130411 Slides.final [Compatibility Mode]

Embed Size (px)

Citation preview

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    1/12

    4/10/201

    Distinguished Lecturer Online (DLO)

    Sponsored by

    Society of Petroleum Engineers

    Distinguished Lecturer Program

    www.spe.org/dl

    1

    Effects Of Complex Reservoir Geometries AndCompletion Practices On Production Analysis In Tight

    Gas Reservoirs

    Stuart A. CoxMarathon Oil Company

    Society of Petroleum Engineers

    Distinguished Lecturer Programwww.spe.org/dl

    3

    Outline

    Introduce production analysis

    Reservoir geometries

    -Synthetic cases

    - Field examples

    Completion parameters

    -Synthetic cases

    - Field examples

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    2/12

    4/10/201

    4

    Purpose

    Address the following question:

    When performing production analysis,can complex reservoir geometries andcompletion practices cause linear flow,limited fracture half lengths and limited

    drainage areas to be predicted?

    5

    Conditions

    Reservoir geometriesStress dependent permeability

    Radial composite

    Two-layer system

    Completion parametersHydraulic fracture clean-up and damage

    Liquid loading

    6

    Production Analysis

    Rate, time, pressure analysis

    Long term pressure drawdown test

    Type-curve matching technique

    Major Assumptions- Single-phase fluid

    - Constant reservoir / completion properties

    - Volumetric production

    - Bottomhole pressure known

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    3/12

    4/10/201

    7

    Applications ofProduction Analysis

    Determine effective drainage volume

    Estimate drainage area

    Estimate reserves / productive life

    Identify infill drilling potential

    Estimate reservoir flow capacity

    Evaluate completion performance

    8

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwD

    Infinite Conductivity Fracture

    Kh = 3.27 md-ftXf = 200 ft

    Boundary Dominated

    Uniform Flow

    Boundary Dominated

    Linear Flow

    Infinite Acting Flow

    Example of Reservoir Flow Geometryon Diagnostic Type Curve

    9

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDor

    PwD'

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    Boundary Dominated

    Flow

    East Texas Example 2 to 1 Rectangular Boundary at 1,017 Days

    Kh = 3.3 md-ft

    Inifite Acting

    Pseudo Radial Flow

    Uniform Flux Fracture

    Xf = 380'

    Field Example of Flow Characteristics

    East Texas Example First 90 Days

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    4/12

    4/10/201

    10

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDor

    PwD'

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    Boundary Dominated

    Flow

    East Texas Example 2 to 1 Rectangular Boundary at 1,017 Days

    Kh = 3.3 md-ft

    Inifite Acting

    Pseudo Radial Flow

    Uniform Flux Fracture

    Xf = 380'

    Field Example of Flow Characteristics

    11

    Base Simulation Cases

    Uniform 40 acres Model Parameters

    Formation top, ft 10,000

    Initial reservoir p ressure, psi 5 ,00 0

    Net pay, ft 40

    Gas specific gravity 0.65

    Effective Gas Perm. md 0.05

    Fracture half -length, ft 200

    Fracture Conductivity, md-ft 75

    Simulation Controls

    Flowing tubing pressure 350 psia

    Production time 2 years

    Single layer model

    12

    Base Case Radial Flow

    Results match simulation

    Average pressure 2,630 psi after 2 years

    0.01

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDorPwD'

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    InfiniteConductivityFracturein1to 1RectangularBoundaryat2 years

    Match Simulation

    Kh =2.0md-ft, 2.0md-ftX

    f=165ft, 165ft

    Area= 40Acres, 40Acres

    Pressure, Psia

    400 5000

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    5/12

    4/10/201

    13

    Stress Dependent Permeability

    Matrix Natural Fracture

    14

    Stress Dependent Permeability

    Reduced flow capacity

    Reduction in reservoir andcompletion flow capacity

    Flowing pressure 450 psi0.001

    0.01

    0.1

    1

    10

    0 1000 2000 3000 4000 5000 6000 7000

    Net Stress, Psi

    PermeabilityMultiplier

    Change in Net Stress, psi

    15

    Natural FractureParameters

    Fracture spacing 30 ft

    Flow capacity 2.0 md-ft

    - Matrix = 0.005 md

    - Natural fracture = 0.045 md

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    6/12

    4/10/201

    16

    Type Curve Match

    0.01

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDor

    PwD'

    ActualPwD

    ActualPwD'

    Analytical PwD

    Analytical PwD'

    InfiniteConductivity Fracture in3 to1 Rectangular Boundaryat 2years

    Match

    Kh = 0.68md-ftXf = 165f t

    Area= 23Acres

    Reduced flow capacity

    Linear flow

    Limited drainage area

    17

    Pressure Profile After Two Years

    No Stress dependent Permeability Stress dependent Permeability

    False depletion stem draining ~ 20 Acres

    Linear flow

    PA after 16 years resulted in a 40 acre

    400 5000

    Pressure, Psia

    400 5000

    Pressure, Psia

    18

    Field ExampleStress Dependant Permeability

    Carbonate ~ 10,000 ft

    Flow capacity Natural fractured

    Completion Horizontal

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    7/12

    4/10/201

    19

    Depletion stem

    Field ExampleProduction Analysis Results

    Rate & Pressure HistoryLog-Log Plot

    Limited Reservoir

    Flow capacity 13.6 md-ft

    Effective length 520 ft

    20

    Pressure Build Modeling

    1E-3 0.01 0.1 1 10 1001

    10

    100

    Log-Log plot: p-p@dt=0 and derivative [psi] vs dt [hr]

    Log-Log Plot

    21

    Actual Pressure Build UpLog-Log Plot

    100 Hour Test

    Stimulated well performance

    No Boundaries

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    8/12

    4/10/201

    22

    Actual Pressure Build UpPressure Match

    23

    Radial Composite

    24

    Radial Composite

    Two regions considered- Inner region 5 acres, 2 md-ft

    - Outer region 35 acres, 0.02 md-ft

    Results- Reduced effective drainage area

    - PA match shows linear flow

    - Long-term complex transient behavior

    - PA after 25 years results show 40 acres

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    9/12

    4/10/201

    25

    Type Curve Match

    Linear flow with limited drainage area

    0.01

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDor

    PwD'

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    Infinite Conductivity Fracture in 3 to 1 Rectangular Boundaryat 2 years

    Case 3Kh = 2.0 md-ft

    Xf = 165 ft

    Area= 7 Acres

    26

    Pressure Profile After Two Years

    Blue area is the 5 acre higher flow capacity area

    Radial shape reflected in the model

    400 5000

    Pressure, Psia

    27

    Hydraulic Fracture Clean-up

    Initial fracture conductivity set at 2 md-ft

    60 day clean-up to a final fracture conductivity of 75 md-ft

    Result show short effective length

    0.01

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDor

    PwD'

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    InfiniteConductivityFracture in 1 to 1 Rectangular Boundaryat 2 years

    Match Simulation

    Kh = 2.0 md-ft, 2.0 md-ft

    Xf = 37 ft, 165ft

    Area= 40 Acres, 40 Acres

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    10/12

    4/10/201

    1

    28

    0.01

    0.1

    1

    10

    100

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDorPwD'

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    InfiniteConductivity Fracturein 2.2to 1Rectangular Boundaryat 2years

    Match Simulation

    Kh = 1.8md-ft, 2.0 md-ft

    Xf = 181ft, 165ft

    Area= 17Acres, 40Acres

    Fracture Conductivity Reducing

    Fracture conductivity reduced by 1%

    each day for the two years

    False depletion stem and linear flow

    400 5000

    Pressure, Psia

    29

    Liquid Loading Whats The Problem?

    Additional back pressure on formation?

    Poor estimate of actual bottomhole

    pressure from surface data?

    Imbibition of water into the formation while

    the well is flowing and static?

    Will the well improve i f unloaded?

    Do loaded wells result in a false depletionstem and reservoir shape?

    30

    Wyoming Gas Well

    0

    500

    1000

    1500

    2000

    7/28/2001 12/10/2002 4/23/2004 9/5/2005 1/18/2007

    MCFD/FTP/CP

    0

    25

    50

    75

    100

    BWPD/BOPD

    MCFD

    Unloading Rate,MCFD

    BOPD

    BWPD

    Wyoming Field Example

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    11/12

    4/10/201

    31

    Imbibition Under Flowing Conditions

    8 ft

    Water dP

    Gas dP

    Exit Pressure

    4 ft

    MeteredGas Rate

    Water Pump

    55 galDrum

    Laboratory work by Stim-Lab

    32

    Liquid Loading

    Standing liquid promotes near-well damage throughspontaneous imbibition.

    In field applications it is common to see both linear flow andfalse depletion stems

    Pressure profile from the model confirms the false depletion

    0.1

    1

    10

    100

    1000

    0.0001 0.001 0.01 0.1 1 10 100

    tDA

    PwDor

    PwD'x0.1

    Actual PwD

    Actual PwD'

    Analytical PwD

    Analytical PwD'

    Infinite ConductivityFracture in2.8to 1 Rectangular Boundaryat 2years

    Match SimulationKh = 18 md-ft, 20 md-ft

    Xf = 45ft, 120 ft

    Area = 29Acres, 40 Acres

    Two Year Pressure ProfileLate Time SLC

    550 5000

    Pressure, Psia

    33

    Sims Gas Unit No. 1

    0

    250

    500

    750

    1000

    8/1/2004 8/1/2005 8/1/2006

    GasRate&TubingPressure,(msc

    f/D,psi)

    0

    250

    500

    WaterRate,bbl/D

    MCFD

    FTP

    BWPDInstalled

    Pumping Unit

    East Texas Well

    East Texas Field Example

  • 7/30/2019 130411 Slides.final [Compatibility Mode]

    12/12

    4/10/201

    1

    34

    University7-6S No.2

    0

    250

    500

    750

    1000

    1250

    1500

    4/20/2004

    5/20/2004

    6/19/2004

    7/19/2004

    8/18/2004

    9/17/2004

    10/17/2004

    11/16/2004

    12/16/2004

    1/15/2005

    2/14/2005

    3/16/2005

    4/15/2005

    MCFD

    0

    25

    50

    75

    100

    125

    150

    BOPD/BWPD

    MCFD

    BWPD

    West Texas Well

    West Texas Field Example

    35

    Observations

    Complex flow conditions can cause PA to incorrectly predict

    flow geometry and drainage area.

    Actual reservoir properties can be reproduced through PA

    when the reservoir and the fracture are producing at a

    pseudo steady state conditions. When these conditions are

    not achieved, PA can not be expected to provide unique

    solutions.

    The cases presented highlight the need to incorporate all

    available data into the analysis of the wells performance

    and recognize the limitations of the technique being used to

    analyze well performance.