1267096557Bhattacharyya_Dec18

  • Upload
    rui1990

  • View
    10

  • Download
    0

Embed Size (px)

DESCRIPTION

RNA structural studies

Citation preview

  • Structural Studies of Non-

    canonical Base pairs in RNA

    Dhananjay Bhattacharyya

    Biophysics Division

    Saha Institute of Nuclear Physics

    Kolkata

    [email protected]

  • OO

    O

    U U U A G C

    G A A A U C G

    Naaaa

    mRNA

    RNA polymerase Promoter

    sequence

    mRNA

    Cellular functions: DNA RNA Protein

  • Viral RNA

    Signaling RNA

    miRNA

    siRNA

  • tRNAIle Crystal Structure

    (PDB ID: 1QU2)

  • AG

    T

    C

  • Basepair Parameters

    (IUPAC/IUB recommendation

  • Base pair parameter definition in

    NUPARM

    Buckle = 2 sin-1( Zm Y1)

    Opening = 2 sin-1( Zm X1)

    Propeller = cos-1 (( X1 Zm) ( X2 Zm))

    Shear = -Xm M

    Stagger = Ym M

    Stretch = Zm M

    Xm = (X1 + X2) / | (X1 + X2) |

    Ym = (Y1 + Y2) / | (Y1 + Y2) |

    Zm = {(X1 + X2) x (Y1 + Y2)}/ {| (X1 + X2) | | (Y1 + Y2) |}

    M

    S. Mukherjee, M. Bansal; D. Bhattacharyya (2006) J. Comp. Aided Mol. Des. 20; 629

  • A:U H:WT

    Non-canonical Basepairing

    W: Watson-Crick edgeH: Hoogsteen edgeS: Sugar edgew/h/s: Involves weak C-HO/N interactionC/T: Cis- or Trans-orientation of the two glycosidic bonds

  • DH

    A ABHA

    R1

    R2

    ),,(fr

    R

    r

    Rd

    r

    qq)r(V

    bondedHij

    ijmin,

    ij

    ijmin,

    ij

    ij

    ji

    1012

    Van der Waals

    Approximate Hydrogen Bond

    Van der Waals & Coulomb

    Approximate H-Bond & Coulomb

  • Base Pair Finder

    Took a base edge

    Identify the H-bonding centers (N3G & N2G)

    Look for H-bond partner through distance calculation (N6A & N7A)

    Calculate pseudo-angles (such as C6G-N3G-N6A, N3G-N6A-N1A, N1G-N2G-N7A, N2G-

    N7A-N9A in figure) for

    planarity

    Confirm orientation through angle calculation

    Calculate E= i(di-3.0)2 + k( k- i are for

    two H-bond distances and k are for four pseudo

    angles

    Gives rise to:

    6959 A:U W-W(C);

    21965 G:C W-W(C) and

    2786 G:U W-W(C) base pairs

    Das, Mukherjee, Mitra & Bhattacharyya (2006) J Biomol Struct Dynam, 24, 149-

    161

  • G:U W:W Cis (846)

    U:U W:W Cis (84)

    A:G W:W Cis (150)

  • A:G H:S Trans (558)

    A:U H:W Trans (410)

    A:A H:H Trans (109)

  • Property of good and stable

    Base PairDISTRIBUTION OF PROPELLER VALUE

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

    PROPELLER VALUE

    RE

    LA

    TIV

    E F

    RE

    QU

    EN

    CY

    GC_WWC

    AG_HST

    AU_HWT

    DISTRIBUTION OF STAGGER VALUE

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    -3

    -2.7

    -2.4

    -2.1

    -1.8

    -1.5

    -1.2

    -0.9

    -0.6

    -0.3 0

    0.3

    0.6

    0.9

    1.2

    1.5

    1.8

    2.1

    2.4

    2.7

    STAGGER VALUE

    RE

    LA

    TIV

    E F

    RE

    QU

    EN

    CY

    GC_WWC

    AG_HST

    AU_HWT

    DISTRIBUTION OF SHEAR VALUE

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    -2

    -1.7

    -1.4

    -1.1

    -0.8

    -0.5

    -0.2

    0.1

    0.4

    0.7 1

    1.3

    1.6

    1.9

    2.2

    2.5

    2.8

    3.1

    3.4

    3.7

    SHEAR VALUE

    RE

    LA

    TIV

    E F

    RE

    QU

    EN

    CY

    GC_WWC

    AG_HST

    AU_HWT

    DISTRIBUTION OF STRETCH VALUE

    0

    0.1

    0.2

    0.3

    0.4

    2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

    STRETCH VALUE

    RE

    LA

    TIV

    E F

    RE

    QU

    EN

    CY

    GC_WWC

    AG_HST

    AU_HWT

    DISTRIBUTION OF OPEN ANGLE

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -25

    -17 -9 -1 7 15 23 31 39 47

    OPEN ANGLE VALUE

    RELA

    TIV

    E F

    REQ

    UEN

    CY

    GC_WWC

    AG_HST

    AU_HWT

  • Geometry Optimization by different

    Methods

    Selected structures of BPs from PDB

    Optimized Structures by B3LYP/6-31G**

    Optimized by MP2/6-31G**

    Optimized by HF/CC-pVDZ

    Optimized by GGA-BW91/DZP

    Optimized by semi-empirical methods (AM1, PM3)

    Optimized by AMBER force-field

    Compared structure and dynamics with Molecular Dynamics Simulations

  • Failure of AM1 (most popular semi-

    empirical method)

  • G:C W:W C

    E = -26

    kcal/mol

    A:U W:W C

    E = -14

    G:U W:W C

    E = -15

    A:G H:S T

    E = -10

    A:G s:s T

    E = -6

    A:U H:W T

    E = -13

    A:A H:H T

    E = -10

    G:A W:W C

    E = -15

    G:A S:W T

    E = -11

    A:A W:W T

    E = -12

    A:U W:W T

    E = -13

    A:A H:W T

    E = -11

    2=>NHO

    1=>NH...N

    1=>NHO

    1=>NHN 2=>NH...O

    2=>NH...N

    1=>NHN

    1=>CH...O

    1=>NH...O

    1=>NH...N2=>NH...N

    1=>NH...O

    1=>NHN

    2=>NH...N

    2=>NH...N

    1=>NH..O

    1=>NH...N

    1=>NH...O

    1=>NHN

    Strengths of different H-bonds from 33 non-canonical Base Pairs

    Ray, Panigrahi, Bhattacharyya & Bhattacharyya (2008) J. Phys. Chem. B112, 3786.

  • Considered Energy components, ENHO, ENHN, etc are additive.

    Additional stabilities, i may come from van der Waals, dipole-

    dipole etc interactions.

    Least Squares Fit indicates i, errors should be smallest for best Fit

    i

    CHNCHN

    i

    CHOCHO

    i

    OHNOHN

    i

    NHNNHN

    i

    NHONHO

    i

    i EnEnEnEnEnEint

    2

    int

    2

    i

    CHNCHN

    i

    CHOCHO

    i

    OHNOHN

    i

    NHNNHN

    i

    NHONHO

    i

    i

    i

    i EnEnEnEnEnE

    Type of H-bond E (kcal/mol)

    N-HO -7.82

    N-HN -5.62

    O-HN -6.89

    C-HO -1.33

    C-HN -0.67

    Roy, Bhattacharyya, Panigrahi, Bhattacharyya, (2008) J. Phys. Chem. B B112, 3786

  • Comparison with X-ray

    DISTRIBUTION OF BUCKLE VALUE OF GC_WWC

    0

    500

    1000

    1500

    2000

    2500

    3000

    -100 -9

    0-8

    0-7

    0-6

    0-5

    0-4

    0-3

    0-2

    0-1

    0 0 10 20 30 40 50 60

    BUCKLE VALUE

    FR

    EQ

    UE

    NC

    Y

    Series1

    MP2:-4.92

    CCD:-4.2

    DFT:-0.3

    ADF:-1.5

    DISTRIBUTION OF PROPELLER VALUE OF AU_HWT

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

    PROPELLER VALUE

    FR

    EQ

    UE

    NC

    Y

    Series1

    MP2:-1.93

    CCD:-1.63

    DFT:1.91

    ADF:-0.91

    DISTRIBUTION OF SHEAR VALUE OF AG_HST

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    -2

    -1.7

    -1.4

    -1.1

    -0.8

    -0.5

    -0.2

    0.1

    0.4

    0.7 1

    1.3

    1.6

    1.9

    2.2

    2.5

    2.8

    3.1

    3.4

    3.7

    SHEAR VALUE

    FR

    EQ

    UE

    NC

    Y

    Series1

    MP2:1.79

    CCD:1.9

    DFT:1.95

    ADF:2.09

  • Hydrogen Bond Geometries

    DISTRIBUTION OF N-H...O BOND

    0

    2

    4

    6

    8

    10

    12

    1.7 1.8 1.9 2 2.1 2.2 2.3

    RANGE

    FR

    EQ

    UE

    NC

    Y MP2

    DFT

    CCD

    ADF

    AMBER_WATER

    AMBER

    PM3

    DISTRIBUTION OF N-HN BOND

    0

    5

    10

    15

    20

    25

    1.7 1.8 1.9 2 2.1 2.2 2.3

    RANGES

    FR

    EQ

    UE

    NC

    Y

    MP2

    DFT

    CCD

    ADF

    AMBER_WATER

    AMBER

    PM3

    D

    H

    A ABHA

    R2

  • Non-polar Base Pairs

    Frequency: 289

    Frequency: 48

  • Structures of others with weaker H-bonds

    -6

    -4

    -2

    0

    2

    4

    6

    8

    1 3 5 7 9

    11 13 15 17 19 21 23 25 27

    BASEPAIR

    SH

    EA

    R V

    ALU

    E

    MP2/631G**

    HF/ccPVDZ

    B3LYP/631G**

    B91/DZP

    AMBER

    AMBER+WATER

    PM3

    CRYSTAL_DATA

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    1 3 5 7 9

    11 13 15 17 19 21 23 25 27

    BASEPAIR

    PR

    OPELL

    ER

    VA

    LUE

    MP2/631G**

    HF/ccPVDZ

    B3LYP/631G**

    B91/DZP

    AMBER

    AMBER+WATER

    PM3

    CRYSTAL_DATA

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    1 3 5 7 9

    11 13 15 17 19 21 23 25 27

    BASEPAIR

    OPEN

    AN

    GLE

    VA

    LUE

    MP2/631G**

    HF/ccPVDZ

    B3LYP/631G**

    B91/DZP

    AMBER

    AMBER+WATER

    PM3

    CRYSTAL_DATA

  • nnnnnn

    nn

    nn

    jijjij

    TVTV

    TVTV

    TVTVTV

    VT

    kxdt

    xdm

    2

    1

    2

    1

    2

    2

    221

    2

    21

    1

    2

    112

    2

    1211

    2

    11

    2

    2

    ....

    ........

    ....

    ..

    0

    0

    = 0

    ji

    ijxx

    VV

    2

    V is Total (QM) Potential Energy

    Theory of Harmonic Vibration

  • k,where

    ,xdt

    xd

    2

    2

    2

    2

    0 Tk/)(k Boe)(

    22

    1

    k/Tk.ln B22calc =

    0.2

    0.4

    0.6

    0.8

    1

    0.2 0.4 0.6 0.8 1

    Crystallographic

    Ca

    lcu

    late

    d

    Roy, Panigrahi, Bhattacharyya & Bhattacharyya, J. Phys. Chem. B (2008) B112, 3786

    Sen, K.; Basu, S.; Bhattacharyya, D. Int. J. Quant. Chem. (2006) 106, 913

    0

    0.25

    0.5

    0.75

    1

    -3 -2 -1 0 1 2 3

    Assignment of Vibration modes (frequency) to type of Motion:

    Generated two sets of coordinates of all the atoms, Ximax & Ximin

    Ran NUPARM on both to find major differences in parameters

  • Base pairs vibrate mostly along five (instead of six) directions

    Vibrations by breaking H-bonds are often prohibited

    Vibrations are in the time scale of pico second

    Force constants can be used for CG simulations

  • Conclusions / AppealsNon canonical base pairs are important for RNA structure prediction

    Many of these are sufficiently strong

    Estimated Force-constants can be used for CG modeling

    Their stacking interactions (combination of p-p interactions and hydrophobic effect)

    needs to be estimated.

  • Major contributors:

    Malyasri Bhattacharyya

    Shayantani Mukherjee

    Jhuma Das

    Swati Panigrahi

    Ashim Roy

    Sukanya Halder

    Collaborators:

    Prof. Manju Bansal

    Prof. Abhijit Mitra

    Prof. Jaydeb Chakrabarti

    Prof. Jiri Sponer

    Supporters:

    CSIR and DBT (Govt. of India)

    CAMCS and CBAUNP (DAE, SINP)

    CDAC (Pune)