13 BI323 Genetics 2

Embed Size (px)

Citation preview

  • 8/7/2019 13 BI323 Genetics 2

    1/29

    Chapter 13Microbial genetics 2:

    Regulation of gene expression

  • 8/7/2019 13 BI323 Genetics 2

    2/29

    2

    Lecture overview

    Objective: To gain an understanding of the mechanisms by

    which bacteria regulate gene expression

    Outline:

    I. Regulation of transcription

    II. Global regulatory systems

  • 8/7/2019 13 BI323 Genetics 2

    3/29

    Overview

    regulation of gene expression

    conserves energy / raw materials

    maintains homeostasis

    adaption to envir. changes

    multiple levels

    transcription*

    translation

    post-translation

    3

  • 8/7/2019 13 BI323 Genetics 2

    4/29

    PART I:

    Regulation of transcription

    4

  • 8/7/2019 13 BI323 Genetics 2

    5/29

    Fig. 13.4

    A. Introduction

    control of enzyme expression key

    want activity only when needed

    categories

    constitutive

    inducible

    repressible

    5

  • 8/7/2019 13 BI323 Genetics 2

    6/29

    A. Introduction

    control of enzyme expression key

    want activity only when needed

    scenarios for control of enzyme expression

    induction: presence ofsubstrate incr. enzyme expression

    e.g. many catabolic enzymes = inducible

    repression: presence ofend productdecr. enzyme expression

    e.g. many biosynth. enzymes = repressible

    control of expression: via regulatory proteins

    negative transcriptional control: initiation inhibited

    repressor proteins

    6

  • 8/7/2019 13 BI323 Genetics 2

    7/29

    B. Negative transcriptional control (Fig. 13.3)

    1. of an inducible enzyme: repressoractive w/o inducer

    e.g. catabolic enzyme not made w/o substrate

    7

    2. of a repressible enzyme: repressor requires corepressor for activity

    e.g. biosynthetic enzyme not made when end product present

  • 8/7/2019 13 BI323 Genetics 2

    8/29

    B1. Negative transcriptional control; inducible genes

    e.g. lacoperon (Fig. 13.5)

    E.coli; can use lactose as C source

    3 catabolic enzymes; metabolize lactose

    components

    LacI = repressor

    operator: binds repressor

    operon

    8

    =>turn on genes in presence of lactose (i.e. inducible)

  • 8/7/2019 13 BI323 Genetics 2

    9/29

    B1. Negative transcriptional control; inducible genes

    e.g. lacoperon (Fig. 13.7)

    no lactose: LacI expressed and active; binds operator

    9

  • 8/7/2019 13 BI323 Genetics 2

    10/29

    B1. Negative transcriptional control; inducible genes

    e.g. lacoperon (Fig. 13.7)

    lactose present: LacI expressed but inactive

    allolactose binds LacI repressor; inactivates

    10

  • 8/7/2019 13 BI323 Genetics 2

    11/29

    B2. Negative transcriptional control; repressible genes

    e.g. trp operon (Fig. 13.8)

    E.coli; tryptophan synthesis

    5 biosynthetic enzymes

    when Trp abundant, dont make more!!

    11

  • 8/7/2019 13 BI323 Genetics 2

    12/29

    B2. Negative transcriptional control; repressible genes

    e.g. trp operon (Fig. 13.8)

    Trp low: Trp repressorinactive

    12

  • 8/7/2019 13 BI323 Genetics 2

    13/29

    B2. Negative transcriptional control; repressible genes

    e.g. trp operon (Fig. 13.8)

    Trp abundant: Trp repressoractive

    13

  • 8/7/2019 13 BI323 Genetics 2

    14/29

    C. The Lac operon and catabolite repression

    E.coli in glucose+lactose medium

    glucose first, then lactose

    diauxic growth: biphasic

    14

  • 8/7/2019 13 BI323 Genetics 2

    15/29

    C. The Lac operon and catabolite repression

    not fully understood; catabolite repression important

    glucose catabolic enzymes constitutive

    other C sources needing processing (e.g. lactose): regulated

    => catabolite repression

    regulator: catabolite activator protein (CAP)

    CAP required for expression

    binds CAP binding site; allows RNA pol to bind

    active: cAMP-bound

    glucose absent: cAMP high

    e.g. catabolite repression oflacoperon

    15

  • 8/7/2019 13 BI323 Genetics 2

    16/29

    C. The Lac operon and catabolite repression (Fig. 13.20)

    16

  • 8/7/2019 13 BI323 Genetics 2

    17/29

    D. Other mechanisms of transcriptional regulation

    attenuation

    halting of transcription elongation prior to termination

    formation of transcriptional pause / termination loops

    based on metabolite availability

    e.g. trp operon

    riboswitches

    form of attenuation

    differential folding of mRNA leader region: affects RNA polymerase

    activity

    folding due to availability of effector molecule

    e.g. metabolite availability

    17

  • 8/7/2019 13 BI323 Genetics 2

    18/29

    PART II:

    Global regulatory systems

  • 8/7/2019 13 BI323 Genetics 2

    19/29

    Introduction

    affect many genes / pathways simultaneously

    more than accomodated by 1 operon

    why?

    complex responses

    differential operon regulation in single response

    terms

    regulon

    genes / operons controlled by same reg. protein

    assoc. w/ common function

    e.g. heat shock

    modulon

    regulon w/ operons also controlled separately

    e.g. catabolite repression

    stimulon

    regulon(s) / modulons respond together to environ. stimulus

    e.g. phosphate limitation response 19

  • 8/7/2019 13 BI323 Genetics 2

    20/29

    A. Mechanisms of global regulation

    1. alternate sigma factors

    different sigma factors =>

    different promoters

    diffs in -35 / -10 regions

    substitution of sigma factors

    changes gene expression of many

    genes and operons example: E. colisigma factors

    20

  • 8/7/2019 13 BI323 Genetics 2

    21/29

  • 8/7/2019 13 BI323 Genetics 2

    22/29

    B. Global regulation: 1) B.subtilis sporulation

    multiple control mechanisms

    transcriptional initiation; phosphorelay; alternate sigma factors

    vegetative growth: WA / WH

    transcr. of normal survival genes

    starvation: expr. of alt. sigma fators

    22

  • 8/7/2019 13 BI323 Genetics 2

    23/29

    Fig. 13.27

    B. Global regulation: 1) B.subtilis sporulation

    sensor kinase:KinA

    autophosphorylates in response to envir. signals (e.g. starvation)

    response regulator: Spo0A

    Spo0A-P: active transcription regulator

    activates WF production / sporulation

    23

  • 8/7/2019 13 BI323 Genetics 2

    24/29

    B. Global regulation: 2) Chemotaxis in E.coli

    controls chemotactic response: flagellar rotation

    chemoreceptors: methyl-accepting chemotaxis proteins (MCP)

    bind chemoattractant

    stim. ccw rotation

    MCP dimer bound to

    CheW + CheA

    24

    Fig. 13.15

  • 8/7/2019 13 BI323 Genetics 2

    25/29

    B. Global regulation: 2) Chemotaxis in E.coli

    sensor kinase: CheA

    no attractant bound to MCP: CheA autophosphorylates phosphorylates CheY

    response regulator: CheY

    CheY-P => FliM; clockwise rotation; tumble

    CheZ: dephos. CheY (~10s)

    attractant bound to MCP: CheA autphos. inhibited

    ccw motion allowed; run

    25

    Fig. 13.15

  • 8/7/2019 13 BI323 Genetics 2

    26/29

    B. Global regulation: 2) Chemotaxis in E.coli

    absence of chemoattractant: random movement

    runs and tumbles

    CheY phos. / dephos

    chemoattractant present: directional movement lowering the frequency of tumbles

    ccw rotation

    dephos. of CheY (no CheA phos)

    26

  • 8/7/2019 13 BI323 Genetics 2

    27/29

    B. Global regulation: 3) Quorum sensing in V.fischeri

    bioluminescence @high density

    intercellular communication

    signal: N-acyl homoserine lactone (AHL)

    AHL synthase (luxIgene)

    positively autoregulated

    LuxR: transcr. activator

    requires AHL

    http://www.nsf.gov/news/mmg/

    media/images/vibrio_f1.jpg27

  • 8/7/2019 13 BI323 Genetics 2

    28/29

    B. Global regulation: 3) Quorum sensing in V.fischeri

    signal: N-acyl homoserine lactone (AHL)

    diffuses out; accumulates; diffuses back into cell

    activates LuxR

    activates luxI; luxCDABEG

    mechanism: autoinduction

    AHL = autoinducer

    Fig. 13.25

    28

  • 8/7/2019 13 BI323 Genetics 2

    29/29

    29

    Chapter 13 summary

    I. Regulation of transcription

    A. Intro

    B. Negative transcr. control

    1. lacoperon (inducible)

    2. trp operon (repressible)

    C. Catabolite repression

    D. Other mechanisms(attenuation; riboswitches)

    II. Global regulatory systems

    A. Mechanisms of globalregulation

    alt. sigma factors

    phosphorelay

    B. Examples

    1. B.subtilis sporulation2. E.colichemotaxis

    3. V.fischeriquorum

    sensing