair of these machines is mostly done in house. Because of grate problems with the transport beds we have started the production of these beds with grater quality of metals, with positive results. And in two cases two complete transporters were acquired with a so called sigma profile which has also given positivity results especially in the investment mines where the majority of the work is in dirt.

Transporters with a rubber transport cloth

With these types of transporters it has to be mentioned that in the mines of JPPEU there are mostly long transport paths, where transports of this type are employed.

These transports are formed in the mines themselves from different parts acquired from different vendors. The problem is also that in our country there are no vendors that produce complete cloth transports which can be overcome in short distance region tracks.

For cloth transports of grater length (over 350 meters) there are no local producers in regards to the production of transport stations.

The good in this part is that these transport distances are already covered with existing transporters from an earlier period, so that this problem can somewhat be overcome but the problems with there maintenance arise every day and present grater and grater working problems.

The transport of manpower is not adequately resolved in any mine.

Page 16: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 16 MINING ENGIEERING

Rail Transport

This type of transport has a very low transport capacity because the locomotives are older then 50 years and their maintenance is difficult and brace downs are very common because the railways are in a very pore stare.

Because the locomotives are electrically powered we have to focus on grater use of diesel machines.

Equipment for the transport of materials

In JPPEU different types of this equipment are in use: delivery system with a endless rope and hanging rail, delivery system with a diesel locomotive with an upper rail, rail locomotive transport, as well as a new system of delivery combining wire and endless rope which was first used in the Tadenje mine and after in some other mines and which will be in ever grater use.

A cable system of the SARF type work in the mines of Rembas, Soko, Jasenovac. While in RMU Stavaljh there is a similar system of the type ECO Velenje. In the Lubnica mine there is also a similar cable system which was produced in our country from imported parts and parts produced in our country. The systems are reliable and acceptable for use in mines and by its use the supply of the mines with materials has bean greatly simplified. The reliability of these systems is connected to constant maintenance and everyday rail corrections by direction and height, by the maintenance and replacement of the rope...

The diesel locomotive of the SARF type with the upper rail operates in the Bogovina mine and there are a lot of problems. Namely the machines are weary old of which one is out of use and the other is under constant repair with constant working delays.

The vitlovska delivery is done by the use of Bitlova (most commonly it is the PV11/15 of local manufacture) with the upper rail and rope which is in use in all the mines of JPPEU. A special problem with the cable car and vitlovske equipment is the lack of reliable backing systems because the current manufacturer did not pay enough attention to this system besides numerable interventions so that a different solution needs to be found.

Water extraction equipment

As the other equipment in JPPEU so to is this type of system relatively old and as an example we need to mention that in this year no new pumps were acquired although the problem of water in the mines is more pronounced then before. The water from the mines is pumped by the use of centrifugal and submersible pumps, by PVC or metal pipelines. As well as the pumps which are weary old there is also the problem of an old and rundown pipeline. In the past years a lot of effort has bean spent to unify the pumps working in JPPEU and certain results were achieved so that today the majority of the pumps is of the VPN type form the “Jastrebac” Nis manufacturer. Which are good for extracting mine water which contains hard particles because they work with a low number of rotations and are massive.

Page 17: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 17 MINING ENGIEERING

Equipment for the production of compresed air and equipment that work on compressed air The production of compressed air for the use in the mines and out of them is done in stable compressor rooms which are placed in the entrances of the mines. The compressors in JPPEU are mostly produced by UNITEX or FAGRAM Smederevoand are all pistoned except the vijcan compressor in Bogovina. As a problem in their operation there is the service of the machines after a set number of working hours which is usually not done on time which results in delays later on.

On the basis of a detailed analysis it can be derived that t in the mines of JPPEU that all the equipment form all five drupes is weary old, so that its maintenance is exponentially harder. The conditions need to be made so that the equipment which is weary expensive to maintain because of its long working history, needs to be replaced by newer equipment. This work did not examine the equipment in the mines themselves, separation buildings, heating buildings... but the situation of the mentioned equipment can be made as universal for all the equipment in the company and that the problems are similar if not the same.

Example of an investment in a new mine

To illustrate the needed investments for opening a new mine we will use the example of a mine in Melenci for which a study of has been prepared. The complete cost of the project were calculated to be 44 million euros of which for the equipment in the mine 17 million euros are allocated. The complete capacity of production would be achieve in 4 years after finishing the initial investment.

Here it is discussed of a mine field with an estimated 35,5 million tones of coal A and B reserves estimated to be 10 million tones. The grater part of the field would be mined by the mechanized wide shaft method and a part by the mechanized column method. The capacity of one wide shaft is estimated to be 450000 tones per year and for the mechanized column method 150000 tones per year.

On the basis of the developed method of the cost of one ton production it is derived that the operative cost is 26,7 euros per tone or based on the awerage heat jeald of 12,8 GJ per tone we arrive at a cost of 2,1 euros per GJ the cost is derived without the cost of VAT which is changeable so that the cost assessment is simpleminded.

Too show the lack of investment in active mines in the tables below we have given the investments in active coal mines ower the period 2002 – 2009.

Page 18: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 18 MINING ENGIEERING

Table 2. Shows the planed and the realised investment values for the period 2002 – 2009 by srtucture. Services Structure

Planed (USD)

Realised (USD)

Relation 3/2

% Part

USD/t

1 2 3 4 5 6 Geological Operations

7.892.381 1.705.992 21,6 4,0 0,41

Mining Operations

63.692.308 27.191.677 42,7 63,8 6,56

Construction Operations

5.413.119 2.604.366 48,1 6,1 0,62

Equipment

29.310.070 9.845.057 33,6 23,1 2,37

Other Services

15.635.142 1.305.933 8,4 3,1 0,32

Sam Total 121.943.020 42.653.025 35.0 100 10,28 Table 3. Shows the planed and realised investment values for the period 1995 – 2009 by structure Services Structure

Planed (USD)

Realised (USD)

Relation 3/2

% Part

USD/t

1 2 3 4 5 6 Geological Operations

11.365.381 5.997.472 52.8 6,1 0,72

Mining Operations

121.924.308 70.216.865 57.6 71,6 8,23

Construction Operations

14.083.119 3.812.068 27.1 3,9 0,44

Equipment

59.181.070 16.153.185 27.3 16,5 1,89

Other Services

24.866.142 1.892.758 7.6 1,9 0,22

Sam Total 231.420.020 98.072.348 42,4 100 11,50

Page 19: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 19 MINING ENGIEERING

Conclusion

All the projects, analysis and studies which were conducted to define the expansion directions of underground exploitation of coal in the Republic of Serbia, were achieved on the basis of objective situations and conditions which characterize the state of active mines, to the conclusion that without grate measures on the sector of investments there can be no further successful operation. Because of constant problems with production and the lack of investments in the needed level, the mines are financially spade and register a reduction in the capacity of production and a ever grater problem to maintain the level of production and extraction.

A special problem for underground exploitation is the lack of technical development which is a result of the lack of mechanization and modernized technological phases, and this besides production has a negative effect on safety in the mines. Without the modernization of equipment the mines cannot count on development, and the continued existence of certain mines is in question.

With all this in mind, it is necessary that the state as the owner of the mine, and with acceptance of the arguments given for the need to maintain the underground exploitation of coal, by providing the necessary funds needed to put the mines on a path to optimize the necessary technical-thenological system elements.

Page 20: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 20 MINING ENGIEERING

UDK:622.83:55,8.013(0,45)=861 doi:105937/rudrad 1301037P Jovo Miljanović *, Neđo Đurić **, Mirko Ivković***, Žarko Kovačević*

USING OF COMBINED TECHNOLOGYS IN ROOF SUPPORTING IN

UNDERGROUNG MINE ‘’SOKO’’ Abstract Complexed mining-geological conditions of coal mining, as they are in mine Soko require continuous work on the research of new technical solutions development and supporting of mining underground rooms. A special chapter in this work is detailed manner the existing techniques and technologies and supporting of mining facilities at the mine Falcon. Test sidewise support underground mining premises EH-(-60 )z in undergound mine "Soko" combined frame support as shown in this work was performed under the applicable Additional exploitation of coal mining project of K - 24 to R-10 faults in the excavation area OP-4 north wing, of the Western mining Field "Soko" . Describes the development of new solutions and technologies supporting in function to increase the stability of the mining space, extending their service life, functionality and elimination of standing and difficult reconstruction of the premises in underground mine "Soko". INTRODUCTION The stability of underground rooms and other mining facilities is one of the main problems that accompany underground coal mining. The mining-geological conditions of exploitation, such as the Falcon mine , mine construction investment for the most part ( in time and costs) related to the development of underground rooms. Thus, finding optimal solutions development and support the underground passageways , basic preparation and excavation has special significance and impact on the overall investment. [1] The mine Soko prevazileženja to these problems , and the right choice of technology development and supporting of mining facilities , work began on the introduction of new technology , whose main goal is the improvement of the general condition of underground chambers and improve the quality, timbering and thus increasing their lifetime , and creating the conditions for a safe and secure work [ 2], [ 3]. Design solutions related to the test sidewise support underground mining premises EH- (-60 )z in underrmine "Soko" define the parameters of the combined frame support and activities related to the introduction of new technologies Soko mine timbering AT hanging support . Voltage conditions and experiences, and suggest that the mining areas exposed to intense pressures and strains, and therefore reduces their service life and as a result there is a need for Constantine maintenance facilities .

* Faculty of Mining Prijedor, e.mail: [email protected] ** Tehnical Institute of Bijeljina. ***JP PEU Resavica

Page 21: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 21 MINING ENGIEERING

ENGINEERING-GEOLOGICAL CHARACTERISTICS OF COAL LAYER AND RELATED ROCKS From the engineering- geological point of view , the rocks that make up the deposit "oko" and his immediate environment can be classified into three groups (related rocks, semi-cohesive and non-related rocks). Ing to coal seam starts basal limestone breccia and conglomerate over which lie sandy clays and shales, marly - sandy clays, sandy marl and lime - flutter sandstones. Immediate floor of coal seam consists of carbonaceous clay that make the transition from the footwall shale to coal. The coal seam is a complex lithological composition of the permanent dirt bands carbonaceous clay, clay, marl and tuff. Roof of coal seam is made of marl, sandy marl and clay and shale, clay and marl friable sandstone and sand, gravel in places.

Figure 1. Geologialc column of Sokobanja tertiary basin

Tests of physical- mechanical properties of rocks were carried out on samples from the coal seam

and direct Podine and the withdrawal of coal seam , 1974 / 75th year.

ROOF SUPPORTING SYSTEM IN UNDERMINE ''SOKO'' The mine Soko work environment are mostly marl overlying sandstones and to a lesser extent coal and marl ( overlying and underlying stratum ), and sand and carbonaceous clay. Mining areas in the mine through a long period of exploitation were imported through all kinds of rock material.

Page 22: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 22 MINING ENGIEERING

Figure .2 Classification of facilities by type of rock

materials in which the work of the mining areas

Excavation preparation, which consists of excavation hall, podgrađivana a trapezoidal wooden frames on the "sor" reinforced beams. Usually distance podgradnih framework for the preparation of excavation is 0.8 m. Circular steel lining was applied for opening sidewise support facilities and basic preparation , stretching from the export and ventilation shafts and appropriate navozista that Podgraden cast concrete frame support, up to the level of floor hallway . Lining of cast concrete was used for the export sidewise support and ventilation shafts and their associated. Shapes and dimensions of the cross section of the room opened and basic preparations are quite uniform. The cross sections are generally circular cross-section area of 9.62 m2 and 12:56. In addition to the circular cross section of underground rooms , navozišta export and ventilation shafts, a low arched shape.

a) b )

Figure 3. Classification of premises a) the type of construction of supporting b ) the shape of the cross section

The technology of the existing methods and supporting of mining areas Making room in the mining pit shall be semi mechanized and discharge profile is done drilling and blasting operations, shipping odminiranog materials is done by hand excavation and removal as head of the site is carried out using a double strand grabuljastih carriers. The facilities were made through coal, and mining using the methane explosives safety while initiating explosives shall millisecond electric detonators.

Page 23: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 23 MINING ENGIEERING

Figure 4. Steel circular permissive lining with necessary

dimensions and values APPLICATION OF COMBINED TECHNOLOGY SUPPORT OF THE EXAMPLE OF MINING ROOM EH- (-60 )Z Combination lining includes a steel roof supports and AT hanging support , which will act in concert as a whole underground mining premises EH-(-60 ) z in mine "Soko" [ 4]. Way of support has steel support underground rooms is done according to the prescribed methodology and practices for underground coal mining. Rehearsal rooms sidewise support EN (-60 )z in undermine "Soko" is the initial activity of the application of technology supporting by AT hanging support . Action at the hanging support is based on the principle of preventing the spread of the contour deformation layers of underground facilities and to prevent the spread of deformation in fractured communities and at the same time particulary cracks creating a zone of increased mass in the vicinity of underground facilities. It can be said that AT hanging support active support units , or to enter into effect before the contour deformation underground rooms. Compared with AT anchors, steel support is passive suburb or receives load after forming the contours of the room. Contact spacing and mass along the entire length of the well is important to prevent the spread of strains in the depth range. This type of support is due to the characteristic mode of action , in the literature no longer listed as the type of lining , but as a system ojačenja , since their actions "changes " physical- mechanical properties of the mass in the vicinity of metro station, in the zone that corresponds to the length of the installed anchors AT . Experimental verification of the effects of AT hanging support consists of three phases: -Site Investigation

Page 24: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 24 MINING ENGIEERING

-Test sidewise support -Confirmation of the solution For the location of the trial supporting in undermine "Soko" is selected underground chamber EH ( 60 ) z , which will be carried out during the first phase of testing and research. Activities in the first phase are: The purpose of a trial installation of elements hanging support to determine the suitability of equipment for drilling wells and installing ankerskih anchors into precise conditions. Test pulling briefly associated anchors, which is performed to measure the links strenght adopted system hanging support in terms of competing [ 4]. TERMS AND TECHNOLOGY OF SUPPORT AND APPLICATION AT NANGING SUPPORT AND FOLOXING THE STRESS AND STRAIN The initial activity of the first phase of the technology requires the choice of location of mining areas where detailed studies were made of rock massif in the past. The methodology used to select the appropriate solution for support the hanging support is based on the measurement and monitoring of certain parameters "in situ" and that after the beginning of the systematic application. Once on the basis of measurement and monitoring scheme established with the installation of anchors that achieves successful control of the massive , it is possible to make changes and corrections of the existing method supporting by steel supports. This , like any other modification , whether in the way of installing AT hanging support, either in the form and amount of installing steel support is necessary to confirm the results of measuring and monitoring the behavior of the massive share of 30 to 60 m, with a minimum interval of about two weeks [ 4]. During the third phase of the trial for support the need for measuring and monitoring results confirm the massive support has approved manner. Based on the monitoring behavior of rock mass around an underground room - strain and burden which they are exposed AT anchors determines the effectiveness of the solution. Changes in stratigraphy and environmental changes in the stress state of underground rooms , which can be determined by measuring devices and monitoring may lead to a situation when you need to change the way - for support the solution. Given procedure is more reliable compared with analytical or empirical approach where the load bearing capacity of the lining and the mass calculated in order to reach certain assumptions about the behavior and effectiveness of mass support. It is important to emphasize that these assumptions may be incorrect, specially in sites with varying characteristics. Load transfer characteristics of the mass over the cured two-component mixture at anchor, in terms of the ability to accept bolt load, and in terms of evaluation of effectiveness, will be determined by installing anchors with a measuring tape . The next step is the analysis of data obtained from monitoring and measuring, as well as

Page 25: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 25 MINING ENGIEERING

information about the tests pulling briefly associated anchors, to determine the effectiveness of the solution and if necessary modified to improve. These changes may be related to the profiles of underground facilities (for example, the transition from the ring to the trapezoidal profile), or increasing the axial distance between the steel frame , and reduce the amount of steel lining. Ongoing monitoring - monitoring of the behavior of the massif is made using sonic extensometers and strain gauge two-height. Equipment for use anchors with two-component mixture in coal mines with underground mining include special pneumatic or hydraulic rotary drills and accessories make the anchor rods, cartridges with two-component mixture, steel or plastic mesh, etc.. [ 4]. After placing the cartridge with two-component mixture into the well , carried out by injection anchors its rotation for mixing components. As the anchor installed to the bottom of wells , drill stops to fast hardened mixture. Two-component mixtures are based on this system timbering. The basic component is a resin -based material , and the second catalyst , which is a smaller cartridge, inside the first. These compounds are classified according to the time that harden at : - faster , - slower and - mixtures which harden in the interval between the first two. For two-component mixtures are related to two properties that are important for their proper installation and supporting of the system's reliability. These are: the time (period) to the time of initial curing and hardening. Time to cure is the time during which the mixture can be confused without a significant change in viscosity , or prior to a change in state of the mixture from a liquid to solid. The beginning of this interval is the start of mixing of the components , and not a moment when the entire length of the anchor installed .

a) b ) Figure 5. Effect of temperature of the working environment on the two-component mixture (

EXCH ) a) faster mixture , b) slower mixture

Page 26: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 26 MINING ENGIEERING

Methods for measuring and monitoring the stress state and deformation The main objective of the applied solution timbering is to confirm the parameters of the solution, including detailed monitoring of the behavior of the massif around the room and measure the response of anchor to load the massif. Current measuring and monitoring should also ensure a safe working environment by pointing to possible changes in behavior that require massive additional roof supports or supporting of a different way . Control of stress state and strain contours underground chamber system for supporting of AT anchors is critical, as exceeding certain values affect the stability of anchors and requests promptly take appropriate measures (installation of additional AT anchors, placing steel support, etc.). A certain number of anchors with strain gauges installed under the scheme of installation of anchors and sonic extensometers are weighing station, through which confirms the effectiveness of the scheme of installing anchors. Reading is done the appropriate instrument that is designed for use in methane mode , and also is equipped with a memory unit that stores sensed data. Data analysis is done on the computer using specialized software, with the possibility of graphical interpretation aksijanlnog loads and bending moments anchors. They can be described as a wire extensometers . Each pointer - an indicator was hanged on an anchor which is placed at a certain depth in the borehole .

Figure 6. Schematic diagram of strain gauge

Page 27: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 27 MINING ENGIEERING

Asymmetric deformation point is simple konsktrukcije and is an integral part of the system of support has , easily prepared and relatively inexpensive, and because of this relatively often installed along the underground room . In this way it provides the opportunity for continuous visual signal level of the massive deformation of the making of the room. The undermine "Soko", these devices were installed at a distance of 10 m during the trial supporting of the room. COMBINED CONCEPTION IN SUPPORT OF COMBINED SUPPORT IN UNDERGROUND MINE "SOKO" Activities related to the first phase of technology transfer support has hanging support AT undermine "Soko" were made in order to be able to implement the second phase of transfer: systematic installation of AT hanging support . The test results of the first phase were used for the selection and installation verification scheme preleminarne AT hanging support, which is the subject of this project. When a specific solution installation AT hanging support to provide satisfactory results in measuring and monitoring obtained by sonic eksenzometara and anchor with tape measure, can be accessed by any change of the way of support has steel support [5]. The result of the second phase of the trial of support has to be a way for support the underground rooms combined support (steel and AT hanging support) . Start installing AT hanging support the EH- room (60) z in undermine "Soko" was carried out according to the initial schedule of installation, while maintains the existing method of support has a steel frame support permissive circular diameter of 3.5 meters, which are installed on the axial distance of 0, 7 to 1.0 m. In order to obtain reliable data measurements of rock mass deformation takes from 30 to 60 m face advancement EH- site facilities (60) z and installation of lining combined with a minimum interval of two weeks. After this period, on the basis of the results to an optimal scheme of installation ankara and possible correction applied steel lining. Any change in any method of installation AT hanging support, either in the form and amount of built-in steel support, confirming the results of measuring and monitoring the behavior and mass support. The aim of introducing AT hanging support (in combination with steel support) in the undermine "Soko" is to improve the control of massive prolongation of the room and reduce the need for reconstruction of the room - EN (60) z or reconstruction of floor hallway [6]. In Figure 7, shows the initial installation scheme AT anchor in an underground room EN- (-60) z , of the room in a circular cross -section, which is podgrađuje circular steel frame support permissive 3.5m.

Page 28: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 28 MINING ENGIEERING

Figure 7. Home installation scheme AT hanging anchors the room EH-( -60) z To begin installation of the recommended density of elements hanging support - number of anchors per square meter of surface contours of underground rooms should be at anchor 1.2 anc/m2. Home installation scheme AT anchors in room EN- ( -60 ) z is provided with a relatively high density of - 1.2 ankera/m2 . With the beginning of the systematic installation of anchors in the second phase are carried out additional tests , which will be the measurement data indicate the need for further improvement schemes installation. As the figure shows five anchor length 1.8 m, overlying the anchors, only the central axis of the room should be built vertikanlno while the other four anchors to be installed at an angle of 10th The distance between the mounting points overlying anchors should be at 0.76m. Depending on the results of monitoring and measuring behavior results roofing and subsequent testing possible improvements and optimization methods timbering will result in reducing the number of anchors in the scheme of installation and increasing the axial distance between the steel support frame. After each modification for support the way, in order of their confirmation , you will need to advance the forehead site from 30 to 60 m, with a minimum interval of stabilization massive two weeks in order to obtain reliable measurement results. Commitment to the underground rooms of the second phase of the trial was used for support the steel mesh. Steel mesh is made of wire diameter 3-6 mm at a distance of 50 mm. Just rows and columns of the network through which the post anchors should have a wire at a distance of 75 mm.

Page 29: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 29 MINING ENGIEERING

Figure 8.Steelnetworks for advocacy room

Figure 9. The order of installation of steel mesh panels

of the room in EH (60 )z with a circular profile

4. CONCLUSION Previous studies of the state of stress in the mine Soko, indicating that the mining areas subjected to intense pressure and deformation, and therefore reduces their service life. In addition to stability produced a manufacturing system is a very important and timely development of facilities in order to maintain the continuity of the production process, the production process of new excavation unit. The current way of creating and supporting of the rooms showed more limited especially in terms of increased underground pressures affecting the mining deformation space smaller or greater intensity. In order to overcome these problems and a proper choice of technology development and supporting of mining facilities, the mine ''Soko'' test was performed to introduce a new technology, whose main goal is the improvement of the general condition of underground chambers and improve the quality, timbering and thus increase their lifetime, and creating the conditions for a more secure and safer operation. Tehnoogija installation AT hanging support and test sidewise support underground mining premises EH- ( -60 ) z in undermine "Soko" combined frame support was performed in accordance with the present design solutions . Based on the solutions presented in this paper can be concluded as follows: • New technology AT hanging support can be successfully applied for the sidewise support mining areas combined support (steel and AT hanging support), and that can create conditions for the development of mechanized underground spaces, which significantly increases the effects of these technologies timbering. • The introduction of AT hanging support the mine Hawk provides a rationalization of support the underground rooms as well as the extension of service life and reliability and functionality. • AT hanging support in combination with steel support Meaningful for Soko mine because it provides greater stability of underground rooms which positively affect the safety and humanization of work in harsh underground mining conditions.

Page 30: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 30 MINING ENGIEERING

REFERENCES [1] Jovanovic P.: Design and calculation of the horizontal underground openings support,

Mining and Geology faculty, Belgrade 1994. [2] Miljanović J., The maximum step advencement defiwing with mechanized hydraulic

(MHRS) within conditions of mine „Strmosten„ journal Arehives for Tehnical Sciences 7/2012, Tehnical Institute of Bijeljina.

[3] Ivković M., Eexamination and to form harmful injfluence on natural environment from effect underground exploation coal., journal Arehives for Tehnical Sciences 1/2009, Tehnical Institute of Bijeljina.

[4] URP of support testing in underground opening EH-(-60)z in RMU with the combined support, Faculty for Mining and Geology, Belgrade 2010.

[5] Ljubojev M., Popovic R., Rakic D.: The basis of mechanical models settings of support interaction with rock mass, The Mining works journal no. 1/ 2006, Bor, 2006.

[6] Trivan J.,analysis of infuencing factors in the selection of the underground tehnological process in the coal layers, journal Arehives for Tehnical Sciences 6/2012, Tehnical Institute of Bijeljina.

Page 31: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 31 MINING ENGIEERING

UDK:622.272(0,45)=861 doi:10.5937/rudrad 1301085M Jovo Miljanović,* Dražena Tošić*, Tomislav Miljanović**,Mirko Ivković*** VERIFICATION OF RELIABILITY AND EFFICIENCY OF THE DRAINAGE SYSTEM ON THE OPEN PIT "BUVAČ" Abstract Monitoring and evaluation of the drainage system of effectiveness and reliability on open pit "Buvač" include surveillance, monitoring and recording of the all constructed drainage facilities, and an analysis of the overall functionality of the drainage system on open pit "Buvač". The purpose of monitoring the drainage system has been striving at all times have access to state of the water flows and hydrodynamic processes in order to create a controlled system of the work of all structures for mining of groundwater and surface water. Based on the results of monitoring and recording of rainfall and the groundwater level measurements, it is possible to make a final assessment of the efficiency and reliability of the entire drainage system Keywords: drainage mining, monitoring, the drainage facilities. INTRODUCTION Drainage in the mining includes a number of complex measures that imply a constant control of the underground and surface waters in the all phases of mine development and mineral deposits exploitation. The surface and groundwater waters endanger the mining facilities and disrupt the work in them. The drainage facilities in mining are the hydroelectric facilities used for drainage and protection of water inflow. With increased depth of exploitation, the conditions of surface drainage of open pits are more complex, which results in an increased number of drainage objects. This applies especially to iron open-cast mines, with a large coefficient of water abundance, such as mine "Buvač" mine. In order to successfully solve the problem of drainage must be especially detailed knowledge of the hydrological and hydro-geological characteristics of the deposit and its surrounding rocks, as well as physical- mechanical properties of rocks and tectonic disturbances, which are often medium of water. After identification of the possible water threats to mine, the protective measures introduce which for specific conditions represent a rational solution in terms of safety and cost. The reliability and efficiency tests of the drainage system shall be carried out through the control of drainage facilities made for the surface and groundwater protection through the monitoring of the water flows and the hydrodynamic processes. *Faculty of Mining Prijedor, e-mail: [email protected] * Faculty of Mining Prijedor, e-mail: [email protected] ** PD Kolubara *** JP PEU –Resavica, e-mail:[email protected]

Page 32: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 32 MINING ENGIEERING

The main goal of monitoring is to determine precisely the reliability of the existing drainage facilities and to modify or customize the new regime of drainage conditions in the open pit. THE CHARACTERISTICS OF ORE DEPOSIT OMARSKA According data from meteorological station in Prijedor, deposit area is a region of moderate continental climate, which is characterized by a sudden rises in temperature in the spring, by minimum of winter precipitation, by moderate cold winters, and hot summers and frequent incursions of cold air. In the wider area of the open pit "Buvač", terrain slope is generally from east to west and from north to south, with the existence of watersheds to the north of the mining areas, which are directed towards to the mine and the water that drains from a large area to the contour of exploitation area. The terrain morphology is suitable for discharge of main pipeline and providing of gravity drainage of pumped water because it does not require additional work on the dam construction and the uniform and peak flows of pumped from water drainage wells, which directly affects the cost of drainage. Hydrogeological complex - a complex of permeable and impermeable layers made of: clay, sands, which are occasionally interspersed with the fine-grained sands, either laterally or vertically, and belong to the Pliocene sediments. The geological conditions and relationships between the properties of the rock of collectors and insulators caused the hydrogeological characteristics of the exploration area. Within of terrain are the properties of the rock mass with the characteristics of the hydrogeological collectors and isolators. RELIABILITY TESTING OF THE DRAINAGE SYSTEM Modern approach to the process of managing drainage system and monitoring the effects of works, provides that in all stages of the development of the open pit applies the controlled operation of all facilities and the overall system to protect the mine from surface water and groundwater, and continuous monitoring of the water flows and the hydrodynamic processes. The goal of these activities is to determine the safety of drainage facilities and their effects on lowering of groundwater levels, as well as through the hydrodynamic tests provide the reliable hydrogeological parameters to updated hydrodynamic model to provide the efficient and effective support to the management of drainage system. As the process of dewatering depends upon a number of natural factors (precipitation, flows, temperature regime of groundwater and surface water in the pit background, etc.), so that is necessary a good knowledge of these parameters regime. Monitoring will include the following: - Measurement of the water levels in the alluvial layer, - Measurement of the water level in the ore body, - Measurement of the water levels of river Gomjenica, - Measure of the amount of precipitation, - Monitoring of pump hours and the amount of pumped water.

Page 33: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 33 MINING ENGIEERING

THE ACTIVE HYDROTECNICAL FACILITIES FOR OPEN PIT "BUVAČ" PROTECTION Open pit "Buvač" in order to protect the flow of water in the exploitation area, the relocation of the river Gomjenica, and circumferential channel are made that accepts all water and gravity leakage through the two culverts on the east side of the "eastern water collector". In order to protect the open pit of shallow alluvial water was done as follows: - from the southeast side are made the waterproof screens , Dk -1 and Dki -1, with a total length of 2000 m, -from the north is made drainage trench Du 2 a length of 900 m. For the protection of deep underground water from the ore bodies, 6 wells were drilled in the ore body and made a reconstruction of these two old wells. The main water collector consists the two tanks used for mud settling and discharge of clean water in the river Gomjenica. In accordance with the progress of mining operations, the temporary sumps were made. On open pit "Buvač " in the 2012 were active: - 8 wells Eb 1-8, located on the west side of the mine, - Drainage trench, Du 2, from east - west, - 6 wells in the ore body, Bu 138, 282, 291, 11, 30 and 275, - Water sump in the southwest part of the mine, at the first position of crusher at elevation 132 m, - Water sump in the southern part of the E 130.

Figure 1 Layout of the designed facilities of mine protection by groundwater and surface water.

MEASUREMENT AND OBSERVATION OF PROTECTION SYSTEM BY INFLUENCE OF UNDERGROUND AND SURFACE WATERS In determining the system effectiveness it is necessary to carry out the systematic measurements of flow stations and groundwater levels in wells, cuttings, drainage, drainage channels and monitoring wells, from the moment of activation of drainage facilities until their liquidation or until such time as no longer needed for their work. By regular measurements will define the speed of reduction of groundwater level and to determine the reference level at which reduced the flow of the well. Provision of such information will be achieved by timely replacement of pumps by which drainage system bring into a state that uses only the necessary and sufficient amounts of electricity, while maintaining the efficiency and reliability.

Page 34: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 34 MINING ENGIEERING

By comparing the pumped surface waters from drainage system and well system over a long period of time, can make some conclusions about reliability and efficiency of drainage wells, and knowing the total amounts of pumped water and the amount of excavated overburden define the abundance coefficient of deposit. The measurement points of the observation and monitoring of the groundwater regime are practically all locations of wells with piezometers in the fill, piezometric wells in the immediate and wider area of the open pit, the working levels of the open pit and waste disposal, drainage cuts, the drainage channels, river Gomjenica. Monitoring of the groundwater regime and the effects of this system is a drainage expert task for surveillance, monitoring, measuring and processing of data required is a well organized and equipped with the service. THE MONITORING RESULTS ON HYDROTECHNIC FACILITIES AND EQUIPMENT FOR OPEN PIT "BUVAC" IN THE PERIOD 2010-2012 Responsible personnel for the organization of monitoring of the developed plan at regular intervals carry out their activities in domains such as mapping of bench and waste disposal, measuring the groundwater levels and flows in well, measure of rainfall, record the water levels of rivers, and upon the completion of certain work completed report. CONTROL OF THE RAINFALL AMOUNTS AND THE GROUND WATER LEVELS After the construction of drainage facilities in the open pit "Buvač" as they are put into exploitation the regularly observing, monitoring and recording of rainfall were made, the NPV of over 30 locations, the hours of work stations and their capacities over the amount of water pumped. Groundwater level is measured at more than 30 facilities (the wells and piezometers) every Monday, and the amounts of precipitation measured every day, if any, so that the analysis can be performed and make some conclusions about the impact of the change in precipitation of the groundwater levels. Daily precipitation amounts are added and observed in dependence of the changes in the level of water in the alluvial part of each monitoring well especially the weekly rainfall. The measured values of rainfall and groundwater levels in 2010

In Table 1 and in Figure 2 the graphical representation of the total amount of rainfall for the total amount of rainfall per month in 2010. Table 1 Amounts of precipitation in 2010

MONTH 

Month precipitation amount (l /m)

January  71,5 February  114,5 March  108,9 April   73,1 May  153,3 

Page 35: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 35 MINING ENGIEERING

Figure 2 Graphical layout of the total quantity of precipitation for 2010

The analysis covers the period from march to July 2010, because, as seen in this period recorded the highest amounts of rainfall, a total of 560.1 l / m. Be observed dependence on changes in the level of water in the alluvium of the dependence of daily precipitation. The water level is controlled once at week, and precipitation monitored every day, if any. Based on these results, an analysis at the measured water levels in drainage facilities and using data on daily rainfall, if any. Piezometer Po 1 located between the screen wells beyond the contours of the pit and away from river Gomjenica about 300 m. In the period without rainfalls, there is no change in water levels. With the first quantities of precipitation, the water level rises slightly, then again stagnated until new snowfall, when rise. The values of precipitation and groundwater levels in 2011

Table 2 shows the total precipitation in the 2011 and in Figure 3 graphical representation of the total rainfall in 2011. Table 2 Rainfall amounts in 2011

June   224,8 Jul  57 August  61,2 September  143,7 October  73,7 November  106 December  66,6 TOTAL  1254,3 

Month Month precipitation amount (l / m)

January 28 February 24 March 34,9 April 41,6 May 42,2 June 57,5 July 63,5 August 15,8 September 32

Page 36: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 36 MINING ENGIEERING

Figure 3 Graphical display of the total amount of precipitation in 2011 As in the period from October to December 2011 recorded the highest rainfall, total 162,3 l/m, this period will be analyzed in detail.

Figure 4 Piezometer Po1

The diagram shows that with increased rainfall, the water level slightly rises. The values of precipitation and groundwater levels for 2012

Table 3 Amounts of rainfall in 2012

October 70,4 November 5,8 December 86,1 TOTAL 501,8

Month Month precipitation amount (l / m)

January 47 February 73,3 March 10,7 April 78,9 May 121,4

Page 37: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 37 MINING ENGIEERING

Figure 5 Graphical display of the total quantity precipitation in the 2012 In the period October- December recorded the highest amount of rainfall of 293.3 l / m.

Figure 6 Piezometer Po1 Based on the conducted measurements and the NPV and their analysis can be drawn the following conclusions:

- The water level in the observation objects near the river Gomjenica largely influenced by the amount of rainfall and water level of river Gomjenica, and with distance from the Gomjenica that influence became a weak.

- The functionality of the drainage of the cut (cassette), - Functionality of the part of the screen with a geomembrane.

QUANTITY OF PUMPED WATER FROM THE PERIOD 2010 - 2012 By analyzing of daily hours of the pump operation on open pit "Buvač", taking into account the effective time of pump, mechanical and technical delays, as well as the capacity of available pumps, produced the data on the quantities of water pumped for the period of 2010-2012.

June 46,6 July 52 August 8 September 86,4 October 84,8 November 87,5 December 121 TOTAL 817,6

Page 38: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 38 MINING ENGIEERING

Tables 4.19 and 4.20 or 4.21 in the pictures 4.31, 4.32 and 4.33 shows the amount of water pumped per month in 2010, 2011, and 2012.

Figure 7 Graphical display of the total quantity of precipitation on the 2012 by months

Achieved effects of well

The drainage wells

By work of well the groundwater level in the ore body was in September 2008. to May 2012 was reduced from 147.3 meters above sea level to 92 meters above sea level or 55.3 m. The condition of requirement that the water level in the ore body is at least 10 m below the working floor is satisfied. After the inclusion of all new wells and Bu 275 Bu and Bu 30, less than three months from 2.3.2012. - 21.5.2012 groundwater level was lowered by an average of 14 meters.

Page 39: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 39 MINING ENGIEERING

Figure 8 Summary of monthly groundwater level

of open pit "Buvač" for the period September 2008 - May 2012

Groundwater level in the well Bu 271 is significantly higher than the other measurement sites because it is the edge of the ore body is irregular bottom, is situated at a height of 100, but it's a pretty small area and does not have a significant impact on the drainage pit entirely. - The screen wells The main purpose of the display is well to prevent the flow of water in the working area of the mine from alluvial layer to the west and north. Predicted depth of the well is 13.3 to 48.5 m and 5 m below the hydrogeological collector. The wells were drilled to a depth of 760 mm to 5 m after which he built a steel jacket column diameter of 600 mm and continues drilling diameter of 500 mm to a final depth of the well, after which the installation of well executed design, solid construction and filter wire diameter of 273 mm, and piezometric construction 5/4 ". After installing the mounting structure made of quartz filter pour about 4-8 mm and remove of the jacket of the column, followed by cleaning, rinsing, development and testing of the crafted well.

Figure 9 The hours of screening wells during of 2010 to 2012

Page 40: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 40 MINING ENGIEERING

Figure 9 The hours of screening well during of 2010 to 2012

CONCLUSION The monitoring establishment of drainage system is a professional task for surveillance, monitoring, measuring and processing of data required is a well organized and equipped with the service. Successful technical implementation of the monitoring program depends mainly on the following factors:

- Responsibilities of the service responsible for conducting monitoring, - The quality of the presented technical preparation, - The systematic implementation of monitoring, - Equipment, technical means, and - Interpretation of the measured results, and the responsiveness to specific changes.

In this article are present the overall analysis of established monitoring that included control of structures for the open pit of surface and ground water, control of hydrodynamic processes and thus the necessity for the reliability and efficiency of the entire drainage system on open pit "Buvač". Upon completion of the construction of drainage on open pit "Buvač" and putting them into operation is performed regularly observing, monitoring and recording of rainfall, groundwater levels, the hours of work stations and through their capacity and the amount of water pumped. Groundwater level is measured at over 30 sites (piezometers and wells), and the amount of precipitation measured every day, if any, so that the analysis can be performed and make some conclusions about the impact of rainfall on the change of the ground water. After completion of the overall analysis established monitoring that included control of structures for open pit from surface and underground water, we can state the following:

The water level in the observation objects near the river Gomjenica largely influenced by the amounts of rainfall and water level in river Gomjenica, and by the distance from the Gomjenica this influence became a weak, indicating the clayed alluvium and small coefficient of filtration,

By work of well the groundwater level in the ore body for the period decreased by 55.3 m, by which satisfies the condition that the water level in the ore be at least 10 m below the working bench.

Functionality of the wells, drainage cuts, screens and other hydraulic structures and equipment is satisfactory.

Overall rating based on the perceived overall monitoring results is that the drainage system and the condition of all hydraulic structures satisfying which means that the established system are

Page 41: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 41 MINING ENGIEERING

reliable and functional to provide safe conditions for carrying out exploitation operations in the open pit. REFERENCES

[1] Technical design of the drainage of first water bearing layer and surface water -Book 3 [2] M. Ivkovic, Drainage in mining, Belgrade, 2005. [3] R. Simic, V. Kecojevic, Drainage facilities of water in the open pits, Belgrade, 1997 [4 ] R. Simic , Mrsović D., Pavlovic V., Drainage of surface mines, Belgrade, 1984

Page 42: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 42 MINING ENGIEERING

UDK:65.015:519,21:330,322(0,45)=861 doi:105037/rudrad 13001103S Slobodan Majstorović*, Vladimir Malbasic*, Jelena Trivan* , Ljubica Figun *, Miodrag Celebic*

SAFETY AND ENVIRONMENT PROTECTION BY USE OF ANFO EXPLOSIVES IN MINE "SASE" Abstract

In the mineral exploitation in the Bosnia and Herzegovina the AN-FO explosives primarily were used in the surface exploitation. In last time, the companies with underground exploitation analyzed the possibilities of using these types of explosives in underground exploitation and technological development and improvement of blast technical characteristics of the AN-FO explosives on global experience in creating of optimal ratio AN/fuel oil, with the aim of operating costs decreasing and to begin with bulk usage of these explosive in the underground production.

The mine of lead and zinc ore "Sase" is one example in order to begin with common and bulk usage of AN-FO explosives in lead and zinc exploitation performed analysis of possibility of these explosives in the underground exploitation of polymetallic mineral ore with solid rocks in the working environment, with detailed processing of technical, technological, economic and safety aspects of this analysis.

In this article are presented the safety aspects of this analysis, where in addition of determination of all the risks, regulations and safety measures at drilling and blasting operation, in order to protect personnel, determined the post detonation effects of the all potential hazards which may results from AN-FO explosives using.

In this paper were analyzed the working environment, AN-FO explosives which are available on the local market, their activation mode and detailed review of all possible phenomena after explosion. This analysis is based on the world experiences related to use of AN-FO explosives in the underground exploitation.

Key words: AN-FO explosives, underground exploitation, solid rock, the safety aspects. INTRODUCTION

Current development of underground exploitation of the non stratified deposits or underground exploiatation deposits in the solid rocks is based on several aspects:

- the available mineral deposits are at the more deeper levels and for most of them there no the conditions for their surface exploitation,

- technological development in the equipment production and technology of excavation provides the economical excavation with large capacity and less working staff, and finaly,

- ecological awareness of humanity and threatening of planet's collapse strongest favoring the underground exploitation of mineral deposits [1].

In the underground exploitation, apart from direct effects of drilling and blasting operation to loading and haulage of equipment and realization of projected and planned capacities on loading, shape and size of blasted materials, the organization of this tecnological phases has a very large proportion in the total costs of exploitation. In this concrete case of lead and zinc exploitation in the "Sase" mine the drilling and blasting costs exceeds 40% of the total exploitation costs.

Page 43: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 43 MINING ENGIEERING

*University of Banjaluka, Faculty of Mining Prijedor e-mail: [email protected] The mine of lead and zinc ore "Sase" in order to begin with common and bulk usage of AN-

FO explosives in lead and zinc exploitation was done the analysis of possibility of these explosives in the underground exploitation with detailed processing of technical, technological, economic and safety aspects of this analysis. A plan of activities are made with coordinated terms and with the all drilling and blasting parameters from test blasting with notice that drilling operations carried out according to the existing project solutions but with use of the new types of explosives. This analysis is needed to justify the use of AN-FO explosives in the "Sase" mine according to the all technical-technological and techno-economic and safety aspects, which is the subject of this paper.

The safety aspects of AN-FO explosives use in the "Sase" mine include a determination of all the risks, regulations and safety measures in working environment during of drilling and blasting, identifying the post detonation effect or definition the all potential hazards after the usage of AN-FO explosives.

1. COMPOSITION AND THE CHARACTERISTICS OF TOXIC FUMES AFTER ANFO EXPLOSIVES DETONATION

The explosives with a different components has a certain the blast-technical characteristics

which have a specific role as [2]: - Nitrate of potassium and sodium included in the explosive composition as potential

medium of oxygen. - The sensitizers, the materials that are added to the explosives because increasing of their

sensitivity and capacity to explode (trotil, nitroglicol, jellied nitroglycerin, ect.). - The combustible materials in solid or liquid state that aid combustion and increase the

quantity of energy ( the metal powders, retort coal, etc.). - The deterrents (flegmatizators), the materials that reduce the explosive sensitivity, on

such a way that with a layer of inert material covering the crystals of explosive materials, that prevents contact of the crystals and mutual friction.

- The materials that are enabling suspension stability and viscosity. In explosives added the materials that are easily hydrolyzed and commonly used sodium salt, carboxymethylcellulose, soot. etc.

A considerable amount of toxic fumes formed after explosion. If the explosives had a positive or zero balance of oxygen, and if the disintegration performed during a normal explosion, generated gases are: nitrogen, carbon dioxide, water vapor and possibly some amount of oxigen. Composition of gas products after blasting no only depends on the chemical composition of explosives but from cover of explosive catridge, the blasting conditions, physical condition of explozives, rock characteristics, stemming etc. Therefore, in the products of explosive decomposition may occur a toxic gases, such as: carbon monoxide (CO), carbon dioxide (C02), oxides of nitrogen-nitric oxide (NO) and nitrogen dioxide (N02), the sulfur gases-sulfur hydrogen (H2S) and sulfur dioxide (S02) and rarely the mercury and lead vapors. The sulfur gases are not the products of explosion because modern explosives and the means for detonating (except blasting fuse) not contain the sulphur. These gases are extracted from sulfide minerals by explosion effect.

Page 44: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 44 MINING ENGIEERING

B.D. Rossi (1966) was systemized the causes of toxic gases based on the laboratory tests, according their primary influences, as follows [2]:

- characteristics of the surronding rocks of explosive charge, - chemical composition of explosives, - cover of explosive cartridge, - the blasting conditions.

Z.G. Pozdnjakov and B.D. Rossi (1971) classified the rocks according to the amount of toxic gases during of blasting and their research they gave the following conclusions [2]:

- At the greater strength of the rocks creates a larger quantity of CO. - Pneumatic charging of blast hole significantly reduced the harmful emissions. - The position of initial cartridge in blast filling and direction of initiating have influence to

composition and quantity of toxic gases. - The minimum amount of toxic gases is eliminated if the initial cartridge lay on the

blasthole bottom. - Gap between the blast cartridge and hole diameter have influence to toxic gases. The

minimum quantity of toxic gases created at the minimum gap. - Stemming material type significantly affects the individual and total quantity of toxic

gases. The largest quantities of toxic gases are created by stemming of clay material. Using NaCl, water, solution Km and 04, NaHCO3 gel, reducing an individual quantity of toxic gases [2].

The following table presents the values of the maximum allowable quantities of certain gases, mg/m3. Table 1- The maximum allowable quantities of the certain gases, mg/m3

       Carbon monoxide (CO)   5,8 

       Nitric oxide  (NO)   3,0 

       Nitrogen dioxide  (NO2)   9,0 

       Sulfur hydrogen (H2 S)   10,0 

       Sulfur dioxide (SO2)   10,0 

       The lead fumes (Pb)   0,15 

       The mercury vapors (Hg)   0,10 

- Carbon monoxide (CO), allowed amount of carbon monoxide in a mine atmosphere is

0.02 mg/l (0.0016% of the volume). - The oxides of nitrogen (NO, NO2) allowed concentration is 0.005 mg/l or 0.001 % of the

volume. - Sulfur hydrogen (H2S), at concentration of 0.1 H2S, in the air after a short time leading to

the death. When mixed with air at temperature of 600° C is combustible, and at content of 4,5% with air formed an explosive mixture. This gas occurs in the process of decaying of organic material which contains the sulfur.

- Sulfur dioxide (SO2), if concentration in the air is about 0.03% it is a dangerous for life. The allowed concentration in the atmosphere is 0.0007% of the volume.

- Hydrogen (H2), Hydrogen mixed with air or with oxygen produces a strong explosion mixture. The explosion effects are the strongest at 28.6% H2 in the air.

Page 45: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 45 MINING ENGIEERING

- Mercury vapors, Mercury and the least amounts of mercury vapors in the air are toxic and harmful for health. The poisoning signs are nervousness and trembling. These vapors harmful acts on the stomach and mucous glands [2].

1.1. The chemical and physical factors which affecting the formation of nitrogen oxides nox

with usage of the anfo explosives The toxic gases like CO and NO are products of explosion detonation. The implications and possibilities of these products reducing was studied for decades by many institutions and researchers. In this study presented the only some of them which generally provide the basic information about the chemical and physical factors that affect the toxic gases from the explosion of ANFO explosives. The National institute for professional safety and health ( The National Institute for Occupational Safety and Health - NIOSH) was in the level of laboratory tests identified the factors which can to have influence of nitrogen oxides (NOx) in the non ideal conditions for blasting and the non ideal explosives. The explosive mixture are mixed with crushed material after blasting process, loss of fuel oil and ammonium nitrate fuel oil (ANFO), ammonium nitrate dilution with water, the grade of explosive density, ANFO density and critical diameter are identified as influential factors for better explosion. The experiments were done to research of effectiveness of various additives in reducing of NOx from ANFO. Aluminum powder, coal dust, urea and excess of fuel oil in ANFO were tested and determined the dependence in the process of nitrogen oxide (NO) and nitrogen dioxide (NO2). The gas detonation products depend on the composition of explosives and the surrounding conditions during usage but carbon dioxide, water vapor, nitrogen is still producing. In addition to, CO, NO, NO2, methane (CH4) and hydrogen (H2) can be in the smaller or larger quantities. The all explosives produce CO and NO, with appearance of CO in some cases even the greater amount of them and NO4. The commercial explosives are usually generated between 6 to 31 l/kg of explosives CO in the air. Balans of oxigen in the explosives (including packing), generally controls appearance od CO and NO. Excess of fuel or negative oxigen balance increases CO and reduces NO. On the other hand, fuel deficiency or positive oxigen balance basically reduce CO and increase NO. Elshout notes the three reactions from oxidation process of NO in NO2 [3]: 2NO + O2 2NO2 (1) NO +O3 NO2 + O2 (2) NO + RO2 NO2 + RO (3)

Elshout suggested that the above mentioned reactions possible: - in an atmosphere that contains the high concetrations of reactive hydrocarbons -3, - in the presence of high UV radiation -2, and - the reactions at low NO concentration in the presence of ozone -for test in the air -1.

ANFO (94/6) produces an average 13.8 ( 4.5) l/kg CO and 25.5 ( 5.1) l/kg NO. As

expected with increasing of diesel fuel to 8% , CO increases 2.5 times at 35.1 ( 6.4) l/kg, with a reduction of 14% NO to 22.0 ( 5.1) l/kg. Adding aluminum powder in 94/6 ANFO mixture gently increases CO to 23.3 ( 6.9) l/kg whereas gently decreases NO to 16.2 ( 5.5) l/kg [3].

In non ideal detonation identified the several factors: weak overburden, which significantly reduces the required charge density; significant infiltration of water in the long intervals between the explosive charge, which change the composition of explosives; the long holes, which produce

Page 46: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 46 MINING ENGIEERING

the hydrostatic pressure at the hole bottom and reduce the possibities of successful propagation of detonation; overloading explosive due to humidity of waste and the veins of clay.

The researches have shown that the grade of explosive charge consistency and blasted materials both have significant influence on gases appearance. As a result of the study it was concluded that the measurements of gases during blasting at a one mine may not be relevant for different operating conditions and blasting at another mine. The tests with a small quantities with a better control of the variables requred to define the factors and induce a minimization of problem [4].

Grain size in ANFO - in the test chambers was done the test for comparing the emissions from detonation of ANFO / granular or prills.

With the same grade of consistency, NO2 from prilled AN was 4 times lower than the amount from standard granulated ANFO. CO and H2 from detonation of prilled ANFO is 2 times lower and NO was 30% lower than granulated ANFO. With CO2 have no a significant difference. With prilled AN, in the case of granules the ammonium nitrate is probably intimately mixed with the oil. A more intimate contact between the ammonium nitrate and oil causes the more complete reactions of decomposition. With the granules, reaction of dissolution in the granules of nitrate produces a more NO after detonation .

Picture 1. The effects of relative consistency Picture 2. The effect of relative consisteny at CO, at NO and NO2 products in ANFO detonation, CO2 and H2 products in ANFO detonation the emulsions and mixtures 50/50 (5), the emulsions and mixtures 50/50 (5) NO and NO2oxidation in the air depends on initial NO concetration at the time. Concetration and NO and NO2 were added and the sum is NOx concentration. NOx shows a significant increase with decreasing of consistency (bulk density). In this case the grain size of explosives is probably the most important. The explosives as ANFO have the disintegration properties with products of NOx. The critical diameter of ANFO explosives - in the many test were determined dependence of detonation velocity and diameter of these explosive. Explosive with diameter 100 mm can have 3048 m/s detonation velocity, diameter 150 mm about 3658 m/s and diameter 400mm about 4877 m/s. It is also found that the diameters of less then 30 mm reduced detonation velocity by 60%.

Page 47: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 47 MINING ENGIEERING

The content of ANFO aditive / supplements - As result of thermal reaction is set a post-explosive NO2 (to create the conditions for the ideal detonation products), which results in an increase of NOx. NO component oxidized to a visual orange cloud which is characteric for NO2 when emited in an atmosphere. With adding the various additives from ANFO were conducted and compared the quantities of NO and NO2. The excess of diesel fuel (8%) reduce NO2 with lower level of NO reduction. Adding 3% of Pittsburgh pulverized coal (PPC), dust on the 6% fuel oil (FO) is effective in such a relation. 3% FO (fuel oil) + 3% PPC (coal) produce less NO2 than mixture with 6% FO - fuel oil, with increase of NO. In the some explosives improvement obtained with some additives with lower density will be lost. It is compromise in the cases of borehole long intervals and their charging and initiation in the cases of ANFO dissolution in water or loss/ decline of fuel oil participation through operation of cord connecting along the borehole walls. In many cases, the borehole composition should be protected from the effect of water and absorption of oil with surronding material in the borehole. It is basic function of the WR additives [5]. The material for stemming - Within the analysis of additives, stemming with water (the water plugs) should potentially reduce of NO2 by dissolving the soluble acidic gases in water with increased basic material as sodium carbonate (Na2CO3). The one liter mixed with 10 grams of Na2CO3 reduces measurable NO2 at 48% with a small reduction of NO. The practical stemming with water can be difficult to use in situ. One of the requirements is to ensure that water not leaking/draw in the lower boreholes over a longer period between charging and their activation. Adding of the gelatin agents in water can minimize its influence. Humidity in the blasting zones influence to ignition, NO2 absorption and reduction of dispersed dust during blasting process [5]. The contents of fuel oil/fuel and AN dissolution - A common explanation for the post-detonation gases of NO2 from ANFO is a mixture with a lower oil content (positive balans of oxygen) or the boreholes were wet. If it is a reduced oil content the nitrate oxides appear because of incomplete reduction of nitrate. Balanced ANFO formulation may become to oil free if oil leaks in the borehole walls [5]. The contents of blasting agents for density - 2% of Cabosil* (gas silicon dioxide) is added to a fuel component and quickly mixed with the AN granules. Cabosil prevent the fuel leaking between the granules. Consistent fuel significantly reduces the loss of fuel leaks, but did not reduce a loss of AN when placed in the simulated boreholes with 8% of water. WR conditioner 260, ANFO gelatin like blasting agent, was added to the ANFO because the conditioners slowing down the loss of AN. Since AN take out water from the borehole walls, WR conditioner induces the gelatin of water near the borehole walls so reduces the ratio of AN dissolution. Basically, the compact explosive chargings (density-consistency) have a more regular detonation and less contents of NO and NO2. The additives as a coal dust and a higher percentage of fuel mixed with ANFO sligthly reduce the NO while urea and WR conditioner 260 slightly increase in a ratio at 6% of ANFO.

Picture 3. Detonation velocity of ANFO in dependence of charge diameter [5]

Page 48: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 48 MINING ENGIEERING

The all ANFO additives that have been tested reduces NO2. The test with reduces quantities indicate that increased content of fuel (8%) in AN reduces NO2 and the other additives including coal dust. The laboratory results indicate that dry, soft and porous rocks can take the significant amounts of oil from ANFO in the period between charging and ignition of the explosive. The degree of oil loss is higher in the boreholes with smaler diameters. Also in the waste rocks with moisture of 8% have influence on dissolution AN from ANFO through a time. In practice, it is important to prevent the oil loss in situ and dissolution of AN in the period between borehole charging and its activation [5]. In the one paper presented analysis of the toxic gases depending on type of explosive and the concentrations of certain gases by CFR standard are shown in Table 2. Table 2. The toxic gases and relative toxicity by CFR standard (3)

Explosive COa,e,f, l/kg NOb,e,f, l/kg NO2c,e,f, l/kg The toxic gasesd,e l/kg

ANFO 94/6; 5% Al 25,3 16,2 0,6 68,0 ANFO 94/6 13,8 25,5 0,4 72,3

ANFO 92/8 35,1 22,0 0,1 80,5 Commercial buster 250,8 1,3 0 253,3

- a,b,c measured CO, NO and NO2 in argon atmosphere, f - standard deviation. - The toxic gases, l/kg (ft3/lb), converted to standard 30 CFR (part 15 and 20). - Standard 30 CRF (Federal Relative Toxicity Standard 30 CFR Part 15) provides the

allowed gases in the underground exploitation of coal and the other mines with gases. The total gases does not exceed 155 l/kg in the standard conditions [3].

This Study used the all these tests and the experiences when planned the trial blasting and working conditions of test blasting in order to obtain more usable and representative data that would confirm or exclude the possibilities of the ANFO explosives use in the concrete conditions of mine "Sase". 2. THE RECORDINGS AND ANALYSIS OF TOXIC FUMES AFTER BLASTING After blasting process in the working environment of underground mine the toxic fumes are Carbon monoxide, Oxides of nitrogen, Sulfur gases, Mercury and lead vapors, and the increased concentrations of aggresive mineral dust and non-toxic (inert) gas Carbon dioxide. Qualitative and quantitative content of toxic fumes in the products of explosion, by blasting process in the underground working area has a great significance on security and the economics [6]. To maintain concentration of the toxic gases after blasting below to MDK it is necessary to take the time for ventilation. That time is unproductive, lost. In case of insufficient ventilation, early entry of personnel at the working site after blasting, retaining the workers in toxic environment and deficient of the measures of neutralization of toxic gases the toxic gases cause not only disease but also the death injuries. Due to chronic toxication the capacity of workers becomes weak and his working life is reduced. Because of high number of the professionally diseased workers from toxic gases, ore production and productivity decline and increase the human, material and social problems. In the industrial countries the last couple of decades was conducted the research of toxic gases mechanism during blasting process and studying of the factors which have influence on their

Page 49: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 49 MINING ENGIEERING

composition and quantity and it can be concluded that one part of influence has not been sufficiently explored. The scientists on these issues are quite contradictory, this is understandable, since the toxic fumes, their distribution and behaviour during and after blasting are very complex and related to working activities in the polluted environment of underground mine with the gases and dust. Furthermore, the studies mostly involving the individual influences and usually based on laboratory, and the obtained results are considerably different from the results obtained in the industrial- production conditions. In our country, in industry and laboratory scale this scientific issue has not been studied. Insufficient awareness of individual and ecpecially the group dependencies in the world's scientific practice and the state of mining industry in our country was initiated the necessary to study of this problem. During the analysis of possible use of ANFO explosives in the lead and zinc mine "Sase" the study was carry out and in situ observations of the toxic gases influence in the process of test blasting in this mine. 2.1. The locations and measuring conditions and testing of the toxic and non toxic gases

in the blasting technological process in "sase" mine The measurements and testing of toxic gases produced by blasting with the use of ANFO explosives were carried out 01.10. and 22.10. 2010 during the test blastings. The measurement points were given in the following test.

2.1.1. The measurements during test blasting 01.10.2010

MM number 1. BLOCK STOPE 312/2 SD ( sublevel drift) LEFT –PANEL BREAKDOWN - Used 63 kg of the ANFO exsplosives and 9 kg of powder explosive - Mining equipment - Machine for mechanical borehole charging located in situ and it was

not in process. - Personnel- On the site during measurement were 10 workers, of which 4 workers carry

out the heavy works and the other mainly medium heavy works. - At the measure point no artificial ventilation and air ventilation is naturally done. And 20

minutes after blasting the measurements were done. MM number 2. BLOCK STOPE 31/5a AE (adit entry) WORKING FOREHEAD

- Used 32 kg of ANFO explosives and 2 kg of powder explosive - At the measure point no artificial ventilation and air ventilation is naturally done. - And 20 minutes after blasting the measurements were done.

MM number 3. BLOCK STOPE 312/5a SD Left (sublevel drift) WORKING FOREHEAD - Used 28 kg of ANFO explosives and 2 kg of powder explosive - Mining equipment - Machine for mechanical borehole charging located in situ and - was in process of charging explosive in the boreholes. Underground mining equipment

for loading "TORO" is located near the measure point, but is not working in the time of measurement.

- Personnel- On the site during measurement were 6 workers, of which 4 workers carry out the heavy works and the other mainly medium heavy works.

- At the measure point no artificial ventilation and air ventilation is done naturally. - Working face is located in the drift because that the natural air ventilation is difficult. - And 20 minutes after blasting the measurements were done.

Page 50: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 50 MINING ENGIEERING

The group for measurement a 25 minutes after blasting at 20 m far from measure point measured the concentration of Carbon monoxide 350 ppm and found that due to high concentration of smoke it is not able to make the necessary measurements, although it was equipped with apparatus, because a poor visibility the measured values would not be reliably done and thus the measured values would not be the same as the measured values in the real state. In situ evulation was thet the concentration of smoke and gases last for least 180 minutes, considering the conditions and natural air ventilation because it was decided to teminate the measurements. For the above reasons after blasting at the measuring point number 3 the measurements are not made. Table 3. The conditions of measuring and results [6] MM number 5. BLOCK STOPE 312/2 PH-5 (sublevel drift) RIGHT WORKING FOREHEAD

- Used 29 kg of ANFO and 5 kg of powder explosive - The measurements were done a 20 minutes after blasting.

MM number 6. BLOCK STOPE 312/ SD (Sublevel drift) WORKING SITE LEFT AND RIGHT

- Used 25 kg of ANFO and 4,5 kg of powder explosive - The measurements were done a 20 minutes after blasting.

The measurements 01.10.2010 (the measurements before blasting, due charging and 20 minutes after blasting)

The measurements 01.10.2010 (the measurements before blasting, due charging and after blasting)

Measurements Measured

MM 1 Block cave 312/2 SD

MM 2 Block cave 312/5a adit drift

MM 3 Block cave 312/5a SD-1

MM 4 Block cave 312/2 SD-5 left

MM 5 Block cave 312/2 SD-5 desno

MM6 Block cave 312/SD- 6 l/d

The meteorological conditions on the entrance of mine

air temperature: 9,0C relative humidity: 84% airflow velocity: 0,58 m/s direction of air-pozitive northeast southwest atmospheric pressure

IV horizon- drift 413 air temperature: 2,3 C relative humidity: 84% airflow velocity: 0,58 m/s direction of air-pozitive northeast southwest atmospheric pressure radioactive radiation 0,18S

The measurements before blasting due charging : The climatic conditions without ventilation (natural ventilation) The air temoeratures

14,4C/13-15C

13,1C/13-15C

14,4C/13-15C

15,5C/13-15C

15,5C/13-15C

15,6C/13-15C

Relative air humidity

95,5%/max 75%

88-95,6%/max

99,3%/max 75%

95,0 %/max75%

95,0 %/max75%

95,0 %/max75% 0,20 m/s/ (max

2.1.2. The measurements during test blasting 22.10.2010 MM number 4. BLOCK STOPE 312/2 SD-5 (sublevel drift) LEFT

- Used 37 kg of ANFO and 0,5 of powder explosive - The measurements were done a 20 minutes after blasting

Page 51: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 51 MINING ENGIEERING

Direction of air in ratio of the pollution source

0,27 m/s (max 0,5) Negative

75% <0,20 m/s (max 0,5) Negative

<0,20 m/s (max0,5) Negative

0,20 m/s/ (max 0,5) Negative

0,20 m/s/ (max 0,5) Negative

0,5)

Air pressure

965mbara/1013,25

960mbara/1013,25

959mbara/1013,25

972mbara/1013,25

972mbara/1013,25

977mbara/1013,25

Polytest Oxigene 5% B

In trace 21,0%/min 19,6%

In trace 21,0%/min 19,6%

Significant indication (>12 mm at measure tube) presence of toxic supstance 20,8%/min 19,6%

In trace 21,0%/min 19,6%

Carbon monoxide 5/C

0,0 ppm/50 ppm

Tragovi/50 ppm

0,00/50 ppm

Traces/50 ppm

Carbon dioxide 0,1 % a

0,05% /0,5%

0,06%/0,5%

0,00%/0,5 %

Traces/0,5%

Sulphur dioxide 1/a Nitrogen dioxide 0,5/c Hydrogen sulfide 1/c

0,0 ppm/ 4 ppm 0,0 ppm/ 25ppm 0,0ppm/7 ppm

0,0 ppm/ 4 ppm 0,0 ppm/ 25ppm 0,0ppm/7 ppm

0,0 ppm/ 4 ppm 0,0 ppm/ 25ppm 0,0ppm/7 ppm

Traces/4 ppm 0,25ppm/25ppm Traces/7 ppm

Carbon disulfid

0,00 ppm/15ppm

Ammonia 5/a

Nije mjereno/50 ppm

Nije mjereno/50 ppm

Nije mjereno/50 ppm

Traces/50 ppm

The measurements after 20 minutes 10 min after 20 min after 60 min The climatic conditions without ventilation (natural ventilation) The air temperatures

14,9C/13-15C

14,9C/13-15C 14,0C/13-15C

13,4C/13-15C

15,6C/13-15C

Relative air humidity Direction of air in ratio of the pollution

90,5%/max 75% 0,23 m/s (max 0,5) Negative

90,5%/max 75% <0,20 m/s (max 0,5) Negative

93,5 %/max75% 0,23 m/s/ (max 0,5) Negative

92,5 %/max75% 0,20 m/s/ (max 0,5) Negative

94,5 %/max75% 0,20 m/s/ (max 0,5) Negative

Page 52: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 52 MINING ENGIEERING

Table3. The conditions of measuring and results [6] 2.1.3. Review and analysis of the measured concentrations of toxic gases due test blasting By analysis of toxic gases concentration after 20-25 minutes due the test blasting with the ANFO explosives we can determine that the concentrations of gases are below the limit values according to the CFR standard ( Table 2- toxic fumes and relative toxicity). The recordings were made before charging of explosive and recorded the initial reference conditions which also show a little or no concentration of the toxic gases. On the figure 4,5 and 6 are shown the plots of recorded /observed concentracion and the allowable limit values by CFR standard.

source

Air pressure Polytest Oxigene 5% B

964mbara/1013,25 In trace/- 20,5%/min 19,6%

964mbara In trace/- 20,5%/min 19,6%

972mbara/1013,25 In trace/- 20,6%/min 19,6%

971mbara/1013,25 In trace/- 20,4%/min 19,6%

977mbara/1013,25 In trace/- 20,2%/min 19,6%

Carbon monoxide 5/C

0,0 ppm/50 ppm

0,0 ppm/50 ppm 1,0 ppm/50 ppm

2,0 ppm/50 ppm

46,0 ppm/50 ppm

Carbon dioxide 0,1 % /a

0,08% /0,5%

0,17%/0,5% 0,08%/0,5% 0,1%/0,5% 0,3%/0,5%

Nitroze gase 0,5/a Trace/25ppm 0,3ppm/25ppm

2,0ppm/25ppm

Sulphur dioxide 1/a

0,025 ppm/4 ppm

0,27ppm/4 ppm 0,05ppm/4ppm

0,3ppm/4ppm

0,5ppm/4ppm

Nitrogen dioxide 0,5/c

0,25 ppm/25ppm

0,25 ppm/25 ppm 0,4ppm/25ppm

0,4ppm/25ppm

0,6ppm_/4ppm

Figure 4. Analysis of CO and NOx concentration a 20 minutes after blasting with the ANFO explosives (6)

Page 53: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 53 MINING ENGIEERING

3. THE COMMENTS OF MEASURING AND CONCLUSIONS In the case of safety and quality of working environment due to use of the ANFO explosives, it is possible to conclude the certain conclusions based on the results of measurement and research of influnce of use of the ANFO explosives in the underground mine "Sase":

1. Quantity of the used explosives have no decisive influence on appearance and duration of the toxic and inert fumes in the working environment.

2. Maximum concentration of the toxic and inert fumes were determined at the location of measuring without natural ventilation, because of unfavorable disposition of the horizontal and vertical drifts and unfavorable atmospheric pressure.

3. Diesel powered machinery used in the underground mines also have a negative influence on the toxic and inert gases and reduction of oxygen, especially in the stope- in the drifts

Figure 5. Analysis of CS2 and NO2 concentration a 20 minutes after blasting with the ANFO explosives (6)

Figure 6. Analysis of H2S and SO2 concentration a 20 minutes after blasting with the ANFO explosives (6)

Page 54: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 54 MINING ENGIEERING

with unfavorable natural ventilation so that the toxic and inert fumes due the blasting even worse influence on the air quality, and in this case of usage diesel equipment and blasting in the underground mine is necessary to apply the artificial ventilation with calculation of speed and direction of air movement, or making the project of stope ventilation.

4. The influence of the toxic and inert fumes on the personnel health in the underground mine is significantly reduced with a qualitative project of ventilation and excludes the risks of acute poisoning of workers (cronic poisoning of workers can not entirely excluded) and significantly reduced the lost time after blasting and entering of workers in the safe working environment.

REFERENCE: [1] S.Torbica, N.Petrovic: The methods and technologies of exploitation of the non

stratified deposits, RGF Belgrade, 1997. [2] N. Purtic: Drilling and Blasting, University text-book, RGF Belgrade, 1900 [3] M.L.Harris, M.J.Sapko, R.J.Mainiero: Toxic fume comparison of a few explosives used in

trench blasting, National Institute for Occupation Safety and Health Pittsburgh Research Laboratory, 2002

[4] Santis LD, RA Cortese: A method of measuring continuous detonation rates using off the shelf items. In: Proceedings of the 22nd Annual Conference of explosives and blasting technique. Orlando, FL: International Society of Explosives Engineers, February 4-8, 1996, 11 pg.

[5] M. Sapko, J. Rowland, R.Mainiero, I. Zlochower: Chemical and physical factors that influence Nox production - Exploratory Study 2002.

[6] R. Pavic, M. Celebic: Report of the measurements and research of gases in the process of blasting with ANFO explosives, "Gross" d.o.o Gradiska Srebrenica, december 2010.

[7] V. Cokorilo, J.Miljanovic, D. Bogdanovic, M. Denic: Underground exploitation development in the world, Journal of Mining Engineering No. 1/2002, Underground exploitation Committee,Resavica 2001.

[8] M. Stjepanovic: Safety and working protection state in the coal underground mines in Serbia, Journal of Mining Engineering No. 1/2001, Bor 2001.

Page 55: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 55 MINING ENGIEERING

SADRŽAJ CONTENS

Nenad Anžel MINING IN MEDIEVAL EAST SERBIA (14TH to 16th Century) Mirko Ivković, Svjetlana Ivković STANJE MEHANIZOVANOSTI TEHNOLOŠKIH FAZA RADA PODZEMNE EKSPLOATACIJE U RUDNICIMA JP PEU THE STATE OF MACHANIZATION OF TEHNOLOGICAL FAZES IN UNDERGROUND EXPLOITATION IN THE MINES OF JP PEU Jovo Miljanović. Neđo Đurić, Mirko Ivković, Žarko Kovačević PRIMJENA TEHNOLOGIJE KOMBINOVANOG PODGRAĐIVANJA RUDARSKIH PROSTORIJA U RMU“SOKO“ USING OF COMBINET TECHNOLOGYS IN ROOF SUPPORTING IN UNDERGROUND MINE “SOKO” Jovo Miljanović. Dražana Tošić, Tomislav Miljanović, Mirko Ivković VERIFIKACIJA POUZDANOSTI I EFIKASNOSTI SISTEMA ODVODNJAVANJA NA PK „BUHAČ“ VERIFICATION OF RELIABILITY AND EFFICIEN CY OF THE DRAINAGE SYSTEM ON THE OPEN PIT „BUHAČ“ Slobodan Majstorović, Vladimir Malbašić. Jelena Trivan, Ljubica Figun, Miodrag Čelebić ASPEKTI BEZBJEDNOSTI I ZAŠTITA ŽIVOTNE SREDINE PRILIKOM UPOTREBE ANFO EKSPLOZIVA U RUDNIKU „SASE“ SREBRENICA SAFETY AND ENVIRONMENT PROTECTION BY USE OF ANFO EXPLOSIVES IN MINE „SASE“ SREBRENICA

Page 56: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 56 MINING ENGIEERING

UDK: 65.05:519,21:330.23 (0,45)=20 doi:10.5937/rudrad 13011553S Mirko Ivković*, Svjetlana Ivković ** STANJE MEHANIZOVANOSTI TEHNOLOŠKIH FAZA RADA PODZEMNE EKSPLOATACIJE U RUDNICIMA JP PEU Uvod Rad u podzemnim rudnicima uglja sada se zasniva na teško fizičkom radu, s obzirom da su izostala ulaganja u nabavku opreme. Praktično radi se na način kako je to rađeno pre više od 50 godina, tako da su i rezultati rada niski uprkos zalaganja rudara. Poslednje mehanizovano široko čelo je prestalo sa radom 1991 godine, mašina za izradu prostorija mehanizovano nema nijedan rudnik preko 20 godina, a utovarne mašine neposeduje ni jedan rudnik. Poslednjih dvanaest godina praktično se transportna oprema nabavlja u delovima tako da su česti kvarovi i zastoji u radu a što je direktna posledica smanjen kapacitet proizvodnje. PROBLEMI RADA I ODRŽAVANJE OPREME

1. Oprema za izradu jamskih prostorija

Sada u jamama JP PEU nije u radu nijedna mašina ovog tipa. Koliko god to izgledalo neverovatno možemo konstatovati da smo po pitanju angažovanja mehanizacije na izradi jamskih prostorija daleko ispod nivoa na kome smo bili još pre trideset godina, što znači da smo rapidno nazadovali. Mora se navesti da je godinama unazad u svakom programu poslovanja bila planirana nabavka ove opreme ali do nabavke nije došlo. Potpuno je jasno da ako smo nekada pre trideset godina jamske prostorije radili na jedan savremeniji način i ako su svuda oko nas u okruženju na istim poslovima angažovane savremene mašine mi imamo problem da se pre svega vratimo na nivo na kome smo nakad bili a zatim da pratimo savremene tokove razvoja i primene ove vrste opreme tako bi postigli zadovoljavajuće rezultate u ovom pogledu.Ističe se da je u nekoliko navrata pokušavano da se osposobe dve mašine ove vrste i to ALPINA F6A i AM50. Čak je jedno kratko vreme ova prva i radila na izradi jamskih hodnika 1995 godine, međutim kako je ona osposobljena nedostajućim rezervnim delovima izrađenim u saradnji sa domaćim proizvođačima što se odrazilo na kvalitet i postojanost u radu, rad tog kombajna je bio kratkog veka i uz česte zastoje i ostale prateće probleme, mada su rezultati dok je kombajn radio bili relativno zadovoljavajući, i bolji nego klasičnim sistemom izrade rudarskih prostorija.

*Prof.dr Mirko Ivković, JP PEU –Resavica

**Svjetlana Ivković, Ugaljprojekt-Beograd

Page 57: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 57 MINING ENGIEERING

2. Oprema za mehanizovano otkopavanje uglja

Još devedesetih godina prošlog veka u nekim od rudnika koji su danas u sastavu JP PEU radila je mehanizovano čelični hidraulična podgrada raznih svetskih proizvođača.

Ova oprema je radila sa visokim radnim učincima što se odražavalo na visoku proizvodnju i vredne finansijske rezultate. Opremom su uz pomoć proizvođača kao i stručnjaka iz inostranstva rukovali i vrsti održavanja radnici rudnika koji su se prethodno obučavali za tu vrstu poslova.

Od 1992. godine nisu vršeni pokušaji uvođenja tehnologije mehanizovanog otkopavanja s obzirom na nedostatak finansijskih sredstava .

3. Transportna oprema za prevoz ljudi i uglja

Grabuljasti transporteri

Grabuljasti transporteri su transportna oprema najzastupljenija u rudnicima JP PEU i angažovana je na transportu uglja znatno blizu samih radilišta.Najviše je u radu dvolančanih grabuljastih transportera a u tri rudnika rade i jednolančani. U našoj zemlji nema više firmi (proizvođača) tipa GEOMAŠINE , koji se bave kompletnom izradom ove opreme te smo prinuđeni da sami kompletiramo ove transportere tako što od raznih proizvođača kupujemo pojedinačne delove i lance, motore, reduktore, pogonske i natezne stanice. Ova vrsta opreme radi najbliže samim otkopima te je i izložena najvećim opterećenjima a samim tim i kvarovima, zastojima i predmet je svakodnevnog održavanja i remonata kako u jami tako i spolja u mašinskim radionicama. Remont se u najvećem obimu vrši u sopstvenoj režiji. Zbog velikih problema u postojanosti korita kod ovih transportera pribeglo se izradi korita od kvalitetnijih limova što je dalo dobre rezultate, a u dva navrata su i nabavljeni kompletni transporteri od takozvanog livenog sigma profila koji je dao takođe dobre efekte naročito u uslovima rada na investicionim radilištima gde se radi u jalovini.

Transporteri sa gumenim transportnim platnom

Kod ove vrste transportera mora se istaći da jame u JP PEU , imaju obično veoma duge transportne puteve, gde su angažovani transporteri ovog tipa.

Transportera i ovi transporteri se formiraju na samim rudnicima od sastavnih delova koji se nabavljaju od raznih proizvođača. Problem je takođe što u našoj zemlji nema nijednog proizvođača koji se bavi kompletnom izradom trakastih transportera, što se nekako i prevazilazi kod kraćih reonskih traka.

Za trakaste trasportere većih dužina (preko 350 m), čak šta više nema nijednog domaćeg proizvođača u zemlji i to u delu izrade samih pogonskih stanica. Povoljnost u ovom delu je što su te glavne transportne deonice već pokrivene postojećim transporterima koji su nasleđeni iz ranijeg perioda, te se taj problem donekle prevazilazi ali se problemi sa njihovim održavanjem svakodnevno pojavljuju i čine sve veće teškoće u radu.

Page 58: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 58 MINING ENGIEERING

Prevoz ljudi gotovo ni u jednom rudniku nije rešen na adekvatan način.

Lokomotivski šinski transport

Ovaj vid transporta ima veoma nisku pogonsku spremnost jer je reč o lokomotivama koje su stare preko 50 godina i čije je održavanje veoma teško a kvarovi po čak i havarije veoma česti jer su kolosečni putevi u veoma lošem stanju.

S obzirom da se radi o akulokomotivama mora se ići na širu primenu dizel mašina.

Oprema za dopremu repromaterijala

U JP PEU primenjeno je nekoliko vidova ove opreme i to: sistemi dopreme sa beskonačnim užetom i visećom šinom, sistem dopreme dizel lokomotivom sa gornjom šinom, vitlovska doprema, šinski kolosečni lokomotivski transport kao i jedan novi vid opreme-kombinacija vitla i beskonačnog užeta koji je primenjen prvi put u jami Tadenje a zatim i u još nekim rudnicima i koji će se šire primenjivati.

Žičare tipa ŠARF rade u jamama rudnika RMU Rembas, Soko, Jasenovac, dok je u RMU Štavalj u radu slična žičara proizvodnje ESO Velenje. U rudniku Lubnica radi takođe slična žičara koja je proizvedena u našoj zemlji od sastavnih delova iz uvoza i delova proizvedenih u domaćoj industriji.Ovi sistemi su dosta pouzdani i pogodni za jamske uslove rada i njihovom primenom je znatno olakšano snabdevanje jama repromaterijalom. Pouzdanost rada ovih sistema vezano je za redovnost održavanja i svakodnevnim nivelisanjem šine po pravcu i po visini, održavanjem i blagovremenom zamenom užeta, vodilica užeta (rolen bokova) itd.

Dizel lokomotiva tipa ŠARF sa gornjom šinom je na radu u rudniku Bogovina i tu postoji dosta problema. Naime reč je o veoma starim lokomotivama, na dizel pogon od kojih je jedna potpuno van pogona a rad druge je skopčan sa problemima održavanja i veoma često se javljaju zastoji u radu.

Vitlovska doprema vrši se uz pomoć vitlov, (najčešće je to vitao PV11/15 domaće proizvodnje), gornje šine i užeta i zastupljena je u svim jamama u JP PEU. Poseban problem kako kod žičare tako i kod vitlovske opreme je nedostatak pouzdanih kočionih sistema jer dosadašnji proizvođač nije ovom proizvodu posvetio dovoljno pažnje i pored mnogobrojnih urgencija u tom pogledu, te se mora iznaći drugo rešenje.

Oprema za odvodnjavanje

Kao i ostala oprema u jamama JP PEU i ovaj vid opreme je dosta zastareo i kao primer treba istaći da u toku ove godine nije nabavljena nijedna nova pumpa mada je problem sa prisustvom vode u jamama veći nego ranije.Voda se iz jame ispumpava primenom centrifugalnih i potapajućih pumpi, putem PVC ili metalnih cevovoda. Osim pumpi koje su dosta stare takođe se kao problem pojavljuje i starost i dotrajalost cevovoda i to posebno magistralnih cevovoda. Uloženo je dosta napora zadnjih godina da se izvrši unifikacija pumpi na radu u JP PEU i postignuti su i određeni rezultati tako da je danas najveći broj pumpi tipa VPN-proizvođača

Page 59: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 59 MINING ENGIEERING

„Jastrebac“ Niš, koje su pogodne za ispumpavanje jamske vode u kojoj su prisutne čvrste čestice jer rade sa malim brojem obrtaja i dosta su masivne.

Oprema za proizvodnju komprimovanog vazduha i uređaji na komprimovani vazduh

Proizvodnja komprimovanog vazduha za potrebe rada u jamama i spolja vrši se u stabilnim kompresorskim postrojenjima smeštenim ispred ulaza u jame. Kompresori u JP PEU su najvećim delom proizvodnje UNITEH ili FAGRAM Smederevo i klipni su svi sem vijčanog kompresora u rudniku Bogovina.Kao problem u radu javlja se blagovremeni redovni servis nakon određenog broja radnih sati koji najčešće ne uspeva da se ispoštuje što ima za posledicu kasnije zastoje u radu pa i veće havarije.

Na osnovu detaljne analizemože se konstatovati da da je u jamama JP PEU sada raspoloživa mašinska oprema iz svih pet grupacija dosta stara, dotrajala i amortizovana , tako da je njeno održavanje izuzetno otežano.Treba stvoriti uslove da se deo opreme koju je jako skupo održavati zbog njenog dugogodišnjeg rada rashoduje i da se izvrši nabavka nove savremenije opreme. Ovaj rad nije razmatrao opremu kao što su uređaji na oknima, separacijama, toplanama kao ni alate i uređaje posebno potezne naprave, dizalice i ostalo ali može se generalno istaći da se ono što je rečeno za navedenu opremu odnosi i na ovaj deo i da su problemi sa kojima se srećemo slični . PRIMER ULAGANJA U OTVARANJE NOVOG RUDNIKA Za ilustraciju potrebnih ulaganja u otvaranje nekog novog rudnika poslužićemo se primerom rudnika Melnica za koga je urađena Studija izvodljivosti. Ukupni troškovi izgadnje projektovani su na oko 44 miliona evra od čega na opremu u jami i površini pripada oko 17 miliona evra Ovde se radi o ležištu sa utvrđenih 34,5 miliona tona uglja A i B rezervi i procenjenih oko 10 miliona tona.Veći deo rezervi bi se otkopao mehanizovanim širokim čelima, a deo mehanizovanim stubnim otkopima. Kapacitet jednog širokog čela u radu je dimenzionisan na 450.000 t/god, a mehanizovanog stubnog otkopa 150.000 t/god. Na osnovu izrađenog modela troškova po toni proizvodnje dobiveno je da ukupni operativni troškovi proizvodnje iznose 26,7EU/t, odnosno pri prosečnoj toplotnoj moći uglja iz ležišta od 12,8 GJ/t dobijamo 2,1 EU/GJ. U proračun troškova ušlo se bez faktora PDV koji je dosta promenljiv, tako da je olakšan obračun troškova. Da bi pokazali zaostajanje u investiranju u aktivne rudnike u narednim tabelama dato je ulaganje u aktivne rudnike u periodu 2002-2009 godina

Page 60: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 60 MINING ENGIEERING

Tabela 2. Prikaz planirane i realizovane vrednosti investiranja za period 2002-2009. po strukturi

Struktura ulaganjaPlanirano

(USD)Realizovano

(USD)Odnos

3/2%

učešćaPokazatelj

USD/t1 2 3 4 5 6

Geološki radovi 7.892.381 1.705.992 21,6 4,0 0,41Rudarski radovi 63.692.308 27.191.677 42,7 63,8 6,56Građevinski radovi 5.413.119 2.604.366 48,1 6,1 0,62Oprema 29.310.070 9.845.057 33,6 23,1 2,37Ostala ulaganja 15.635.142 1.305.933 8,4 3,1 0,32UKUPNO 121.943.020 42.653.025 35,0 100 10,28

Tabela 3. Prikaz planirane i realizovane vrednosti investiranja za period 1995-2009. po strukturi

Struktura ulaganjaPlanirano

(USD)Realizovano

(USD)Odnos

3/2%

učešćaPokazatelj

USD/t1 2 3 4 5 6

Geološki radovi 11.365.381 5.997.472 52,8 6,1 0,72Rudarski radovi 121.924.308 70.216.865 57,6 71,6 8,23Građevinski radovi 14.083.119 3.812.068 27,1 3,9 0,44Oprema 59.181.070 16.153.185 27,3 16,5 1,89Ostala ulaganja 24.866.142 1.892.758 7,6 1,9 0,22UKUPNO 231.420.020 98.072.348 42,4 100 11,50

ZAKLJUČAK

Svi projekti, analize i studije koje su rađene sa ciljem da definišu razvojne pravce podzemne eksploatacije uglja u Republici Srbiji, dolazile su na osnovu objektivnog stanja i uslova koji karakterišu stanje aktivnih rudnika, do zaključka da bez krupnih mera na sektoru investicionih ulaganja nema uspešnog nastavka rada. Usled dugogodišnjeg nagomilavanja proizvodne i poslovne problematike, a uslovljene izostankom investiranja u potrebnom obimu, rudnici su finansijski iscrpljeni i beleže pad kapaciteta proizvodnje i sve teže održavaju kontinuitet pripreme i otkopavanja.

Poseban problem za podzemne rudnike je zaostajanje u tehnološkom razvoju prouzrokovano izostankom mehanizovanja i osavremenjavanja tehnoloških faza, a ovo pored proizvodnih ima negativne i sigurnosne efekte u radu rudnika. Bez obnavljanja opreme rudnici nemogu računati na razvoj, a i sam opstanak za pojedine rudnike je neizvestan.

Imajući sve ovo u vidu neophodno je da država kao vlasnik rudnika, a uvažavajući date argumente o potrebi održanja podzemne eksploatacije uglja, obezbeđenjem finansijskih sredstava u potrebnom obimu rudnike usmeri ka optimizaciji osnovnih elemenata tehničko-tehnoloških sistema. UDK:622.83: 55,8.013(0,45)=861 doi:10.597/rudrad 1301037P

Page 61: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 61 MINING ENGIEERING

Jovo Miljanović *, Neđo Đurić **, Mirko Ivković***, Žarko Kovačević* PRIMJENA TEHNOLOGIJE KOMBINOVANOG PODGRAĐIVANJA RUDARSKIH PROSTORIJA U RMU „SOKO“ Izvod Složeni rudarsko-geološki uslovi eksploatacije uglja, kakvi su u rudniku Strmosten, zahtevaju stalni rad na istraživanju novih tehničkih rešenja izrade i podgrađivanja rudarskih podzemnih prostorija. Posebnim poglavljem u ovom radu detaljno je prikazan način postojeće tehnike i tehnologije izrade i podgrađivanja rudarskih prostorija u rudniku Soko.

Probno podgrađivanje rudarske podzemne prostorije EH-(-60)z u RMU „Soko“ kombinovanom podgradom kako je prikazano u ovom radu izvođeno je u sklopu važećeg Dopunskog rudarskog projekta ekspoloatacije uglja od k.-24 do rasjeda R-10 u otkopnom polju OP-4 Sjevernog krila Zapadnog polja rudnika „Soko„.

Opisana nova rešenja izrade i tehnologije podgrađivanja u funkcij su povećanja stabilnosti rudarskih prostorija, produženja njihovog veka eksploatacije, funkcionalnosti i eleminisanja stalnih i otežanih rekonstrukcija prostorija u RMU „Soko“.

UVOD Stabilnost podzemnih prostorija i drugih rudarskih objekata predstavlja jedan od osnovnih problema koji prati podzemnu eksploataciju uglja. U rudarsko-geološkim uslovima eksploatacije, kakvi su u rudniku Soko, investiciona izgradnja rudnika većim delom (po vremenu i troškovima) odnosi se na izradu podzemnih prostorija. Stoga, iznalaženje optimalnih rešenja izrade i podgrađivanja podzemnih prostorija otvaranja, osnovne i otkopne pripreme ima poseban značaj i uticaj na ukupna investiciona ulaganja [1].

U rudniku Soko je u cilju prevazileženja navedenih problema i pravilnog izbora tehnologije izrade i podgrađivanja rudarskih prostorija započeti su radovi na uvođenju nove tehnologije, čiji je osnovni cilj unapređenje opšteg stanja podzemnih prostorija odnosno poboljšanje kvaliteta izrade, podgrađivanja a samim tim i povećanje veka njihovog trajanja, kao i stvaranje uslova za sigurniji i bezbedniji rad [2], [3].

Projektna rešenja koja se odnose na probno podgrađivanje rudarske podzemne prostorije EH-(-60)z u RMU „Soko“ kombinovanom podgradom definišu parametre i aktivnosti koje se odnose na uvođenje za Rudnik Soko nove tehnologije podgrađivanja AT visećom podgradom.

I naponska stanja kao i stečena iskustva, ukazuju da su rudarske prostorije izložene intenzivnim pritiscima i deformacijama, pa se zbog toga smanjuje njihov vek eksploatacije a kao posledica toga javlja se potreba za konstantinim održavanjem prostorija.

INŽENJERSKO-GEOLOŠKE KARAKTERISTIKE UGLJENOG SLOJA I PRATEĆIH STIJENA

Sa inženjersko-geološkog aspekta, stene koje izgrađuju ležište ”Soko“ i njegovu užu okolinu mogu se svrstati u tri grupe (vezane stene, poluvezane i nevezane stene).

*Rudarski fakultet prijedor, e.mail: [email protected] **Temnički institut u Bijeljina ***JP PEU Resavica

Page 62: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 62 MINING ENGIEERING

Podina ugljenog sloja započinje bazalnim krečnjačkim brečama i konglomeratima preko kojih leže peskovite gline i glinci, laporovito-peskoviti glinci, peskoviti laporci i vapnoviti peščari. Neposrednu podinu ugljenog sloja čine ugljevite gline koje čine prelaz od podinskih glinaca ka uglju.

Ugljeni sloj je složenog litološkog sastava sa stalnim jalovim proslojcima ugljevite gline, gline, laporca i tufa.

Povlata ugljenog sloja izgrađena je od laporaca, peskovitih i laporovitih glina i glinaca, glinovitih i laporovitih slabo vezanih peščara i peskova, mestimično šljunkovitih.

Slika 1. Geološki stub Sokobanjskog tercijernog basena

Ispitivanja fizičko-mehaničkih osobina stijena vršena su na uzorcima iz ugljenog sloja i direktne podine i povlate ugljenog sloja, 1974/75. godine.

NAČINA PODGRAĐIVANJA RUDARSKIH PROSTORIJA U RMU „SOKO“

U rudniku Soko radnu sredinu čine najvećim dijelom laporoviti krovinski pješčari i manjim delom ugalj i laporac (krovinski i podinski), i peskovite i ugljevite gline. Rudarske prostorije u ovom rudniku kroz dugogodišnj period eksploatacije izrađivane su kroz sve vrste stenskog materijala.

 Slika 2. Klasifikacija prostorija po vrsti stenskog

materijala u kome se rade rudarske prostorije Otkopna priprema, koja se sastoji od otkopnih hodnika, podgrađivana je drvenim trapeznim okvirima na “šor” ojačana podvlakama. Uobičajeno rastojanje podgradnih okvira kod otkopne pripreme je 0,8 m.

Page 63: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 63 MINING ENGIEERING

Čelična kružna podgrada primenjena je za podgrađivanje prostorija otvaranja i osnovne pripreme, na potezu od izvoznog i ventilacionog okna i odgovarajućih navozista koja su podgrađena podgradom od livenog betona, do nivoa etažnih hodnika. Podgrada od livenog betona primenjena je za podgrađivanje izvoznog i ventilacionog okna i njima pripadajućim navozištima. Oblici i dimenzije poprečnih profila prostorija otvaranja i osnovne pripreme dosta su ujednačeni. Poprečni preseci su uglavnom kružnog preseka površine 9.62 i 12.56 m2. Pored kružnog preseka deo podzemnih prostorija, navozišta izvoznog i ventilacionog okna, je nisko zasvođenog oblika.

a) b)

Slika 3. Klasifikacija prostorija a) po vrsti podgradnih konstrukcija i b) po obliku poprečnog presjeka

Tehnologija postojećeg načina i podgrađivanja rudarske prostorije

Izrada rudarskih prostorija u jami vrši se polumehanizovano, odnosno izbijanje profila vrši se bušačko-minerskim radovima, utovar odminiranog materijala vrši se ručno i odvoz iskopine sa čela radilišta obavlja se upotrebom dvolančanih grabuljastih transportera.

Prostorije su izrađivane kroz ugalj, a za miniranje koristite se metanski sigurnosni ekspolozivi dok se iniciranje eksploziva vrši električnim milisekundnim detonatorima.

Slika 4. Čelična kružna popustljiva podgrada sa potrebnim

dimenzijama i statičkim vrednostima

Page 64: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 64 MINING ENGIEERING

PRIMJENA KOMBINOVANE TEHNOLOGIJE PODGRAĐIVANJA NA PRIMJERU RUDARSKE PROSTORIJE EH-(-60)Z

Kombinovana podgrada podrazumeva čeličnu podgradu i AT viseću podgradu, koje će delovati u sadejstvu kao celina u podzemnoj rudarskoj prostoriji EH-(-60)z u rudniku „Soko“ [4]. Način podgrađivanja čeličnom podgradom podzemnih prostorija vrši se prema propisanoj metodologiji i praksi za podzemnu eksploataciju uglja.

Probno podgrađivanje prostorije EN(-60)z u RMU „Soko“ predstavlja početnu aktivnost primjene tehnologije podgrađivanja AT visećom podgradom.

Djelovanje AT viseće podgrade zasnovano je principu sprečavanja širenja deformacija slojeva po konturi podzemne prostorije i na sprečavanju širenja deformacije u raspucalim sredinama i istovremeno delemično popunjavanje pukotina čime se stvara zona pojačanog masiva u okolini podzemne prostorije.

Može se reći da je AT viseća podgrada aktivna podgrada, odnosno da stupa u dejstvo prije nego što se kontura podzemne prostorije deformiše. U poređenju sa AT ankerima, čelična podgrada je pasivna podgrada, odnosno prima opterećenja poslije deformisanja konture prostorije. Kontakt između ankera i masiva po cijeloj dužini bušotine je od značaja zbog sprečavanja širenja deformacija po dubini masiva. Ova vrsta podgrade se, zbog karakterističnog načina dejstva, u literaturi više ne navodi kao tip podgrade, već kao sistem ojačenja, pošto svojim dejstvom „menja“ fizičko-mehaničke karakteristike masiva u neposrednoj okolini podzemne prostorije, odnosno u zoni koja odgovara dužini ugradjenih AT ankera. Eksperimentalna provjera efekata primjene AT viseće podgrade se sastoji iz tri faze:

- Ispitivanje lokacije i preleminarna istraživanja: - Probno podgrađivanje; - Potvrda usvojenog rešenja

Za lokaciju probnog podgrađivanja u RMU „Soko“ odabrana je podzemna prostorija EH-(60)z, u kojoj će se tokom prve faze izvršiti ispitivanja i preleminarna istraživanja.

Aktivnosti u okviru prve faze su: Svrha probne ugradnje elemenata viseće podgrade je da se utvrdi podobnost opreme za bušenje ankerskih bušotina i ugradnju ankera u konkrentnim radnim uslovima.

Test čupanja kratko vezanog ankera, koji se vrši kako bi se izmerila čvstoća veze usvojenog sistema viseće podgrade u konkrentnim uslovima [4].

USLOVI I PRIMENA TEHNOLOGIJE PODGRAĐIVANJA AT VISEĆOM PODGRADOM I PRAĆENJE NAPONA I DEFORMACIJA

Početna aktivnost prve faze primjene tehnologije zahteva izbor lokacije rudarske prostorije na kojoj su izvršena detaljna istraživanja stijenskog masiva u prethodnom periodu. Metodologija koja se koristi za izbor odgovarajućeg rješenja podgrađivanja visećom podgradom zasnovana je na merenju i praćenju određenih parametara „in situ“ i to poslije početka sistematke ugradnje. Nakon što se na osnovu rezultata mjerenja i praćenja utvrdi šema ugradnje ankera sa kojom se ostvaruje uspešna kontrola nad masivom, moguće je izvršiti izmene i korekcije postojećeg načina podgrađivanja čeličnom podgradom. Ovu, kao i svaku drugu izmjenu, bilo u načinu ugradnje AT viseće podgrade, bilo u obliku i količini ugradnje čelične podgrade, potrebno je potvrditi

Page 65: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 65 MINING ENGIEERING

rezultatima merenja i praćenja ponašanja masiva na deonici od 30 do 60 m, uz minimalni vremenski interval od oko dve nedelje [4]. Tokom treće faze probnog podgrađivanja potrebno je rezultatima mjerenja i praćenja masiva potvrditi usvojeni način podgrađivanja. Na osnovu praćenja ponašanja stenskog masiva u okolini podzemne prostorije – deformacije i opterećenje kojima su izloženi AT ankeri utvrđuje se efektivnost usvojenog rešenja. Promjene u stratigrafiji ili promene naponskog stanja okoline podzemne prostorije, koje se mogu utvrditi uređajima za merenje i praćenje, mogu dovesti do situacije kada je potrebno promeniti način – rešenje podgrađivanja. Dati postupak je pouzdaniji u poređenju sa analitičkim ili empirijskim pristupom kod kojih se nosivost podgrade i opterećenje iz masiva izračunavaju kako bi se došlo do određenih pretpostavki o ponašanju masiva i efektivnosti podgrade. Važno je istaći da navedene pretpostavke mogu biti pogrešne, pogotoou u ležištima sa promenljivim karakteristikama. Karakteristika prenošenja opterećenja sa masiva preko očvrsnute dvokomponentne smeše na anker, kako u smislu mogućnosti da anker prihvati opterećenje, tako i u smislu ocene efektivnosti, će se utvrditi ugradnjom ankera sa mernim trakama. Sledeći korak je analiza podataka dobijenih praćenjem i merenjem, kao i podataka o testovima čupanja kratko vezanog ankera, kako bi se utvrdila efektivnost rešenja i po potrebi modifikovala radi unapređenja. Ove promjene se mogu odnositi na promenu profila podzemne prostorije (primera radi, prelazak sa kružnog na trapezni profil), ili povećanje osnog rastojanja između čeličnih okvira, odnosno smanjenje količine čelične podgrade.

Tekuće praćenje – monitoring ponašanja masiva vrši se pomoću soničnih ekstenzometara i dvovisinskih merača deformacija.

Oprema za primenu ankera sa dvokomponentnom smešom u rudnicima uglja sa podzemnom eksploatacijom obuhvata specijalne pneumatske ili hidraulične rotacione bušilice, a pribor čine same šipke ankera, patrone sa dvokomponentnom smešom, čelična ili plastična mreža i dr. [4].

Posle postavljanja patrona sa dvokomponentnom smešom u bušotinu, vrši se utiskivanje ankera uz njegovo obrtanje radi mešanja komponenti. Pošto se anker ugradi do dna bušotine, bušilica se zaustavlja da bi se očvrsnula brzoočvršćavajuća smeša.

Dvokomponentne smeše predstavljaju osnovu ovog sistema podgrađivanja. Osnovnu komponentu čini materijal na bazi smola, a drugu katalizator, koji se nalazi u manjoj patroni, unutar prve.

Ove smeše se dele prema vremenu za koje očvrsnu, na:

- brzoočvršćavajuće, - sporoočvršćavajuće i - smješe koje očvrsnu u intervalu između prethodne dve.

Za dvokomponentne smješe vezane su dvije osobine koje su veoma važne za njihovu ispravnu ugradnju i pouzdanost ovog sistema podgrađivanja. To su: vreme (period) do očvršćavanja i vrijeme početnog očvršćavanja.

Vreme do očvršćavanja je vreme tokom koga se smeša može mješati bez značajne promene viskoziteta, odnosno pre promene agregatnog stanja smeše iz tečnog u čvrsto. Početak ovog intervala je početak mešanja komponenti, a ne trenutak kada se anker ugradi celom dužinom.

Page 66: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 66 MINING ENGIEERING

а) b) Slika 5. Uticaj temperature radne sredine na dvokomponentnu smešu (Exchem)

a) brzoočvršćavajuća smeša; b) sporoočvršćavajuća smeša

Metode mjerenja i praćenja naponskog stanja i deformacija

Osnovni cilj primenjenog rešenja podgrađivanja je da se potvrde parametri rešenja, a obuhvata detaljno praćenje ponašanja masiva u okolinи prostorije kao i merenje reakcije ankera na opterećenje iz masiva. Tekuće merenje i praćenje takođe treba da osigura bezbedno radno okruženje tako što će ukazati na eventualne promene u ponašanju masiva koje zahtevaju dodatnu podgradu ili drugačiji način podgrađivanja.

Kontrola naponskog stanja i deformacija konture podzemne prostorije je za sistem podgrađivanja AT ankerima od ključne važnosti, pošto prekoračenje određenih vrednosti ugrožava stabilnost ankera i zahteva pravovremeno preduzimanje odgovarajućih mera (ugradnju dodatnih AT ankera, postavljanje čelične podgrade i dr.).

Određeni broj ankera sa mernim trakama ugrađenih prema šemi ugradnje ankera i sonični ekstenzometri čine mernu stanicu, pomoću koje se potvrđuje efektivnost šeme ugradnje ankera. Očitavanje se vrši odgovarajućim instrumentоm koji je predviđen za primjenu u metanskom režimu, a uz to je opremljen i memorijskom jedinicom u kojoj se čuvaju očitani podaci. Analiza podataka vrši se na računarima pomoću specijalizovanog softvera, uz mogućnost grafičke interpretacije aksijanlnog opterećenja i momenata savijanja ankera.

Ovi uređaji se mogu opisati kao žičani ekstenzometri. Svaki pokazivač – indikator je obešen o kotvu koja je postavljena na određenoj dubini u bušotinu.

Page 67: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 67 MINING ENGIEERING

Slika 6. Šematski prikaz dvovisinskog merača deformacija

Dvovisinski pokazivač deformacija je jednostavne konsktrukcije i integralni je dio sistema podgrađivanja, lako se izrađuje i relativno je jeftin pa se zbog ovog ugrađuje relativno često duž podzemne prostorije. Na ovaj način se obezbeđuje mogućnost za neprekidno vizuelno očitavanje stepena deformacije masiva od trenutka izrade prostorije. U RMU „Soko“ ovi uređaji su ugrađivani na rastojanju od 10 m tokom probnog podgrađivanja prostorije.

KONCEPCIJA PODGRAĐIVANJA KOMBINOVANOM PODGRADOM U RMU „SOKO“ Aktivnosti vezane za prvu fazu transfera tehnologije podgrađivanja AT visećom podgradom u RMU „Soko“, su urađene, kako bi se mogla realizovati druga faza transfera: sistematska ugradnja AT viseće podgrade. Rezultati ispitivanja u prvoj fazi su poslužili za izbor i verifikaciju preleminarne šeme ugradnje AT viseće podgrade, što je predmet izrade ovog projekta. Kada određeno rješenje ugradnje AT viseće podgrade pruži zadovoljavajuće rezultate pri merenju i praćenju dobijene putem soničnih eksenzometara i ankera sa mjernim trakama, može se pristupiti eventualnoj promeni načina podgrađivanja čeličnom podgradom [5].

Rezultat druge faze probnog podgrađivanja treba da bude način podgrađivanja podzemne prostorije kombinovanom podgradom (čeličnom i AT visećom podgradom).

Početak ugradnje AT viseće podgrade u prostoriji EH-(60)z u RMU“Soko“ vršen je prema početnoj šemi ugradnje, pri čemu je zadržan postojeći način podgrađivanja sa čeličnom kružnom popustljivom podgradom prečnika 3,5 m koja se ugrađuju na osnom rastojanju od 0,7 do 1,0 m. Da bi se mjerenjima dobili pouzdani podaci o deformacijama stijenskog masiva potrebno je od 30 do 60 m napredovanja čela radilišta prostorije EH-(60)z i ugradnja kombinovane podgrade uz minimalni vremenski interval od dvije nedelje. Poslije ovog perioda i na osnovu dobijenih rezultata vrši se optimizacija šeme ugradnje ankara i eventualna korekcija primenjene čelične podgrade. Svaka izmena bilo u načinu ugradnje AT viseće podgrade, bilo u obliku i količini ugrađene čelične podgrade, potvrđuje se rezultatima merenja i praćenja ponašanja masiva i podgrade.

Page 68: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 68 MINING ENGIEERING

Cilj uvođenja AT viseće podgrade (u kombinaciji sa čeličnom podgradom) u RMU „Soko“ je unapređenje kontrole nad masivom, produženje veka prostorije i smanjenje potrebe za rekonstrukcijom prostorije EN-(60)z odnosno rekonstrukcijom etažnih hodnika [6].

Na slici 7. prikazana je početna šema ugradnje AT ankera u podzemnoj prostoriji EN-(-60)z, u delu prostorije kružnog poprečnog preseka, a koji se podgrađuje kružnom čeličnom popustljivom podgradom 3,5 m.

Slika 7. Početna šema ugradnje AT visećih ankera u prostoriji EH-(-60)z

Za početak rada preporučena gustina ugradnje elemenata viseće podgrade – broj ankera po metru

kvadratnom površine konture podzemne prostorije treba da iznosi 1,2 ankera/m 2 .

Početna šema ugradnje AT ankera u prostoriji EN-(-60)z je predviđena sa relativno velikom gustinom – 1,2 ankera/m2. Sa početkom sistematske ugradnje ankera tokom druge faze obavljaju se dodatna ispitivanja, koja će se sa podacima merenja ukazati na potrebu daljeg unapređenja šeme ugradnje.

Kao što se sa slike vidi pet ankera dužine 1,8 m, od krovinskih ankera, samo centralni u osi

prostorije treba da se ugradi vertikanlno dok ostala četiri ankera treba ugraditi pod uglom od 10 . Rastojanje između tačaka ugradnje krovinskih ankera treba iznositi 0,76 m.

U zavisnosti od rezultata praćenja i merenja ponašanja krovine i rezultata naknadnih ispitivanja moguća unapređenja i optimizacija načina podgrađivanja će se ogledati u smanjenju broja ankera u šemi ugradnje i povećanja osnog rastojanja između okvira čelične podgrade. Poslije svake modifikacije načina podgrađivanja, a u cilju njihove potvrde, biće potrebno napredovanje čela radilišta od 30 do 60 m, uz minimalni vremenski interval stabilizacije masiva od dve nedelje, kako bi se dobili pouzdani rezultati merenja. Za zalaganje podzemne prostorije od samog početka druge faze probnog podgrađivanja korištena je čelična mreža. Čelična mreža izrađena je od žice prečnika 3-6 mm, na rastojanju 50 mm. Samo redovi i kolone mreže kroz koje će se postavljati ankeri treba da imaju žice na rastojanju od 75 mm.

Page 69: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 69 MINING ENGIEERING

Slika 8.Čelična mreža za zalaganje prostorije

Slika 9. Redosled ugradnje panela čelične mreže u delu prostorije EH-(60)z sa kružnim profilom

4. ZAKLJUČAK

Dosadašnja izučavanja naponskih stanja u rudniku Soko, ukazuju na to da su rudarske prostorije izložene intenzivnim pritiscima i deformacijama, pa se zbog toga smanjuje njihov vek eksploatacije. Pored stabilnosti izrađenih prostorija za proizvodni sistem je veoma bitna i blagovremena izrada prostorija, kako bi se održao kontinuitet proizvodnje uvođenjem u proces proizvodnje novih otkopnih jedinica. Postojeći način izrade i podgrađivanja prostorija pokazao je više nedostataka posebno u uslovima povećanih jamskih pritisaka koji su uticali na deformacije rudarskih prostorija manjeg ili većeg intenziteta. U nameri prevazilaženja navedenih problema kao i pravilnog izbora tehnologije izrade i podgrađivanja rudarskih prostorija, u rudniku ’’Soko’’ izvršeno je probno uvođenje nove tehnologije, čiji je osnovni cilj unapređenje opšteg stanja podzemnih prostorija odnosno poboljšanje kvaliteta izrade, podgrađivanja a samim tim i povećanje veka njihovog trajanja, kao i stvaranje uslova za sigurniji i bezbjedniji rad.

Tehnoogija ugradnje AT viseće podgrade kao i probno podgrađivanje rudarske podzemne prostorije EH-(-60)z u RMU „Soko“ kombinovanom podgradom izvođeno je u skladu sa datim projektnim rješenjima.

Na osnovu prezentovanih rešenja u ovom radu može se zaključiti sledeće:

Nova tehnologija AT viseće podgrade sa uspehom se može primenjivati za podgrađivanje rudarskih prostorije kombinovanom podgradom (čeličnom i AT visećom podgradom), kao i da se mogu stvoriti uslovi za mehanizovanu izradu podzemnih prostorija, što značajno uvećava efekte navedene tehnologije podgrađivanja.

Uvođenjem AT viseće podgrade u rudniku Soko obezbeđuje se racionalizacija u podgrađivanju podzemnih prostorija kao i produženje veka eksploatacije i pouzdanosti i funkcionalnosti.

AT viseća podgrada u kombinaciji sa čeličnom podgradom ima višestruk značaj za rudnik Soko jer obezbeđuje veću stabilnost podzemnih prostorija čime pozitivno utiče na bezbednost i humanizaciju rada u teškim jamskim uslovima.

Page 70: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 70 MINING ENGIEERING

LITERATURA

[1] P. Jovanović: Projektovanje i proračun podgrade horizontalnih podzemnih prostorija, Rudarsko geološki fakultet, Beograd 1994.

[2] Miljanović J., Kokerić S., Guberinić R., Definisanje maksimalnog koraka napredovanja mehanizovane hidraulične podgrade (MHP) za uslove rudnika “Strmosten“ Časopis Arhiv za tehničke nauke 7/2012, Tehnički institut Bijeljina.

[3] Ivković M., Istraživanje i formiranje evidncije uticaja na životnu sredinu od posledica podzemne eksploatacije uglja , Časopis Arhiv za tehničke nauke 1/2009, Tehnički institut Bijeljina.

[4] URP probnog podgrađivanja podzemne prostorije EH-(-60)z u RMU kombinovanom podgradom, RGF, Beograd 2010.

[5] Ljubojev M., Popović R., Rakić D. Osnove postavki mehaničkih modela sadejstva podgrade sa stenskim masivom, Časopis Rudarski radovi br. 1/2006, Bor, 2006.

[6] Trivan J., Analiza uticajnih faktorakod izbora tehnološkog procesa podzemnog otkopavanja ugljenih slojeva, Časopis Arhiv za tehničke nauke 6/2012, Tehnički institut Bijeljina.

Page 71: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 71 MINING ENGIEERING

UDK:622.83:55,8.013(0,45)=861 doi:105937/rudrad 1301037P Jovo Miljanović *, Neđo Đurić **, Mirko Ivković***, Žarko Kovačević* VERIFIKACIJA POUZDANOSTI I EFIKASNOSTI SISTEMA ODVODNJAVANJA NA

P.K. „BUVAČ“

Izvod Monitoring i ocjena efikasnosti i pouzdanosti rada objekata odvodnjavanja na P.K. “Buvač”, obuhvatao je osmatranje, praćenje i evidenciju rada svih izgrađenih objekata odvodnjavanja, kao i analiza funkcionalnosti ukupnog sistema odvodnjavanja na P.K. “Buvač”. Svrha praćenja rada sistema za odvodnjavanje je težnja da u svakom trenutku imamo uvid u stanje vodnih pojava i hidrodinamičkih procesa s ciljem stvaranja kontrolisanog sistema nad radom svih objekata za zaštitu kopa od podzemnih i površinskih voda. Na osnovu dobijenih rezultata osmatranja, praćenja i evidencije padavina kao i mjerenja nivoa podzemnih voda, moguće je donijeti konačnu ocjenu o efikasnosti i pouzdanosti cjelokupnog sistema odvodnjavanja Ključne reči: odvodnjavanje u rudarstvu, monitoring, objekti odvodnjavanja.

UVOD Odvodnjavanje u rudarstvu obuhvata niz kompleksnih mjera koje podrazumjevaju stalnu borbu sa podzemnim i površinskim vodama u svim fazama izgradnje i eksploatacije ležišta mineralnih sirovina. Površinske i podzemne vode ugrožavaju rudarske objekte i ometaju rad u njima. Pod objektima odvodnjavanja u rudarstvu podrazumevaju se rudarski hidrotehnički objekti koji služe za odvodnjavanje i zaštitu od voda. Sa povećanim dubinama eksploatacije, uslovi odvodnjavanja površinskih kopova su složeniji, što ima za posljedicu povećan broj objekata odvodnjavanja.Ovo se posebno odnosi na površinske kopove željezne rude, s velikim koeficijentom ovodnjenosti, kakav je i kop „Buvač“. Da bi se problem odvodnjavanja uspješno rješavao, moraju se prije svega detaljno upoznati hidrološke i hidrogeološke karakteristike ležišta i okoline, a takođe i fizičko-mehaničke karakteristike stijena, kao i tektonski poremećaji, koji su često nosioci vode. Kada se utvrde mogući faktori ugrožavanja rudarskih radova od voda, daju se mjere zaštite, koje za konkretne uslove predstavljaju racionalno rješenje sa aspekta sigurnosti i ekonomičnosti. Ispitivanja pouzdanosti i efikasnosti sistema odvodnjavanja sprovodi se putem kontrole rada izrađenih objekata odvodnjavanja za zaštitu od površinskih i podzemnih voda i preko monitoringa vodnih pojava i hidrodinamičkih procesa Osnovni cilj monitoringa upravo i jeste utvrđivanje pouzdanosti rada postojećih objekata odvodnjavanja i po potrebi mijenjati odnosno prilagođavati režim odvodnjavanja novim uslovima na površinskom kopu.

* Rudarski fakultet Prijedor, E.mail: [email protected] * Rudarski fakultet Prijedor, ** PD Kolubara *** JP PEU-Resavica

Page 72: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 72 MINING ENGIEERING

KARAKTERISTIKE LEŽIŠTA OMARSKA Prema podacima meteorološke stanice u Prijedoru, područje ležišta spada u oblast umjereno kontinentalne klime, koja se odlikuje naglim porastima temperatura u proljeće, zimskim minimumom padavina, srednje hladnim zimama, toplim ljetima i čestim prodorima hladnih vazdušnih strujanja. Posmatrajući šire područje površinskog kopa “Buvač” pad terena je generalno od istoka prema zapadu i od sjevera prema jugu sa postojanjem vododerina sjeverno od eksploatacionog područja, koje su usmjerene u pravcu kopa i koje odvode vodu sa velike slivne površine do granica eksploatacionog područja. Morfologija terena je pogodna za odvodne magistralne cjevovode i obezbeđenje gravitacionog odvoda ispumpanih voda, jer se ne iziskuju dodatni radovi na izradi nasipa a ujednačene su i kote uliva ispumpanih voda iz drenažnih bunara, što se direktno odražava na troškove odvodnjavanja. Hidrogeološki kompleks - kompleks vodopropusnih i vodonepropusnih naslaga izgrađuju: pijeskovite gline koje se mjestimično smjenjuju sa sitnozrnim pijeskovima, bilo bočno ili po vertikali i pripadaju pliocenskim naslagama. Geološki uslovi i međusobni odnosi stijena sa svojstvima kolektora i izolatora uslovili su hidrogeološke karakteristike istražnog prostora. U sklopu terena nalaze se stijenske mase sa svojstvima hidrogeoloških kolektora i izolatora. ISPITIVANJE POUZDANOSTI SISTEMA ODVODNJAVANJA Savremeni pristup procesu upravljanja sistemom odvodnjavanja i praćenju efekata njihovog rada, predviđa da se u svim etapama razvoja površinskog kopa sprovodi kontrola rada svih objekata odnosno cjelokupnog sistema za zaštitu kopa od površinskih i podzemnih voda i kontinuirani monitoring vodnih pojava i hidrodinamičkih procesa. Cilj ovih aktivnosti je da se utvrdi bezbijednost objekata odvodnjavanja i njihovi efekti na sniženju nivoa podzemnih voda, kao i da se, kroz hidrodinamička ispitivanja obezbjede pouzdani hidrogeološki parametri za noveliranje hidrodinamičkog modela koji će davati efikasnu i efektivnu podršku procesu upravljanja sistemom odvodnjavanja. Kako proces odvodnjavanja zavisi od velikog broja prirodnih faktora (padavine, oticaji, temperature, režim podzemnih i površinskih voda u zaleđu kopa, itd.), to je potrebno dobro poznavanje režima tih parametara.

Monitoring će obuhvatati sljedeće: - mjerenje nivoa vode u aluvijalnom sloju, - mjerenje nivoa vode u rudnom tijelu, - mjerenje vodostaja Gomjenice, - mjerenje količine atmosferskih padavina, - praćenje sati rada pumpi i količine ispumpane vode.

Page 73: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 73 MINING ENGIEERING

AKTIVNI HIDROTEHNIČKI OBJEKTI ZA ZAŠTITU P.K. „BUVAČ“ ZA KOJE SE VRŠI MONITORING

Na površinskom kopu „Buvač“, u cilju zaštite od priliva vode u eksploataciono područje, izvršeno je izmještanje rijeka Gomjenice,izrađen je obodni kanal koji prihvata vodu i gravitaciono je vodi kroz dva propusta na istočnu stranu do “istočnog vodosabirnika. U cilju zaštite kopa od plitkih aluvijalnih voda urađeno je sljedeće: - sa jugoistočne strane je urađeni su vodonepropusni ekrani, Dk –1 i Dki–1, ukupne dužine

2000 m, - sa sjeverne strane je izrađen drenažni usjek Du 2 u dužini od 900 m.

Za zaštitu kopa od dubokih podzemnih voda iz rudnog tijela izbušeno je 6 bunara u samom rudnom tijelu i izvršena je sanacija dva stara bunara. Glavni vodosabirnik sastoji se iz dva taložnika koji služe za taloženje mulja i ispuštanje čiste vode u riječno korito Gomjenice.

U skladu s napredovanjem rudarskih radova, izrađeni su privremeni vodosabirnici. Na površinskom kopu “Buvač”,u toku 2012. godine, bilo je aktivno:

- 8 ekranskih bunara Eb 1-8,lociranih sa zapadne strane kopa, - drenažni usjek, Du 2, koji se pruža pravcem istok – zapad, - 6 bunara u rudnom tjelu, Bu 138, 282, 291, 11, 30 i 275, - vodosabirnik u jugozapadnom dijelu kopa, kod prvog položaja drobilice na koti 132 m, - vodosabirnik u južnom dijelu E 130 Na slici 1. data je dispozicija projektovanih hidrotehničkih objekta za zaštitu kopa od podzemnih i površinskih voda.

Slika 1. Dispozicija projektovanih objekta za zaštitu

kopa od podzemnih i površinskih voda. MJERENJE I OSMATRANJE SISTEMA ZAŠTITE KOPA OD PODZEMNIH I

POVRŠINSKIH VODA

Kod utvrđivanja efikasnosti sistema potrebno je sprovesti sistematska mjerenja proticaja pumpi i nivoa podzemnih voda u bunarima, drenažnim usjecima, drenažnim kanalima i pijezometrima, od momenta aktiviranja objekata odvodnjavanja do trenutka njihove likvidacije ili do momenta kada prestaje potreba za njihovim radom.

Redovnim mjerenjima definisaće se brzina sniženja nivoa podzemnih voda i utvrditi referentni nivo na kojem dolazi do smanjenja proticaja bunara. Obezbeđenje tih informacija postići će se

Page 74: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 74 MINING ENGIEERING

blagovremenom zamjenom pumpi čime se sistem odvodnjavanja dovodi u stanje da troši samo potrebnu i dovoljnu količinu električne energije, zadržavajući pri tom efikasnost i pouzdanost.

Poređenjem količine ispumpanih voda iz sistema površinskog odvodnjavanja i sistema bunara u toku dužeg vremenskog perioda, mogu se donijeti određeni zaključci o pouzdansti i efikasnosti sistema drenažnih bunara, a poznavajući ukupne količine ispumpanih voda i količine iskopane jalovine definisaće se koeficijent ovodnjenosti ležišta.

Mjerna mjesta za osmatranje i praćenje režima podzemnih voda su praktično sve lokacije bunara sa pijezometrima u zasipu, pijezometarske bušotine u užem i širem području površinskog kopa, radne etaže površinskog kopa i odlagališta, drenažni useci, drenažni kanali, površinski tok Gomjenice i dr.

Monitoring režima podzemnih voda i efekata rada drenažnog sitema je stručan zadatak i za osmatranje, praćenje, mjerenje i obradu podataka neophodna je dobro organizovana i opremljena služba.

REZULTATI MONITORINGA NA HIDROTEHNIČKIM OBJEKTIMA I OPREMI P.K. “BUVAČ” ZA PERIOD OD 2010-2012. GODINE

Odgovorna lica za organizaciju monitoringa po urađenom planu u određenim vremenskim intervalima sprovode aktivnosti iz svog domena kao što su kartiranje etaža i odlagališta, mjerenje nivoa podzemnih voda i proticaja bunara, mjerenje visine padavina, snimanje vodostaja rijeka, a nakon završetka pojedinih radova kompletiraju Izveštaj.

KONTROLA KOLIČINE PADAVINA I NIVOA PODZEMNIH VODA Nakon izgradnje objekata odvodnjavanja na P.K. „Buvač“ kao i njihovog stavljanja u eksploataciju vrši se redovno osmatranje, praćenje i evidencija padavina, NPV na preko 30 mjesta, sati rada pumpi i preko njihovih kapaciteta količine ispumpane vode. Nivo podzemne vode se mjeri na preko 30 objekata (pijezometara i bunara) svakog ponedeljka i vodi se evidencija, a količina atmosferskih padavina se mjeri svaki dan, ukoliko ih ima, tako da se mogu vršiti analize i donositi određeni zaključci o uticaju padavina na promjenu nivoa podzemnih voda. Dnevne količine padavina se sabiraju i posmatra se zavisnost promjene nivoa vode u aluvijonu na svakom pijezometru posebno od sedmične količine padavina. Izmjerene vrijednosti padavina i nivoa podzemnih voda za 2010. godinu

U tabeli 1.i na slici 2. . grafički prikaz ukupne količine padavina za ukupne količine padavina na mjesečnom nivou za 2010. godinu.

Tabela 1 Količine padavina u 2010 godini

Mjesec  Količina padavina (l/m2) 

Januar  71,5 Februar  114,5 Mart  108,9 April   73,1 Maj  153,3 

Page 75: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 75 MINING ENGIEERING

Slika 2. Grafički prikaz ukupne količine

padavina za 2010.godinu Analizom je obuhvaćen period od marta do jula 2010.godine, jer je, kao što se vidi, u ovom

periodu zabilježena najveća količina padavina,ukupno 560,1 l/ m 2 . Posmatraće se zavisnost promjene nivoa vode u aluvionu u zavisnosti od dnevne količine padavina. Nivo vode se kontroliše jednom sedmično,a količine padavina prate se svaki dan,ukoliko ih ima. Na osnovu dobijenih rezultata,izvršena je analiza posmatrajući izmjereni nivo vode na objektima odvodnjavanja i koristeći podatke o dnevnim količinama padavina,ako ih je bilo. Pijezometar Po 1 nalazi se izmedju ekranskih bunara,van konture kopa I udaljen je od Gomjenice oko 300 m. U periodu bez padavina,nema promjene nivoa vode. Sa prvim količinama padavima,nivo vode blago raste,nakon čega ponovo stagnira do novih padavina, kada je viši. vrijednosti padavina i nivoa podzemnih voda za 2011. godinu.

U tabeli 2.prikazane su ukupne količine padavina u 2011. godini a na slici 3. grafički prikaz ukupne količine padavina za 2011. godinu

Tabela 2. Količine padavina u 2011 goddini

Slika 3. Grafički prikaz ukupne količine

padavina za 2011. godinu

Kako je u perodu od oktobra do decembra 2011.godine zabilježena najveća količina

Jun   224,8 Jul  57 Avgust  61,2 Septembar  143,7 Oktobar  73,7 Novembar  106 Decembar  66,6 UKUPNO  1254,3 

Mjesec Količina padavina

(l/m 2 ) Januar 28 Februar 24 Mart 34,9 April 41,6 Maj 42,2 Jun 57,5 Jul 63,5 Avgust 15,8 Septembar 32 Oktobar 70,4 Novembar 5,8 Decembar 86,1 UKUPNO 501,8

Page 76: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 76 MINING ENGIEERING

padavina,ukupno162,3 l/m 2 , ovaj period će biti detaljnije analiziran.

Slika 4. Pijezometar Po 1 Na dijagramu je vidljivo da sa povećanom količinom padavina, nivo vode blago raste. vrijednosti padavina i nivoa podzemnih voda za 2012. godinu Tabela 3. Količine padavina u 2012 godini

Slika 5. Grafički prikaz ukupne količine

padavina u 2012. godini

Kao što se vidi, u periodu oktobar-decembar, zabilježena je najveća količina padavina,ukupno

293,3 l/m 2 .

Page 77: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 77 MINING ENGIEERING

Slika 6. Pijezometar Po 1

Na osnovu vršenih mjerenja NPV i analiza istih mogu se donijeti sljedeći zaključci:

- na nivo vode na osmatračkim objektima u blizini rječnog korita Gomjenice veliki uticaj ima količina padavina, odnosno vodostaj Gomjenice, i sa udaljavanjem od Gomjenice uticaj slabi,

- funkcionalnost linije drenažnih usjeka ( kaseta ), - funkcionalnost dijela ekrana sa geomembranom. KOLIČINE ISPUMPANE VODE IZ ZA PERIOD 2010 – 2012 godine

Analizirajući dnevne izvještaje o satima rada pumpi na P.K „Buvač“, uzimajući u obzir efektivno vrijeme rada pumpi, mašinske i tehničke zastoje, kao i kapacitete raspoloživih pumpi, došlo se do podataka o količinama ispumpane vode za posmatrani period od 2010-2012. godine. U tabelama 4.19, 4.20 i 4.21 i na slikama 4.31,4. 32 i 4.33 prikazane su količine ispumpane vode na mjesečnom nivou za 2010. , 2011., i 2012. godinu.

Slika 7. Grafički prikaz ukupne količine ispumpane vode

u 2012. Godini po mjesecima

Page 78: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 78 MINING ENGIEERING

Ostvareni učinci radom bunara

- drenažni bunari

Radom bunara nivo podzemne vode u rudnom tijelu je od septembra 2008. godine do maja 2012. godine snižen sa 147,3 mnv na 92 mnv ili za 55,3 m. Zadovoljen je uslov da nivo vode u rudnom tijelu bude minimum 10 m ispod nivoa radne etaže. Primjetno je da nakon uključivanja u rad novih bunara Bu 275 i Bu 30, za nepuna tri mjeseca, od 2.3.2012. do 21.5.2012. nivo podzemne vode je snižen u prosjeku za 14 metara.

Slika 8. Pregled mjesečnog nivoa podzemne vode na P.K. “Buvač”

za period septembar 2008. – maj 2012. godine

Nivo podzemne vode na bunaru Bu 271 je znatno viši od drugih mjernih mjesta jer se radi o obodu rudnog tijela koje je nepravilne podine, nalazi se na koti 100, ali je to prilično mala površina i nema značajniji uticaj na odvodnjavanje kopa u cijelosti.

- Ekranski bunari

Osnovna namjena ekranskih bunara je spriječavanje dotoka vode u radno područje kopa iz aluvijalnog sloja iz pravca zapada i sjevera. Predviđena dubina bunara iznosi od 13,3 do 48,5 m , odnosno 5 m ispod hidrogeološkog kolektora. Bunari su bušeni 760 mm do dubine od 5 m nakon čega je ugrađena čelična obložna kolona prečnika 600 mm i nastavljeno bušenje prečnikom 500 mm do konačne dubine bunara, nakon čega je izvršena ugradnja bunarske konstrukcije, pune i filterske žičane konstrukcije prečnika 273 mm, kao i pijezometarske konstrukcije 5/4“. Nakon ugradnje konstrukcije izvršeno je ugradnja filterskog kvarcnog zasipa 4 – 8 mm i vađenje obložne kolone, zatim čišćenje, ispiranje, razrada i testiranje izrađenih bunara.

Slika 9. Sati rada ekranskih bunara u periodu

Page 79: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 79 MINING ENGIEERING

2010 do 2012. Godine

Slika 9. Sati rada ekranskih bunara u periodu 2010 do 2012. godine

ZAKLJUČAK

Uspostavljanje monitoringa sistema odvodnjavanja je stručan zadatak i za osmatranje, praćenje, merenje i obradu podataka neophodna je dobro organizovana i opremljena služba. Uspješna tehnička realizacija programa monitoringa zavisi uglavnom od slijedećih faktora:

- odgovornosti zaposlenih u službi zaduženoj za sprovođenje monitoringa, - kvaliteta izvedenih tehničkih priprema, - sistematičnosti u realizaciji osmatranja, - opremljenosti tehničkim sredstvima, i - interpretacije mjerenih rezultata, kao i brzine reagovanja na određene promjene.

U ovom radu urađena je ukupna analiza uspostavljenog monitoringa koji je obuhvatio kontrolu rada objekata za zaštitu površinskog kopa od površinskih i podzemnih voda, prćenje hidrodinamičkih procesa a time i sagledavanje neophodne pouzdanosti i efikasnosti cjelokupnog sistema odvodnjavanja na P.K. “ Buvač”. Po završetku izgradnje objekata odvodnjavanja na P.K. Buvač kao i njihovog stavljanja u eksploataciju vrši se redovno osmatranje, praćenje i evidencija padavina, nivoa podzemne vode, sati rada pumpi a preko njihovih kapaciteta i količine ispumpane vode.

Nivo podzemne vode se mjeri na preko 30 objekata (pijezometara i bunara) o čemu se vodi evidencija, a količina atmosferskih padavina se mjeri svaki dan, ukoliko ih ima, tako da se mogu vršiti analize i donositi određeni zaključci o uticaju padavina na promjenu nivoa podzemnih voda.

Nakon urađene ukupne analize uspostavljenog monitoringa koji je obuhvatio kontrolu rada objekata za zaštitu površinskog kopa od površinskih i podzemnih voda, može se konstatovati sljedeće:

Na nivo vode na osmatračkim objektima u blizini rječnog korita Gomjenice veliki uticaj ima količina padavina, odnosno vodostaj Gomjenice, i sa udaljavanjem od Gomjenice uticaj slabi, što ukazuje na zaglinjenost aluvijona i mali koeficijent filtracije,

Radom bunara nivo podzemne vode u rudnom tijelu za posmatrani period snižen za 55,3 m. čime je zadovoljen uslov da nivo vode u rudnom tjelu bude minimum 10 m ispod nivoa radne etaže.

Funkcionalnost bunara, drenažnih usjeka, ekrana i svih drugih hidrotehničkih objekata i opreme je na zadovoljavajućem nivou.

Opšta ocjena na osnovu sagledanih ukupnih rezultata monitoringa jeste da je sistem odvodnjavanja odnosno stanje svih hidrotehničkih objekata zadovoljavajuće što znači da je uspostavljeni sistem pouzdan i funkcionalan tako da obezbjeđuje bezbjedne uslove za izvođenje eksploatacionih radova na površinskom kopu.

Page 80: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 80 MINING ENGIEERING

LITERATURA

[1] Tehnički projekat odvodnjavanja prvog vodonosnog sloja i površinskih voda- knjiga 3.

[2] Ivković M., Odvodnjavanje u rudarstvu, Beograd, 2005. Godine

[3] Simić R., Kecojević V., Objekti za odvodnjavanje voda na površinskim kopovima, Beograd, 1997 godine [4] Simić R., Mršović D., Pavlović V., Odvodnjavanje površinskih kopova, Beograd, 1984 godine

Page 81: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 81 MINING ENGIEERING

UDK:65.015:519,21:330,322(0,45)=861 doi:105937/rudrad 1301103S Slobodan Majstorović*, Vladimir Malbasic*, Jelena Trivan* , Ljubica Figun *, Miodrag Celebic*

ASPEKTI BEZBJEDNOSTI I ZAŠTITE ŽIVOTNE I RADNE SREDINE PRILIKOM UPOTREBE ANFO EKSPLOZIVA U RUDNIKU “SASE”

SREBRENICA

Rezime AN-FO eksplozivi su, u uslovima eksploatacije mineralnih sirovina u BiH, uglavnom do sada našli upotrebu u površinskoj eksploataciji. U poslednje vrijeme preduzeća koja vrše podzemnu eksploataciju analiziraju mogućnosti upotrebe ove vrste eksploziva i u podzemnoj eksploataciji a tehnološko unaprijeđenje i poboljšanje minersko tehničkih karakteristike AN-FO eksploziva te korišćenje svjetskih iskustava u kreiranju optimalnog odnosa AN/gorivo ulje, daju za pravo da se počne njihova šira i masovnija upotreba i u podzemnoj eksploataciji a sve u cilju smanjenja operativnih troškova proizvodnje na rudniku. Jedan od primjera je Rudnik olova i cinka “Sase” koji je u namjeri da počne redovnu i masovnu upotrebu AN-FO eksploziva u eksploataciji rude olova i cinka izveo sveobuhvatnu analizu o mogućnosti upotrebe AN-FO eksploziva u podzemnoj eksploataciji polimetaličnih mineralnih sirovina sa čvrstim stijenama u radnoj sredini, sa detaljnom obradom tehničkih, tehnoloških, ekonomskih I bezbjedonosnih aspekata te analize. U ovom radu se daju bezbjedonosno-sigurnosni aspekti te analize, gdje se pored determinisanja svih rizika, propisa i mjera zaštite na radu prilikom vršenja bušačko-minerskih radova, utvrđuju i postdetonacioni efekti odnosno definisanje svih izvora opasnosti koji mogu nastati upotrebom ANFO eksploziva u smislu zaštite zdravlja zaposlenih. Analizirana je radna sredina, AN-FO eksplozivi dostupni na lokalnom tržištu i njihov način aktiviranja te detaljan prikaz svih mogućih posteksplozivnih pojava. Prilikom analize su korišćena svjetska iskustva vezana za upotrebu AN-FO eksploziva u podzemnoj eksploataciji. Ključne riječi: AN-FO eksploziv, podzemna eksploatacija, čvrste stijene, bezbjedonosno-sigurnosni aspekti *Univerzitet u Banjaluci, Rudarski Fakultet Prijedor e-mail: [email protected]

Page 82: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 82 MINING ENGIEERING

UVOD

Podzemna eksploatacija neslojevitih ležišta ili podzemna eksploatacija ležišta u čvrstim stijenama , danas ima nekoliko aspekata koji omogućavaju njen razvoj:

- raspoloživa ležišta mineralnih sirovina nalaze se na sve većim dubinama i za najveći broj njih ne postoje uslovi koji bi naveli na razmatranje mogućnosti površinskog otkopavanja,

- tehnološki razvoj u proizvodnji opreme i same tehnologije podzemnog otkopavanja omogućuje ekonomično otkopavanje sa velikim kapacitetima i malim učešćem ljudskog rada i na kraju,

- rastuća ekološka svijest čovječanstva i prijeteći kolaps planete najsnažnije favorizuju podzemnu eksploataciju (1). Pored direktnih efekata bušačko-minerskih radova na rad utovarno transportne opreme i ostvarivanje projektovanih i planiranih učinaka na utovaru, oblik i veličina mase odminirang materijala, organizacija ove tehnološke faze ima u podzemnoj eksploataciji veoma veliko učešće u strukturi ukupnih troškova eksploatacije. koji u konkretnom slučaju eksploatacije ruda olova i cinka u Rudniku Sase prelazi 40 % . Rudnik olova i cinka “Sase” je u namjeri da počne redovnu i masovnu upotrebu AN-FO eksploziva u eksploataciji rude olova i cinka izveo sveobuhvatnu analizu o mogućnosti upotrebe AN-FO eksploziva sa detaljnom obradom tehničkih, tehnoloških, ekonomskih i bezbjedonosnih aspekata te analize. Napravljen je plan aktivnosti pri čemu su usaglašeni termini ali i svi parametri bušenja i miniranja sa kojim su izvršena probna miniranja uz napomenu da su bušački radovi izvođeni prema postojećim projektnim rješenjima a novine su unešene samo upotrebom novih vrste eksploziva. Analiza je trebala da opravda upotrebu ANFO eksploziva u Rudniku Sase pored tehničko-tehnoloških i tehno-ekonomskih pitanja i sa aspekta bezbjedonosno-sigurnosnih pitanja, što je predmet ovog rada. Bezbjedonosni-sigurnosni aspekti upotrebe ANFO eksploziva u Rudniku Sase podrazumijevaju determinisanje svih rizika, propisa i mjera zaštite na radu prilikom vršenja bušačko-minerskih radova, utvrđujući i postdetonacione efekte odnosno definišući sve izvore opasnosti koje mogu nastati upotrebom ANFO eksploziva u smislu zaštite zdravlja zaposlenih.

1. SASTAV I OSOBINE GASOVA KOJI NASTAJU POSLIJE EKSPLOZIJE ANFO EKSPLOZIVA

Da bi eksplozivi imali određene minersko-tehničke karakteristike izrađeni su od različitih komponenti, koje imaju određene uloge kao (2):

- Nitrati kalijuma i natrijuma ulaze u sastav eksploziva kao potencijalni nosioci kiseonika. - Senzibilizatori, materije koje se dodaju radi povećanja osetljivosti i radne sposobnosti

eksploziva (trotil, nitroglikol, želirani nitroglicerin i dr.). - Sagorljive materije, u čvrstom ili tečnom stanju, koje potpomažu sagorijevanje i povećavaju

količinu energije (metalni prahovi, retortni ugalj i dr.). - Flegmatizatori, materije koje smanjuju osetljivost eksploziva, tako što kristale eksplozivne

materije presvuku slojem inertne materije, čime se spračava kontakt kristala i međusobno trenje,

- Materije koje obezbeduju stabilnost suspenzije i viskozitet. Dodaju se supstance koje lako hidrolizuju i obično se koriste natrijumova so, karboksimetilceluloze, gar i dr.

Page 83: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 83 MINING ENGIEERING

Poslije eksplozije obrazuje se znatna količina gasova. Ako je eksploziv imao pozitivan ili nulti bilans kiseonika, i ako se razlaganje vršilo pri normalnoj eksploziji, gasovi kojI nastaju su: azot, ugljendioksid, vodena para i eventualno nešto kiseonika. Sastav gasnih produkata poslije miniranja ne zavisi samo od hemijskog sastava eksploziva, već i od obloge patrone eksploziva, uslova miniranja, fizičkog stanja eksploziva, karakteristika stijena, začepljenja i dr. Zbog toga se u produktima razlaganja eksploziva mogu pojaviti i otrovni gasovi kao što su: ugljenmonoksid (CO), ugljendioksid (C02), oksidi azota-azotmonoksid (NO) i azotdioksid (N02), zatim sumporni gasovi-sumporvodonik (H2S) i sumpordioksid (S02) i rijeđe živine i olovne pare. Sumporni gasovi nisu proizvod eksplozije, jer savremeni eksplozivi i sredstva za paljenje mina (izuzev sporogorućeg štapina) ne sadrže sumpor. Ovi gasovi se izdvajaju iz sulfidnih minerala pod uticajem eksplozije. B.D. Rossi je 1966. godine na bazi laboratorijskih ispitivanja sistematizovao uzroke stvaranja otrovnih gasova, po veličini uticaja kako slijedi (2): - osobine stijena koja okružuju eksplozivno punjenje, - hemijski sastav eksploziva, - omotač patrone eksploziva, - uslovi izvođenja miniranja. Z.G. Pozdnjakov i B.D. Rossi su 1971. godine razvrstali stijene, prema količini otrovnih gasova koji se stvaraju pri miniranju isvojih istraživanja i izveli sledeće zaključke (2):

- Što je veća čvrstoća stijena stvara se veća količina CO. - Pneumatsko punjenje minskih bušotina značajno utiče na smanjenje štetnih gasova. - Položaj udarne patrone u minskom punjenju i smjer iniciranja utiče na sastav i količinu

otrovnih gasova. - Najmanja količina otrovnih gasova se izdvaja ako se udarna patrona stavi na dno minske

bušotine. - Veličina zazora između minskog punjenja i prečnika bušotine utiče na stvaranje otrovnih

gasova. Najmanja količina štetnih gasova stvara se pri najmanjem zazoru. - Vrsta materijala za začepljenje znatno utiče na pojedinačnu i ukupnu količinu otrovnih

gasova. Najveće količine otrovnih gasova stvaraju se uz primjenu glinenog čepa. Primjenom NaCl, vode, rastvora Km i 04, NaHC03 želatinoznog gela, smanjuje se pojedinačna količina otrovnih gasova (2).

U sledećoj tabeli su date vrijednost maksimalne dozvoljene količine pojedinih gasova, mg/m3.

Tabela 1- Maksimalne dozvoljene količine pojedinih gasova, mg/m3

Ugljenmonoksid (CO) 5,8 Azotmonoksid (NO) 3,0 Azotdioksid (N02) 9,0 Sumporvodonik (H2 S) 10,0 Sumpordioksid (SO2) 10,0 Olovne pare (Pb) 0,15 Živine pare (Hg) 0,10

Page 84: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 84 MINING ENGIEERING

- Ugljenmonoksid (CO), Dopuštena količina ugljenmonoksida u rudničkoj atmosferi je 0,02 mg/l (0,0016% zapremina). - Oksidi azota (NO, N02), Dopuštena koncentracija je 0,005 mg// ili 0,001% zapremine. - Sumporvodonik (H2S), pri koncentraciji od 0,1% H2S, u vazduhu posle kratkog vremena nastupa smrt. U smješi sa vazduhom pri temperaturi od 600°C je zapaljiv, a pri sadržaju od 4,5% obrazuje sa vazduhom eksplozivnu smješu. Stvara se pri trulenju organskih materija koje sadrže sumpor. - Sumpordioksid (S02), Ako ga u vazduhu ima 0,03% opasan je po život. Dopuštena koncentracija u atmosferi je 0,0007% zaprem. - Vodonik (H2),-. Vodonik pomešan sa vazduhom, odnosno sa kiseonikom stvara jaku eksplozivnu smešu.Dejstvo eksplozije je najjače pri 28,6% H2 u vazduhu. - Živine pare; Živa i najmanje količine živinih para u vazduhu su škodljive po zdravije i otrovne. Znaci trovanja su nervoza i drhtanje. Štetno djeluje na želudac i sluzne žlijezde (2).

1.1. HEMIJSKI I FIZIČKI FAKTORI KOJI UTIČU NA STVARANJE AZOTNIH OKSIDA NOX PRI MINIRANJU ANFO EKSPLOZIVIMA

Toksični gasovi kao CO i NO su proizvodi detonacije eksploziva. Implikacije i mogućnosti smanjivanja ovih produkata je ispitivana nekoliko decenija, od strane mnogih institucija i istraživača. U ovoj Studiji dajemo samo neka od njih, koja generalno daju osnvone informacije o hemijskim i fizičkim faktorima koji utiču na stvaranje toksičnih gasova pri eksploziji ANFO eksploziva. Nacionalni institute za profesionalnu bezbjednost i zdravlje (The National Institute for Occupational Safety and Health -NIOSH) je u nivou laboratorijskih ispitivanja identifikovao faktore koji mogu uticati na stvaranje azotnih oksida (NOx) pri neidealnim uslovima za miniranje i neidealnim eksplozivima. Mješavine eksploziva se miješaju sa drobljenim materijalom nastalim prilikom bušenja, gubitak gorivog ulja u amonijum nitratu i gorivo ulje (ANFO), razblaženja amonijum nitrata sa vodom, stepen zbijenosti eksploziva, gustina ANFO i kritični prečnik su identifikovani kao uticajni faktori za porast stvaranja. Eksperimenti su se izvodili za istraživanje efektivnosti različitih aditiva u redukciji stvaranja NOx iz ANFO-a (5). Aluminijumski puder, ugljena prašina, urea, i višak gorivog ulja u ANFO su testirani i utvrđena je zavisnost prilikom stvaranja azotnih oksida (NO) i azotnih dioksida (NO2). Gasni produkti detonacije eksploziva zavise od sastava eksploziva i okolnih uslova prilikom upotrebe, ali ugljen dioksid, vodena para, azot se uvijek produkuju. Pored toga, CO, NO, NO2, metan (CH4), i vodonik (H2) mogu da se stvore u manjim ili većim količinama. Svi eksplozivi generišu CO i NO, sa stvaranjem CO u nekim slučajevima i većom količinom od njih i NO4. Komercijalni eksplozivi obično generišu između 6 do 31 l/kg eksploziva CO u vazduhu.Bilans kiseonika u eksplozivima (uključujući ambalažu), generalno kontroliše stvaranje CO i NO. Višak goriva ili negativni bilans kiseonika u osnovi povećava stvaranje CO I smanjuje stvaranje NO . Sa druge strane, manjak goriva ili pozitivni bilans kiseonika u osnovi rezultuje smanjenjem CO i značajnim povećanjem NO . Elshout konstatuje 3 reakcije koje nastaju oksidacijom NO u NO2 (3):

2NO + O2 ÷ 2 NO2 (1) NO + O3 ÷ NO2 + O2 (2) NO + RO2 ÷ NO2 + RO (3)

Page 85: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 85 MINING ENGIEERING

Elshout sugeriše da su gore navedene tri reakcije moguće: -u atmosferi koja sadrži visoke koncetracije reaktivnih ugljovodonika -3 - pri prisustvu visoke UV radijacije -2 i -reakcije na niskoj koncetraciji NO pri prisustvu ozona- za test u vazduhu-1

ANFO (94/6) proizvodi prosječno CO 13.8 (± 4.5) l/kg i 25.5 (± 5.1) l/kg NO. Kako je i očekivano povećanjem dizel goriva na 8 %, CO raste 2,5 puta na 35.1 (± 6.4) l/kg , sa smanjenjem 14 % NO na 22.0 (± 5.1) l/kg . Dodavanjem aluminijumskog pudera u 94/6 ANFO mješavinu lagano raste stvaranje CO na 25.3 (± 6.9) l/kg dok imamo lagano smanjenje NO na 16.2 (± 5.5) l/kg (3). Nekoliko faktora se identifikuje u neidealnoj detonaciji: slaba otkrivka, koja značajno smanjuje potrebnu zbijenosti punjenja; značajna infiltracija vode u dugim intervalima između eksplozivnih punjenja, koja mijenja kompoziciju eksploziva; dugačke bušotine, koje proizvode hidrostatičke pritiske na dnu bušotina i smanjenje mogućnosti uspješne propagacije detonacije; prepunjavanje eksplozivom koja se dešava uslijed vlažnosti otkrivke i žila gline. Istraživanja su pokazala da stepen zbijenosti eksplozivnog punjenja i materijala koji se minira imaju oboje značajan uticaj na stvaranja gasova. Kao rezultat istraživanja se došlo do zaključka da mjerenja gasova prilikom miniranja na jednom rudniku ne mogu biti mjerodavna za drugačije uslove rada i miniranja na nekom drugom rudniku. Testovi sa malim količinama, sa boljom kontrolom promjenljivih zahtijevaju u skladu definisanja faktora i indukuju minimizaciju problema (4). Krupnoća zrna u ANFO - mnoga ispitivanja u testnim komorama je izvedeno radi upoređivanje gasova iz detonacije ANFO u granulama ili prilovanog . Sa istim stepenom zbijenosti, stvoreni NO2 iz prilovanog AN je bio 4 puta niži od količine stvorene iz standardnog granulisanog ANFO. I CO i H2 nastali detonacijom prilovanog ANFO su niži za 2 puta a NO je bio 30% niži nego kod granulisanog ANFO. Nema značajnih razlika kod stvaranja CO2. Sa prilovanim AN, amonijum nitrat je vjerovatno intimnije miješan sa uljem u slučaju granula. Više bliskog kontakta između amonijum nitrata i ulja uzrokuje kompletnije reakcije dekompozicije. Sa granulama, reakcija rastvaranja u granulama nitrata dalje poslije detonacije stvara više NO (5).

Oksidacija NO u NO2 u vazduhu zavisi od inicijalne NO koncetracije u trenutku. Koncetracije i NO i NO2 su dodate i zbir je dat kao NOx koncentrcija. NOx koncentracija pokazuje značajan porast sa smanjivanjem zbijenosti (gustine punjenja) . Veličina zrna eksploziva je vjerovatno najvažnija u ovom slučaju. Eksplozivi kao ANFO koji teže razlaganju i stvaranju NOx.

Slika 1. Efekti relativne zbijenosti na NO i NO2 produkte prilikom detonacije ANFO, Emulzije i mješavine 50/50 (5)

Slika 2. Efekti relativne zbijenosti na CO, CO2 i H2 produkata prilikom detonacije ANFO, Emulzije i mješavine 50/50 (5)

Page 86: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 86 MINING ENGIEERING

Kritični prečnik ANFO eksploziva- vršena su mnoga ispitivanja u kojima je pronađena zavisnsot detonacione brzine i ovih eksploziva od prečnika punjenja. Tako prečnik od 100 mm može imati 3048 m/s, prečnik 150 mm oko 3658 m/s a prečnik 400 mm do 4877 m/s. Isto tako je utvrđeno da prečnici manji od 30 mm smanjuju det.brzinu za 60 %.

Sadržaj ANFO aditiva/dodataka - Stvaranje post-eksplozivnog NO2 je postavljeno kao rezultat termičke reakcije (uz uslove za stvaranje idealnih produkata detonacije), koja rezultuje povećanje NOx. NO komponenta dobro oksidira u vizuelni narandžasti oblak karakterističan za NO2 kada se emituje u amtosferu. Vršena su i upoređivanja količina NO i NO2 iz ANFO prilikom dodavanja različitih aditiva. Višak dizel goriva (8%), redukuje NO2 3 puta sa manjim nivoom redukcije NO. Dodavanjem 3% Pittsburgh pulverizovanog uglja (PPC) prašine na 6% gorivog ulja (FO) je efektivno u takvom odnosu. 3% FO (gorivog ulja) + 3% PPC (uglja) proizvodi manje NO2 nego mješavina sa 6% FO-gorivog ulja, sa porastom NO. Izrada eksploziva bogatih uljem dovodi do redukcije NOx, ali na račun porasta CO. Poboljšanje dobijeno nekim aditivom sa manjom gustinom će se izgubiti u nekim eksplozivima I to je kompromis u slučajevima dugih intervala bušotina u njihovog punjenja i iniciranja u slučajevima rastvaranja AN u vodi ili gubitak/slabljenje učešća gorivog ulja kroz operaciju povezivanja štapinom uz zidove bušotina. U mnogim slučajevima kompozicija bušotine treba biti zaštićena od uticaja vode apsorpcije ulja sa okolnim materijalom u bušotini. To je namjenska funkcija WR aditiva (5). Materijal za začepljenje- U nastavku analize aditiva, začepljenje sa vodom (vodenim čepovima) bi trebalo potencijalno da redukuje stvaranje NO2 rastvaranjem rastvorivih kiselih gasova u vodi povećanim baznim materijalom kao natrijum karbonat (Na2CO3). Jedan litar miješanih sa 10 grama Na2CO3 redukuje mjerljivi NO2 na 48% sa malim smanjenjem NO. Praktično začepljenje sa vodom može biti teško upotrebljivo na terenu. Jedan od uslova jeste da se obezbijedi da voda ne curi/teče u niže bušotine u dužem period između punjenja i aktiviranja. Dodavanjem želiranog agensa u dospjelu vodu moguće je minimizirati njen uticaj. Obaranjem vlažnosti u zoni miniranja primarno pored paljenja utiče i na apsorpciju NO2 i smanjenje prašine dispergovane u toku miniranja (5). Sadržaji gorivog ulja/goriva i AN rastvaranje - Uobičajeno objašnjenje za post-detonacione NO2 gasove iz ANFO je da je to mješavina sa sniženim sadržajem ulja (pozitivni bilans kiseonika) ili su bušotine bile vlažne. Ako se radi o smanjenom sadržaju ulja, stvaranje oksida

Slika 3. Detonacionona brzina ANFO u zavisnosti od prečnika punjenja (5)

Page 87: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 87 MINING ENGIEERING

azota je radi nekompletne redukcije nitrata . Mogućnost postoji da balansirana ANFO formulacija može postati siromašna uljem ako se ulje gubi u zidovima bušotine curenjem (5) Sadržaj agensa za gustinu - Dvoprocentni Cabosil* (gasni silicijum dioksid) je dodan gorivoj kompnenti I brzo miješan sa granulama AN. Cabosil je spriječio curenje goriva između granula Progušćeno gorivo značajno smanjuje gubitak goriva curenjem ali ne redukuje gubitak AN kada je smjesti u simulirane bušotine sa 8 % vode. WR kondicioner 260, ANFO želirajući agens,je dodan u ANFO jer kondicioner usporava gubitak AN. Kao što AN povlači vodu iz zidova bušotine, WR kondicioner želira vodu blizu zidova bušotine, tako redukuje odnos AN rastvaranja. U osnovi teža eksplozivna punjenja (gustina-zbijenost) imaju pravilnije detonacije i manje stvaranje NO i NO2 Aditivi kao ugljena prašina i veći procenat goriva miješani sa ANFO malo smanjuju stvaranje NO dok urea i WR kondicioner 260 blago povećavaju u odnosu na 6% ANFO. Svi ANFO aditivi koji su testirani ovim ispitivanjima smanjuju stvaranje NO2 . Ispitivanja sa malim količinama ukazuju da povećan sadržaj goriva (8%) u AN smanjuje formiranje NO2 kao i drugi aditivi uključujući ugljenu prašinu. Laboratorijski rezultati su pokazali da suve, meke i porozne stijene ,mogu povući značajne količine ulja iz ANFO u period između punjenja i paljenja eksplozivnog punjenja. Stepen gubljenja ulja je veći u bušotinama sa manjim prečnicima. Isto tako u stijenama otkrivke sa vlažnošću od 8 % utiču na rastvaranje AN iz ANFO kroz vrijeme. U praksi je bitno u radu na terenu spriječiti gubljenje ulja i rastvaranje AN u period između punjenja bušotine i njenog aktiviranja (5). U jednom od radova koji se bavio analizom stvaranja toksičnih gasova u zavisnosti od vrste eksploziva date su veličine koncetracija pojedinih gasova prema CFR standard i prikazane u tabeli 2. Tabela 2 -Stvaranje toksičnih gasova i relativna toksičnost prema CFR standard (3) Eksploziv COa,e,f, l/lg NOb,e,f , l/kg NO2

c,e,f , l/kg Otrovni gasovi d ,e,l/kg ANFO 94/6; 5 %Al

25,3 16,2 0,6 68,0

ANFO 94/6 13,8 25,5 0,4 72,3 ANFO 92/8 35,1 22,0 0,1 80,5 Komerc. buster 250,8 1,3 0 253,3 - a,b,c izmjereni CO,NO I NO2 u argon atmosferi, f-standardna devijacija - Otrovni gasovi, l/kg (ft3/lb), preračunati na standard 30 CFR (dijelovi 15 i 20) . - Standard 30 CFR (Federal Relative Toxicity Standard 30 CFR Part 15) propisuje dozvoljeno

stvaranje gasova u podzemnoj eksploataciji uglja i drugim rudnicima sa gasovima. Zahtjev je da ukupni gasovi ne prelaze 155 l/kg u standardnim uslovima (3).

Sva ova ispitivanja i iskustva su poslužila i pri izradi ove Studije kada su planirana probna miniranja i radni uslovi izvođenja probnih minirnja, kako bi se dobili što upotrebljiviji i reprezentativniji podaci, koji bi potvrdili ili isključili mogućnost upotrebe ANFO eksploziva u konkretnim uslovima Rudnika Sase.

Page 88: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 88 MINING ENGIEERING

2. SNIMANJA I ANALIZA GASOVA POSLIJE MINIRANJA

Prilikom miniranja u podzemnim radilištima u radnu sredinu se izdvajaju toksični gasovi Ugljen monoksid, Oksidi azota,Sumporni gasovi, Živine i olovne pare, te stvaranje od mineralnog materijala povišene koncentracije agresivne mineralne prašine i netoksični (inertni) gas Ugljen dioksid. Kvalitativni i kvantitativni sadržaj toksičnih gasova u produktima eksplozije, kod izvođenja minerskih radova u podzemnim radilištima ima veliki značaj kako u pogledu bezbjednosti rada tako i u pogledu ekonomike (6). Da bi se koncentracija toksičnih gasova poslije miniranja svela na ispod MDK, potrebno je određeno vrijeme za ventilaciju. To vrijeme je neproduktivno, izgubljeno. Djelovanje toksičnih gasova je uzrok ne samo oboljenja već i smrtih povreda u slučaju nedovoljne ventilacije, preranog ulaska radnika na radilište poslije miniranja , zadržavanja radnika u toksičnoj radnoj sredini i nedostatka mjera neutralizacije toksičnih gasova. Uslijed hroničnog trovanja radni učinak radnika slabi, a njegov radni vijek se smanjuje . Zbog visokog broja bolovanja profesionalno oboljelih radnika od toksičnih gasova , proizvodnja mineralnih sirovina i produktivnost opadaju, a povećavaju se ljudski , materijalni i socijalni problemi. Istraživanja mehanizma stvaranja toksičnih gasova prilikom miniranja i izučavanja faktora koji utiču na njihov sastav i količinu se, u industrijski razvijenim zemljama, sprovode zadnjih par decenija, i može s konstatovati da jedan dio uticaj do danas nije dovoljno istražen. Mišljenja naučnika o tim problemima su dosta protivrječna, to je i razumljivo, jer je istraživanje stvaranja toksičnih gasova , njihove raspodjele i ponašanja prilikom i nakon miniranja , vrlo složeno i vezano sa radom u gasovima i prašinom zagađenoj atmosferi podzemnih prostorija. Osim toga izučavanja, uglavnom obuhvataju pojedinačne uticaje i najčešće su zasnovani na laboratorijskom radu, pa tako dobijeni rezultati znatno odstupaju od rezultata dobijenih u industrijskim –proizvodnim uslovima. U našoj zemlji ova naučna problematika do sada nije izučavana u industrijskim , a ni u laboratorijskom obimu. Nedovoljno osvetljenje pojedinačne, a naročito grupne zavisnosti u svjetskoj naučnoj praksi i stanje u rudarskoj industriji kod nas u tom pogledu, inicirali su potrebu za izučavanjem ovog problema. U toku analize mogućnosti upotrebe ANFO eksploziva u Rudniku olova I cinka Sase izvršena je studija i terenska osmatranja uticaja stvaranja toksičnih gasova u procesu probnog miniranja u tom rudniku.

2.1. LOKACIJE I USLOVI MJERENJA I ISPITIVANJA TOKSIČNIH I NETOSKIČNIH GASOVA U TEHNOLOŠKOM PROCESU MINIRANJA U RUDNIKU SASE

Mjerenja i ispitivanja gasova nastalih miniranjem sa upotrebom AN-FO eksploziva su vršena prilikom izvođenja probnih miniranja obavljenih 01.10. i 22.10. 2010. godine. Mjerna mjesta su bila data u sledećem tekstu.

2.1.1. Mjerenja vršena prilikom probnih miniranja 01.10.2010. godine

Page 89: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 89 MINING ENGIEERING

MM broj 1.OTKOPNI BLOK 312/2 PH (podetažni hodnik) LIJEVO-OBARANJE PLOČE - Upotrebljeni ekploziv ANFO 63 kg i 9kg praškastog eksploziva - Rudarska mehanizacija- Mašina za mašinsko punjenje minskih bušotina nalazi sa na licu

mjesta i ista nije u radu. - Radna snaga - Na radilištu se za vrijeme mjerenja nazi 10 radnika od kojih teške fizičke

poslove obavlja 4 radnika , a ostali radnici uglavnom obavljaju srednje teške poslove . - Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem

Izvršena su i mjerenja 20 minuta poslije izvršenog miniranja MM broj 2. OTKOPNI BLOK 312/5a PSH (prilazno spojni hodnik) ČELO RADILIŠTA - Upotrebljeni ekploziv ANFO 32 kg i 2kg praškastog eksploziva - Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem - Izvršena su i mjerenja 20 minuta poslije izvršenog miniranja

MM broj 3. OTKOPNI BLOK 312/5a PH-1 Lijevo (podetažni hodnik) ČELO RADILIŠTA - Upotrebljeni ekploziv ANFO 28kg i oko 2 kg praškastog eksploziva - Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem - Rudarska mehanizacija- Mašina za mašinsko punjenje minskih bušotina nalazi sa na licu

mjesta kojom je vršeno punjenje minskih bušotina. Rudarska mašina za podzemnu eksploataciju utovarivač „TORO“ se nalazi nedaleko od mjernog mjesta , ali za vrijeme mjerenja nije radio

- Radna snaga - Na radilištu se za vrijeme mjerenja nalazi 6 radnika od kojih teške fizičke poslove obavlja 4 radnika, a ostali radnici uglavnom obavljaju srednje teške poslove ,

- Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem. Čelo radilišta se nalazi u radnoj prostoriji slijepi hodnik, zbog čega je otežana prirodna izmjena vazduha

- Izvršeno je i mjerenje 25 minuta poslije izvršenog miniranja 25 minuta poslije miniranja ekipa za mjerenje je na 20 m prema mjestu miniranja izmjerila koncentraciju Ugljen monoksida 350 ppm i ustanovila da zbog previsoke koncentracije dima , da nije u mogućnosti da izvrši potrebna mjerenja iako je bila opremljena izolacionim aparatima, pošto očitavanje izmjerenih vrijednosti ne bi bilo pouzdano urađeno zbog slabe vidljivosti, a samim tim i mjerenje ne bi odgovaralo stvarnom stanju. Procjena na licu mjesta je bila da će koncentracija dima i gasova trajati najmanje 180 minuta s obzirom na uslove i prirodnu izmjenu vazduha, zbog čega je odlučeno da se mjerenje prekine. Iz navedenih razloga nisu izvršena mjerenja poslije miniranja na mjernom mjestu broj 3.

2.1.2. Mjerenja vršena prilikom probnih miniranja 22.10.2010. godine

MM broj 4. OTKOPNI BLOK 312/2 PH-5 (podetažni hodnik) LIJEVO - Upotrebljeni ekploziv ANFO 37 kg i oko 0,5 kg praškastog eksploziva - Mjerenja urađena 20 minuta poslije miniranja MM broj 5. OTKOPNI BLOK 312/2 PH-5 (podetažni hodnik) DESNO ČELO RADILIŠTA - Upotrebljeni ekploziv ANFO 29 kg i 5 kg praškastog eksploziva - Mjerenja urađena 20 minuta poslije miniranja

MM broj 6.OTKOPNI BLOK 312/ PH-6 (podetažni hodnik) lijevo I desno čelo radilišta

Page 90: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 90 MINING ENGIEERING

- Upotrebljeni ekploziv ANFO 25 kg i oko 4,5 kg praškastog eksploziva - Mjerenja urađena 60 minuta poslije miniranja

Tabela 3 : Uslovi mjerenja i dobijeni rezultati (6) Mjerenja

MjerenoMjerenja 01.10.2010.

(mjerenja vršena prije miniranja-pri punjenju i 20 min. poslijeminiranja)

Mjerenja 22.10.2010.(mjerenja vršena prije miniranja-pri punjenju i poslije miniranja)

MM 1Otk. blok312/2 PH

MM 2Otk. blok312/5a PSH

MM3Otk.blok312/5a PH-1

MM 4.Otk.blok312/2 PH-5 lijevo

MM 5.Otk.blok312/2 PH-5 desno

MM 6 Otk.blokI312/ PH-6 l/d

Metereološke prilike na ulazu ujamu

temperatura vazduha: 9,00Crelativna vlažnost vazduha : 84%brzina strujanja vazduha: 0,58m/sPravac i smjer kretanja vazduha-pozitivan .

sjevero-istok>jugo-zapadatmosferski pritisak : 965 mbar

IV Horizont-hodnik 413temperatura vazduha: 2,30Crelativna vlažnost vazduha 73,3%brzina strujanja vazduha < 0,20m/spravac i smjer kretanja vazduha-pozitivan

sjevero-istok>jugo-zapadatmosferski pritisak 969 mbarradioaktivno zračenje 0,18μS

Mjerenja prije miniranja-pri punjenjuKlimatski uslovi - nema ventilacije(prirodna izmjena)

Temperature vazduha 14,40C/13-150C 13,10C/13-150C 14,40c/13-150C 15,50C/13-150C 15,50C/13-150C 15,60C/13-150CRelat.vlažnost vazduha 95.5%/ max 75% 88-95,6%/ max 75% 99.3%/ max 75% 95,0%/ max 75% 95,0%/ max 75% 93,4%/ max 75%Smjer kretanja vazduha uodnosu na izvor štetnosti

0,27m/s(max0,5)Negativan

< 0,20 m/s (max0,5)Neutralan

< 0,20 m/s (max0,5)neutralan

< 0,20 m/s(max0,5)Neutralan

< 0,20 m/s(max0,5)Neutralan

< 0,20m/s8 max0,5)

Vazdušni pritisak 965mbara/1013,25 960mbara/1013,25

959 mbara/1013,25 972 mbara/1013,25 972 mbara/1013,25 977 mbar/1013,25

polytest U tragovima/ - U tragovima Indikacija značajna(>12 mm na mjernojcjevčici )prisustvo toksičnihsupstanci

U tragovima

oxigëne 5%B 21,0% / Min 19,6% 21,0% /min19,6 20,8% /min19,6 21,0% /min19,6carbon monoxide 5/C 0,0ppm / 50 ppm Tragovi/50 ppm 0,00/50 ppm Tragovi/50 ppmcarbon dioxide 0,1% / a 0,05%/ 5000 p pm 0,5% 0,06 %/0,5 % 0,00 %/0,5 % Tragovi/ 0,5 %sulphur dioxide 1/ a 0;0 ppm/4 ppm 0,00 ppm/4 ppm 0,00 ppm/4 ppm Tragovi /4 ppmnitrogen dioxide 0,5/ c, 0;0 ppm/25 ppm 0,00 ppm/25 ppm 0,00 ppm/25 ppm 0,25 ppm/25 ppmhydrogen sulfide 1/c 0,0 ppm/7 ppm 0,00 ppm/7 ppm 0,00 ppm/7 ppm Tragovi/7 ppmcarbon disulfid 0,00ppm/15 ppmammonia 5/a nijemjereno/50 ppm Nije mjereno/50

ppmNije mjereno/50 ppm Tragovi/ 50 ppm

Mjerenja poslije 20 min 10 min poslije 20 min poslije 60 minposlijeKlimatski uslovi - nema ventilacije(prirodna izmjena)

Temperature vazduha 14,90C/13-150C 14,90c/13-150C 14,00C/13-150C 13,40C/13-150C 15,60C/13-150CRelat.vlažnost vazduha 90.5%/ max 75% 90.5% /max 75% 93,5%/max 75% 92,5%/ max 75% 94,5%/ max 75%Smjer kretanja vazduha uodnosu na izvor štetnosti

0,23m/s(max0,5)negativan

< 0,20 m/s (max0,5)Negativan

0,23 m/s(max0,5)Negativan

0,20 m/s(max0,5)Negativan

0,20 m/s 8max0,5)Negativan

Vazdušni pritisak 964mbara/1013,25 964 mbara 972 mbara/1013,25 971 mbara/1013,25 977 mbara/1013,25polytest U tragovima/ - U tragovima/ - U tragovima/ - U tragovima/ - U tragovima/ -oxigëne 5%B 20,5% / Min 19,6% 20,5% / Min 19,6% 20,6% / Min 19,6% 20,4% / Min 19,6% 20,2% / Min 19,6%carbon monoxide 5/C 0,0ppm / 50 ppm 0,0ppm / 50 ppm 1,0ppm / 50 ppm 2,0ppm / 50 ppm 46,0ppm / 50 ppmcarbon dioxide 0,1% / a 0,08%/ 0,5% 0,17%/ 0,5% 0,08%/ 0,5% 0,1%/ 0,5% 0,3%/ 0,5%Nitroze Gase 0,5/ a, Tragovi/ 25 ppm 0,3ppm/25 ppm 2,0ppm/25 ppmsulphur dioxide 1/ a 0,0 25ppm/4 ppm 0, 27ppm/4 ppm 0, 05ppm/4 ppm 0, 3ppm/4 ppm 0, 5ppm/4 ppmnitrogen dioxide 0,5/ c, 0,25 ppm/25 ppm 0,25 ppm/25 ppm 0,4 ppm/25 ppm 0,4 ppm/25 ppm 0, 6ppm/4 ppm

2.1.3. Prikaz I analiza izmjerenih koncetracija gasova prilikom probnih miniranja

Analizom koncetracije gasova nakon 20-25 minuta tokom probnih miniranja korišćenjem ANFO eksploziva, možemo utvrditi da su koncetracije daleko ispod graničnih vrijednosti prema CFR standardu (Tabela 2 -Stvaranje toksičnih gasova i relativna toksičnost ). Napominjemo da su snimanja vršena i prije punjenja eksploziva odnosno snimana su i početna-referentna stanja, koja takođe pokazuju neznatne ili nikakve koncetracije štetnih gasova – tabela 3. Na slikama 4, 5 i 6 su prikazani dijagrami snimljenih/uočenih koncetracija I dozvoljenih graničnih vrijednosti prema CFR standardu.

Page 91: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 91 MINING ENGIEERING

Slika 4: Analiza koncetracije CO i NOx 20 minuta poslije miniranja korišćenjem ANFO (6)

Slika 5: Analiza koncetracije CS2 i NO2 20 minuta poslije miniranja korišćenjem ANFO (6)

Page 92: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 92 MINING ENGIEERING

3. KOMENTARI MJERENJA I ZAKLJUČCI

U slučaju analize bezbjednosti i kvaliteta radne sredine prilikom korišćenja ANFO eksploziva, moguće je donijeti određene zaključke na osnovu rezultate mjerenja i ispitivanja uticaja miniranja ovim eksplozivima u podzemnoj eksploataciji Rudnika Sase: 1.Količina upotrebljenog eksploziva nema presudnu ulogu u stvaranju i trajanju koncentracije toksičnih i inertnih gasova u radnoj sredini. 2.Najveće koncentracije toksičnih i inertnih gasova su utvrđene na mjernim mjestima koja su prilikom miniranja imala najslabiju prirodnu ventilaciju, zbog nepovoljnog rasporeda horizontalnih i vertikalnih hodnika i nepovoljnog atmosferskog pritiska. 3.Rudarska mehanizacija na dizel pogon koja se koristi u podzemnoj eksploataciji u rudniku takođe ima negativan uticaj na stvaranje toksičnih gasova i inertnih gasova, te na smanjenje kiseonika, posebno u radnim prostorijama –hodnicima sa nepovoljnom prirodnom ventilacijom, tako da stvaranje toksičnih i inertnih gasova pri miniranju još nepovoljnije utiče na kvalitet vazduha, pa je neophodno u uslovima upotrebe dizel opreme i miniranja u podzemnoj eksloataciji obavezno primjenjivati vještačku ventilaciju sa proračunom brzine i pravca kretanja vazduha u radnim prostorijama, odnosno izradom projekta ventilacije radnih prostorija. 4.Kvalitetnim projektom ventilacije radnih prostorija – radilišta u podzemnoj eksploataciji opasnost od uticaja toksičnih i inertnih gasova na zdravlje radnika se značajno smanjuje odnosno, isključuje se opasnost od akutnog trovanja radnika (hronično trovanje radnika se ne može u potpunosti isključiti), a bitno se smanjuje i izgubljeno vrijeme poslije miniranja i ulaska radnika u bezbjednu radnu sredinu.

Slika 6: Analiza koncetracije H2S i SO2 20 minuta poslije miniranja k išć j ANFO (6)

Page 93: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 93 MINING ENGIEERING

LITERATURA:

[1] S,Torbica, N.Petrović : Metode i tehnologija podzemne eksploatacije neslojevitih ležišta, RGF Beograd, 1997. god.

[2] N.Purtić: Bušenje I miniranje, Univerzitetski udžbenik, RGF Beograd, 1900.god [3] M. L. Harris, M. J. Sapko, R. J. Mainiero: Toxic Fume Comparison of a Few Explosives

Used in Trench Blasting, National Institute for Occupational Safety and Health Pittsburgh Research Laboratory, 2002.

[4] Santis LD, RA Cortese: A method of measuring continuous detonation rates using off-the-shelf items. In: Proceedings of the 22nd Annual Conference on Explosives and Blasting Technique. Orlando, FL: International Society of Explosives Engineers, February 4-8, 1996, 11pp.

[5] M. Sapko,J. Rowland, R. Mainiero, I. Zlochower : Chemical and physical factors that influence Nox production-Exploratory Study 2002.

[6] R.Pavić, M. Čelebić: Izvještaj o izvršenim mjerenjima i ispitivanjima gasova u procesu miniranja ANFO eksplozivima “Gross” d.o.o. Gradiška RJ Srebrenica, decembar 2010.

[7] V. Čokorilo,J.Miljanović, D.Bogdanović, M.Denić: Razvoj podzemne eksploatacije u svetu, Časopis “Rudarski radovi”. 1/2002, Komitet za podzemnu eksploataciju,Resavica 2001.

[8] M.Stjepanović: Stanje sigurnosti i tehnička zaštita u rudnicima sa podzemnom eksploatacijom u Srbiji, Časopis “Rudarski radovi” 1/2001, Bor 2001.

Page 94: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 94 MINING ENGIEERING

Page 95: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 95 MINING ENGIEERING

Page 96: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 96 MINING ENGIEERING

Page 97: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 97 MINING ENGIEERING

Page 98: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 98 MINING ENGIEERING

Page 99: COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451 …

COMMITTEE OF UNDERGROUND EXPLOITATION YU ISSN:1451-0162 OF THE MINERAL DEPOSITS UDK:622

No.2-3,2013 99 MINING ENGIEERING