130416153345-phpapp02

  • Upload
    gustic1

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 130416153345-phpapp02

    1/16

    ETABS MANUAL

    !"#$%&&' )*+,- ./"-0121 3 4,125/ *6 7-"81

    .99*#+2/5 $* :;#*9*+,

  • 8/12/2019 130416153345-phpapp02

    2/16

    .=>?@ @A&7 4>B?):C@

    $C>6 D5:EFG2H 23 H5 :52H=>MEHG G>HCG= H5HI??L I 2GO 6G:H>52

    IM5EH +$"1. 5= O>HC>2 HC>6 6G:H>52 >6 G2:5E=I3GDN

    D*# 6;#$E,# +,$"2-1'

    9L *>2SGD-2 /=5K>?G(

    CHH2SGD>2N:5FT?GTP>GOU>DV;@WXBBAYZ[H=SVCM\HIM\256\2]C5HFI>?N:5F

    .?>DG6CI=G "::5E2H(CHHDG6CI=GN2GHT)I?G2H>256,G5

  • 8/12/2019 130416153345-phpapp02

    3/16

    Table of Contents

    1.0 Slab modeling .......................................................................................................... 4

    1.1 Assumptions ............................................................................................................. 4

    1.2 Initial step before run the analysis ........................................................................... 4

    2.0 Calculation of ultimate moments ............................................................................. 5

    3.0 Design of slab according to Eurocode 2 .................................................................. 7

    4.0 Example 1: Analysis and design of RC slab using ETABS................................... 11

    4.1 Ultimate moments results ...................................................................................... 12

    4.1.1 Maximum hogging and Sagging moment at Longitudinal direction Ly............. 12

    4.1.2 Maximum hogging and Sagging moment at Transverse direction Lx ................ 12

    4.1.3 Hand calculation results ...................................................................................... 13

    4.1.4 Hand calculation Results..................................................................................... 14

  • 8/12/2019 130416153345-phpapp02

    4/16

    1.0 Slab modeling

    1.1 Assumptions

    In preparing this document a number of assumptions have been made to avoid overcomplication; the assumptions and their implications are as follows.

    a) Element type : SHELLb) Meshing (Sizing of element) : Size= min{Lmax/10 or l000mm}c) Element shape : Ratio= Lmax/Lmin= 1 !ratio !2d) Acceptable error : 20%

    1.2 Initial step before run the analysis

    a) Sketch out by hand the expected results before carrying out the analysis.b) Calculate by hand the total applied loads and compare these with the sum of

    the reactions from the model results.

  • 8/12/2019 130416153345-phpapp02

    5/16

    2.0 Calculation of ultimate moments

    Maximum moments of two-way slabs

    If ly/lx< 2: Design as a Two-way slab

    If lx/ly> 2: Deisgn as a One-way slab

    !"#$% lx is the longer spanly is the shorter span

    Msx= asxnlx2in

    direction of span lx

    n:is the ultimate load m2

    Msy= asynlx2in

    direction of span ly

    n:is the ultimate load m2

    Bending moment coefficient for simply supported slab

    ly/lx 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0

    asx 0.062 0.074 0.084 0.093 0.099 0.104 0.113 0.118

    asy 0.062 0.061 0.059 0.055 0.051 0.046 0.037 0.029

    Maximum moment of Simply supported (pinned) two-way slab

    Maximum moment of Restrained supported (fixed) two-way slab

    Msx= asxnlx2in

    direction of span lx

    n:is the ultimate load m2

    Msy= asynlx2in

    direction of span ly

    n:is the ultimate load m2

    Bending moment coefficient for two way rectangular slab supported by beams

    (Manual of EC2 ,Table 5.3)

    Type of panel and moment

    considered

    Short span coefficient for value of Ly/Lx Long-span coefficients for all

    values of Ly/Lx1.0 1.25 1.5 1.75 2.0

    Interior panels

    Negative moment at continuous edge 0.031 0.044 0.053 0.059 0.063 0.032

    Positive moment at midspan 0.024 0.034 0.040 0.044 0.048 0.024

    One short edge discontinuous

    Negative moment at continuous edge 0.039 0.050 0.058 0.063 0.067 0.037

    Positive moment at midspan 0.029 0.038 0.043 0.047 0.050 0.028

    One long edge discontinuous

    Negative moment at continuous edge 0.039 0.059 0.073 0.083 0.089 0.037

    Positive moment at midspan 0.030 0.045 0.055 0.062 0.067 0.028

    Two adjacent edges discontinuous

    Negative moment at continuous edge 0.047 0.066 0.078 0.087 0.093 0.045

    Positive moment at midspan 0.036 0.049 0.059 0.065 0.070 0.034

  • 8/12/2019 130416153345-phpapp02

    6/16

    L: is the effective span

    Maximum moments of one-way slabs

    If ly/lx< 2: Design as a Two-way slab

    If lx/ly> 2: Deisgn as a One-way slab

    Note: lxis the longer span

    lyis the shorter span

    MEd= 0.086FL

    F:is the total ultimate

    load =1.35Gk+1.5QkL:is the effective span

    Note: Allowance has been made in the coefficients in

    Table 5.2 for 20% redistribution of moments.

    Maximum moment of Simply supported (pinned)

    one-way slab

    (Manual of EC2, Table 5.2)

    Maximum moment of continuous supported one-

    way slab

    (Manual of EC2 ,Table 5.2)

    Uniformly distributed loads

    End support condition MomentEnd support support MEd=-0.040FL

    End span MEd=0.075FL

    Penultimate support MEd= -0.086FL

    Interior spans MEd=0.063FL

    Interior supports MEd=-0.063FL

    !' total design ultimate load on span

    L:is the effective span

    Note: Allowance has been made in the coefficients in

    Table 5.2 for 20% redistribution of moments.

  • 8/12/2019 130416153345-phpapp02

    7/16

    3.0 Design of slab according to Eurocode 2

    Determine design yield strength of reinforcement

    !!" !!!"

    !!

    FLEXURAL DESIGN

    (EN1992-1-1,cl. 6.1)

    Determine K from:

    ! !!!"

    !!!!!"

    !!! !!!! ! !!!"!

    !! !!!"

    KK (then compression reinforcement required

    not recommended for typical slab)

    Obtain lever armz: ! !!

    !!!! !!! !!!"!!! ! !!!"!

    !=1.0 for no redistribution

    !=0.85 for 15% redistribution

    !=0.7 for 30% redistribution

    !!!!"# !

    !!"

    !!"! !!"!!"# !

    !!"!!"

    !!"!

    !!"!!"# !!!"

    !!"

    !!"!

    Area of steel reinforcement required:

    One way solid slab Two way solid slab

    For slabs, provide group of bars with area As.prov per meter widthSpacing of bars (mm)

    75 100 125 150 175 200 225 250 275 300

    Bar

    Diameter

    (mm)

    8 670 503 402 335 287 251 223 201 183 168

    10 1047 785 628 524 449 393 349 314 286 262

    12 1508 1131 905 754 646 565 503 452 411 377

    16 2681 2011 1608 1340 1149 1005 894 804 731 670

    20 4189 3142 2513 2094 1795 1571 1396 1257 1142 1047

    25 6545 4909 3927 3272 2805 2454 2182 1963 1785 1636

    32 10723 8042 6434 5362 4596 4021 3574 3217 2925 2681

    For beams, provide group of bars with area As. provNumber of bars

    1 2 3 4 5 6 7 8 9 10

    Bar

    Diameter

    (mm)

    8 50 101 151 201 251 302 352 402 452 503

    10 79 157 236 314 393 471 550 628 707 785

    12 113 226 339 452 565 679 792 905 1018 1131

    16 201 402 603 804 1005 1206 1407 1608 1810 2011

    20 314 628 942 1257 1571 1885 2199 2513 2827 3142

    25 491 982 1473 1963 2454 2945 3436 3927 4418 4909

    32 804 1608 2413 3217 4021 4825 5630 6434 7238 8042

    Check of the amount of reinforcement provided above the minimum/maximum amount ofreinforcement limit

    (CYS NA EN1992-1-1, cl. NA 2.49(1)(3))

    !!!!"# !

    !!!"!!"#!"! !!!!"#!" ! !

    !!!"#$ ! !!!!"# ! !!!"!!

  • 8/12/2019 130416153345-phpapp02

    8/16

    SHEAR FORCE DESIGN

    (EN1992-1-1,cl 6.2)

    MEd= 0.4F

    F:is the total ultimate

    load =1.35Gk+1.5Qk

    Maximum moment of Simply supported (pinned)

    one-way slab

    (Manual of EC2, Table 5.2)

    Maximum shear force of continuous supported

    one-way slab

    (Manual of EC2 ,Table 5.2)

    Uniformly distributed loads

    End support condition MomentEnd support support MEd=0.046FPenultimate support MEd= 0.6F

    Interior supports MEd=0.5F

    !' total desi n ultimate load on s an

    Determine design shear stress, vEd

    vEd=VEd/bd

    *+,-./01+2+-3 043,/5"# 6789::";9;95 1< &="="69>>

    "#%&'()*+

    Design shear resistance

    ! ! ! !!!""!

    ! !!!!"#$!!"!!

    !!"!! !!!!!"

    !!

    !!!""!!!!"!

    !

    ! ! !!

    !!"! !"!!"!!!!"# !!!!!!"#!!!"!!!! ! !!!!"!!"

    Alternative value of design shear resistance, VRd.c (Concrete centre) ("#a)

    !I=As/(bd)

    Effective depth, d(mm)

    "200 225 250 275 300 350 400 450 500 600 750

    0.25% 0.54 0.52 0.50 0.48 0.47 0.45 0.43 0.41 0.40 0.38 0.36

    0.50% 0.59 0.57 0.56 0.55 0.54 0.52 0.51 0.49 0.48 0.47 0.45

    0.75% 0.68 0.66 0.64 0.63 0.62 0.59 0.58 0.56 0.55 0.53 0.51

    1.00% 0.75 0.72 0.71 0.69 0.68 0.65 0.64 0.62 0.61 0.59 0.57

    1.25% 0.80 0.78 0.76 0.74 0.73 0.71 0.69 0.67 0.66 0.63 0.61

    1.50% 0.85 0.83 0.81 0.79 0.78 0.75 0.73 0.71 0.70 0.67 0.65

    1.75% 0.90 0.87 0.85 0.83 0.82 0.79 0.77 0.75 0.73 0.71 0.68

    #2.00% 0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.77 0.74 0.71

    k 2.000 1.943 1.894 1.853 1.816 1.756 1.707 1.667 1.632 1.577 1.516

    Table derived from: vRd.c=0.12k(100!Ifck)1/3#0.035k1.5fck

    0.5

    where k=1+(200/d)0.5"0.02

    '( )*+,-).+-)*+,/0123 4"2,5$#$ 6#57# 16 8+$978#$ 12 5$616#12: 6;$85

    6

  • 8/12/2019 130416153345-phpapp02

    9/16

    DESIGN FOR CRACKING(EN1992-1-1,cl.7.3)

    Asmin

  • 8/12/2019 130416153345-phpapp02

    10/16

    DESIGN FOR DEFLECTION

    (EN1992-1-1,cl.7.4)

    Simplified Calculation approach

    Span/effective depth ratio(EN1992-1-1, Eq. 7.16a and 7.16b)

    The effect of cracking complicacies the deflection calculations of the RC member under

    service load. To avoid such complicate calculations, a limit placed upon the span/effective

    depth ration.

    !

    ! ! ! !!!! !!!!!!" !!

    !! !!!!!!"!

    !!

    !! !!

    !!!! !"! ! !!!

    ! ! ! !!! ! !!!!!!" !!

    ! ! !!!

    !

    !"!!!"!!!

    !!

    ! !"! ! !!Note:The span-to-depth ratios should ensure that deflection is limited to span/250

    Structural system modification factor

    (CY NA EN1992-1-1,NA. table 7.4N)

    The values of K may be reduced to account for long span as follow:

    M- J+42@ 4-A @

  • 8/12/2019 130416153345-phpapp02

    11/16

    4.0 Example 1: Analysis and design of RC slab using ETABS

    1. Dimensions:

    Depth of slab, h: h=150mm

    Length in longitudinal direction, Ly: Ly=6m

    Length in transverse direction, Lx: Lx=5m

    Number of slab panels: N=3

    2. Loads:

    Dead load:Self weight, gk.s: gk.s=3.75kN/m

    2

    Extra dead load, gk.e: gk.e=1.00kN/m2

    Total dead load, Gk: Gk=4.75kN/m2

    Live load:Live load, qk: gk=2.00kN/m2

    Total live load, Qk: Qk=2.00kN/m2

    3. Load combination:

    Total load on slab: 1.35Gk+1.5Qk=

    COMB1: 1.35*4.75+1.5*2.00=9.1kN/m2

    4. Layout of model:

  • 8/12/2019 130416153345-phpapp02

    12/16

    4.1 Ultimate moments results

    4.1.1 Maximum hogging and Sagging moment at Longitudinal direction Ly

    4.1.2 Maximum hogging and Sagging moment at Transverse direction Lx

  • 8/12/2019 130416153345-phpapp02

    13/16

    4.1.3 Hand calculation results

    Program results

    Ultimate moment at longitudinal direction Ly

    Mid-span

    GL1-GL2

    (kNm)

    GL2

    (kNm)

    Mid-span

    GL2-GL3

    (kNm)

    GL3 Mid-span

    GL3-GL4

    (kNm)

    ETABS Results 10.43 11.54 7.68 11.54 10.40

    Hand calculation

    results 110.20 13.60 8.00 10.70 10.20

    Error percentage 2,20% 15.14% 4.00% 7.30% 1.92%

    1Hand calculation are based on moment coefficient of Manual to Eurocode 2

    Institutional of Structural Engineers, 2006 (Table 5.2).

    Program results

    Ultimate moment at longitudinal direction Lx

    Mid-span

    GL1-GL2

    (kNm)

    Mid-span

    GL2-GL3

    (kNm)

    Mid-span

    GL3-GL4

    (kNm)

    ETABS Results 13.5 13.5 13.5

    Hand calculation

    results 113.2 13.2 13.2

    Error percentage 2.20% 2.20% 2.20%

    1Hand calculation are based on moment coefficient of Manual to Eurocode 2

    Institutional of Structural Engineers, 2006 (Table 5.2).

  • 8/12/2019 130416153345-phpapp02

    14/16

    4.1.4 Hand calculation Results

    Analysis and design of Interior slab panel (GL1-GL2)

  • 8/12/2019 130416153345-phpapp02

    15/16

    Analysis and design of Interior slab panel (GL2-GL3)

  • 8/12/2019 130416153345-phpapp02

    16/16

    Analysis and design of Interior slab panel (GL3-GL4)