12
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc. 1 Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703 CCS020M12CM2 1200 V, 20 A All-Silicon Carbide Six-Pack (Three Phase) Module Technical Features Ultra-Low Loss High-Frequency Operation Zero Reverse Recovery from Diodes Zero Turn-off Tail Current from MOSFET Normally-off, Fail-safe Device Operation Copper Baseplate and Aluminum Nitride Insulator V DS 1200 V I DS 20 A System Benefits Fast Time-to-Market with Minimal Development Required for Transition from 45mm IGBT Packages Increased System Efficiency, due to Low Switching & Conduction Losses of SiC Enables Compact and Lightweight Systems Applications 3-Phase PFC Regen Drive Solar & Renewable Energy Industrial Automation & Testing Motor Drive Package 45 mm X 107.5 mm X 20.5 mm Maximum Parameters (Verified by Design) Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V DS max Drain-Source Voltage 1200 V V GS max Gate-Source Voltage, Maximum Value -10 +25 Transient, <100 ns Fig. 33 V GS op Gate-Source Voltage, Recommended Op. Value -5 +20 Static I DS DC Continuous Drain-Source Current 34 A V GS = 20 V, T C = 25 ˚C, T VJ ≤ 150 ˚C Fig. 21 23 V GS = 20 V, T C = 90 ˚C, T VJ ≤ 150 ˚C I SD DC Continuous Source-Drain Current 57 V GS = 20 V, T C = 25 ˚C, T VJ ≤ 150 ˚C I F Schottky Diode DC Forward Current 49 V GS = -5 V, T C = 25 ˚C, T VJ ≤ 150 ˚C I DS (pulsed) Maximum Pulsed Drain-Source Current 80 V GS = 20 V T VJ = 25 ˚C; t Pmax limited by T VJmax I F (pulsed) Maximum Pulsed Diode Current 98 V GS = -5 V T VJ op Maximum Virtual Junction Temperature under Switching Conditions -40 150 °C V+ Mid G1 K1 G2 K2 G5 K5 Mid NTC1 G6 K6 NTC2 G3 K3 Mid G4 K4 V- V+ V- -t°

1200 V DS CCS020M12CM2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

1Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

CCS020M12CM21200 V, 20 A All-Silicon Carbide Six-Pack (Three Phase) Module

Technical Features

• Ultra-Low Loss• High-Frequency Operation• Zero Reverse Recovery from Diodes• Zero Turn-off Tail Current from MOSFET• Normally-off, Fail-safe Device Operation• Copper Baseplate and Aluminum Nitride Insulator

VDS 1200 V

IDS 20 A

System Benefits

• Fast Time-to-Market with Minimal Development Required for Transition from 45mm IGBT Packages• Increased System Efficiency, due to Low Switching & Conduction Losses of SiC• Enables Compact and Lightweight Systems

Applications

• 3-Phase PFC• Regen Drive• Solar & Renewable Energy• Industrial Automation & Testing• Motor Drive

Package 45 mm X 107.5 mm X 20.5 mm

Maximum Parameters (Verified by Design)

Symbol Parameter Min. Typ. Max. Unit Test Conditions Note

VDS max Drain-Source Voltage 1200

VVGS max Gate-Source Voltage, Maximum Value -10 +25 Transient, <100 nsFig. 33

VGS opGate-Source Voltage, Recommended Op. Value -5 +20 Static

IDS DC Continuous Drain-Source Current34

A

VGS = 20 V, TC = 25 ˚C, TVJ ≤ 150 ˚C Fig. 21

23 VGS = 20 V, TC = 90 ˚C, TVJ ≤ 150 ˚C

ISD DC Continuous Source-Drain Current 57 VGS = 20 V, TC = 25 ˚C, TVJ ≤ 150 ˚C

IF Schottky Diode DC Forward Current 49 VGS = -5 V, TC = 25 ˚C, TVJ ≤ 150 ˚C

IDS (pulsed) Maximum Pulsed Drain-Source Current 80 VGS = 20 V TVJ = 25 ˚C;tPmax limited by TVJmax

IF (pulsed) Maximum Pulsed Diode Current 98 VGS = -5 V

TVJ op

Maximum Virtual Junction Temperature under Switching Conditions

-40 150 °C

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

V+

Mid

G1K1

G2K2

G5K5

Mid

NTC1

G6K6 NTC2

G3K3

Mid

G4K4

V-

V+

V-

25, 26 15, 16

1 5 92 6 10

23, 24 21, 22 19, 20

17

3 7 114 8 12 18

13, 1427, 28

-t°

-t°

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

2Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

MOSFET Characteristics (Per Position) (TVJ = 25˚C unless otherwise specified)

Symbol Parameter Min. Typ. Max. Unit Test Conditions Note

V(BR)DSS Drain-Source Breakdown Voltage 1200V

VGS = 0 V, TVJ = -40 °C

VGS(th) Gate Threshold Voltage 1.7 2.2 VDS = VGS, ID = 1 mA

IDSS Zero Gate Voltage Drain Current 40 300µA

VGS = 0 V, VDS = 1200 V

IGSS Gate-Source Leakage Current 0.25 VGS = 20 V, VDS = 0 V

RDS(on)Drain-Source On-State Resistance (Devices Only)

80 98mΩ

VGS = 20 V, ID = 20 A Fig. 2Fig. 3145 VGS = 20 V, ID = 20 A, TVJ = 150 °C

gfs Transconductance10

SVDS = 20 V, IDS = 20 A

Fig. 49 VDS = 20 V, IDS = 20 A, TVJ = 150 °C

EOn

Turn-On Switching Energy, TVJ = 25 °CTVJ = 125 °CTVJ = 150 °C

685857

µJ

VDS = 600 V, ID = 20 A,VGS = -5 V/+20 V, RG(ext) = 2.0 Ω, L = 130 µH

Fig. 11Fig. 13

EOff

Turn-Off Switching Energy, TVJ = 25 °CTVJ = 125 °CTVJ = 150 °C

458184

RG(int) Internal Gate Resistance 3.8 Ω VAC = 25 mV, f = 100 kHz

Ciss Input Capacitance 1.18nF VGS = 0 V, VDS = 800 V,

VAC = 25 mV, f = 1 MHzFig. 9Coss Output Capacitance 0.37

Crss Reverse Transfer Capacitance 9.4 pF

QGS Gate to Source Charge 17

nCVDS = 800 V, VGS = -5 V/+20 VID = 20 APer IEC60747-8-4 pg 21

QGD Gate to Drain Charge 29

QG Total Gate Charge 71

Rth JC FET Thermal Resistance, Junction to Case 0.7 0.75 °C/W Fig. 17

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

3Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Module Physical Characteristics

Symbol Parameter Min. Typ. Max. Unit Test Conditions

LStray Stray Inductance 30 nH Between Terminals 1 and 3

TC Case Temperature -40 125 °C

W Weight 180 g

MS Mounting Torque 4 5 5.5 N-m Baseplate to heatsink

Visol Case Isolation Voltage 5 kV AC, 50 Hz, 1 min

Clearance Distance

6.5

mm

Terminal to Terminal

15.6 Terminal to Baseplate

8.6 Terminal to Mounting Bolt

11.8 Terminal to Isolated NTC Pin

Creepage Distance

11.9 Terminal to Terminal

15.6 Terminal to Baseplate

19.1 Terminal to Mounting Bolt

16.7 Terminal to Isolated NTC Pin

Diode Characteristics (Per Position) (TVJ = 25˚C unless otherwise specified)

Symbol Parameter Min. Typ. Max. Unit Test Conditions Note

VF Diode Forward Voltage1.5

VVGS = -5 V, IF = 20 A, TVJ = 25 °C

Fig. 72.2 VGS = -5 V, IF = 20 A, TVJ = 150 °C

trr Reverse Recovery Time 13 nsVGS = -5 V, ISD = 20 A, VR = 600 VdiF/dt = 10 A/ns, TVJ = 150 °C

Fig. 32

Note 1QRR Reverse Recovery Charge 370 nC

IRRM Peak Reverse Recovery Current -42 A

Err

Diode Energy TVJ = 25 °CTVJ = 125 °CTVJ = 150 °C

195192191

µJVDS = 600 V, ID = 20 A,VGS = -5 V/+20 V, RG(ext) = 2.0 Ω, L = 130 µH

Fig. 14

Note 1

Rth JCDiode Thermal Resistance, Junction to Case 0.8 0.85 °C/W Fig. 18

Note 1 SiC Schottky diodes do not have reverse recovery energy but still contribute capacitive energy

NTC Characteristics

Symbol Parameter Typ. Max. Unit Test Conditions

R25 Rated Resistance 5 kΩ TNTC = 25 °C

∆R/R Tolerance ±5 % TNTC = 100 °C, R100 = 481 Ω

P25 Maximum Power Dissipation 20 mW TNTC = 25 °C

B25/50 NTC Beta Constant 3380 K R2 = R25 exp[B25/50(1/T2-1/(298.15K))]

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

4Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Figure 2. Normalized On-State Resistance vs. Drain Current for Various Junction Temperatures

Typical Performance

Figure 5. 3rd Quadrant Characteristic vs. Junction Temperatures at

VGS = 20 V

Figure 1. Output Characteristics for Various Junction Temperatures

Figure 3. Normalized On-State Resistance vs. Junction Temperature

Figure 4. Transfer Characteristic for Various JunctionTemperatures

Figure 6. 3rd Quadrant Characteristic vs. Junction Temperatures at

VGS = 0 V (Diode)

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Dra

in-S

ourc

e Cu

rren

t, I D

S(A

)

Drain-Source Voltage, VDS (V)

150 °C125 °C

-40 °C

100 °C

tp < 300 μsVGS = 20 V

25°C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-50 -25 0 25 50 75 100 125 150 175

Nor

mal

ized

On-

resi

stan

ce (p

.u.)

Virtual Junction Temperature, TVJ (°C)

tp < 300 μsVGS = 20 VID = 20 A

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

Dra

in-S

ourc

e Cu

rren

t, I D

S(A

)

Gate-Source Voltage, VGS (V)

-40 °C25 °C

100 °C125 °C

150 °C

tp < 300 μsVDS = 20 V

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

Sour

ce-D

rain

Cur

rent

, ISD

(A)

Source-Drain Voltage, VSD (V)

150 °C125 °C

-40 °C

100 °C

tp < 300 μsVGS = 20 V

25 °C

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

Sour

ce-D

rain

Cur

rent

, ISD

(A)

Source-Drain Voltage, VSD (V)

-40 °C

100 °C

tp < 300 μsVGS = 0 V

25 °C

125 °C150 °C

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0 10 20 30 40 50 60

Nor

mal

ized

On-

resi

stan

ce (p

.u.)

Drain-Source Current, IDS (A)

tp < 300 μsVGS = 20 V

25 °C

100 °C

125 °C

150 °C

-40 °C

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

5Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Figure 8. Typical Capacitances vs. Drain to Source Voltage(0 - 200V)

Typical Performance

Figure 11. Switching Energy vs. Drain Current(VDS = 600 V)

Figure 7. 3rd Quadrant Characteristic vs. Junction Temperatures at

VGS = -5 V (Diode)

Figure 9. Typical Capacitances vs. Drain to Source Voltage (0 - 1200V) Figure 10. Threshold Voltage vs. Junction Temperature

Figure 12. Switching Energy vs. Drain Current (VDS = 800 V)

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

Sour

ce-D

rain

Cur

rent

, ISD

(A)

Source-Drain Voltage, VSD (V)

-40 °C

100 °C

tp < 300 μsVGS = -5 V

25 °C

125 °C150 °C

EOff

EOn

EOff + EOn

ERR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50

Switc

hing

Ene

rgy

(mJ)

Source Current, IS (A)

Conditions:TVJ = 25°CVDD = 600 VRG(ext) = 2.0 ΩVGS = -5/+20 VL = 130 µH

EOff

EOn

EOff + EOn

ERR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30 40 50

Switc

hing

Ene

rgy

(mJ)

Source Current, IS (A)

Conditions:TVJ = 25°CVDD = 800 VRG(ext) = 2.0 ΩVGS = -5/+20 VL = 130 µH

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-50 -25 0 25 50 75 100 125 150 175

Thre

shol

d Vo

ltage

, Vth

(V)

Virtual Junction Temperature, TVJ (°C)

Conditions:VGS = VDSIDS = 1 mA

1

10

100

1000

10000

0 200 400 600 800 1000

Capa

cita

nce

(pF)

Drain-Source Voltage, VDS (V)

Ciss

Coss

Crss

TJ = 25 °CVAC = 25 mVf = 1 MHz

1

10

100

1000

10000

0 50 100 150 200

Capa

cita

nce

(pF)

Drain-Source Voltage, VDS (V)

TJ = 25 °CVAC = 25 mVf = 1 MHzCiss

Coss

Crss

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

6Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Figure 14. Reverse Recovery Energy vs. Junction Temperature (Note 1)

Typical Performance

Figure 17. MOSFET Junction to Case Transient Thermal Impedance, Zth JC (°C/W)

Figure 13. MOSFET Switching Energy vs. Junction Temperature

Figure 15. MOSFET Switching Energy vs. External Gate Resistance Figure 16. Reverse Recovery Energy vs. External Gate Resistance (Note 1)

Figure 18. Diode Junction to Case Transient Thermal Impedance, Zth JC (°C/W)

1E-3

10E-3

100E-3

1

1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1 10

Junc

tion

To C

ase

Impe

d., Z

thJC

(o C/W

)

Time, tp (s)

0.50.3

0.1

0.05

0.02

0.01

SinglePulse

1E-3

10E-3

100E-3

1

1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1 10

Junc

tion

To C

ase

Impe

d., Z

thJC

(o C/W

)

Time, tp (s)

0.50.3

0.1

0.05

0.02

0.01

SinglePulse

EOff

EOn

EOff + EOn

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 25 50 75 100 125 150 175

Switc

hing

Ene

rgy

(mJ)

Junction Temperature, TVJ (°C)

Conditions:IS = 20 A, VDD = 600 VRG(ext) = 2.0 Ω, VGS = -5/+20 VL = 130 µH

EOff

EOn

EOff + EOn

ERR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 5 10 15 20 25

Switc

hing

Ene

rgy

(mJ)

External Gate Resistor, RG(ext) (Ω)

Conditions:TVJ = 25°CIS = 20 AVDD = 600 VVGS = -5/+20 VL = 130 µH

ERR (VDD = 600 V)

ERR (VDD = 800 V)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 25 50 75 100 125 150 175

Reve

rse

Reco

very

Ene

rgy

(mJ)

Junction Temperature, TVJ (°C)

Conditions:IS = 20 ARG(ext) = 2.0 ΩVGS = -5/+20 VL = 130 µH

ERR (VDD = 600 V)

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20

Reve

rse

Reco

very

Ene

rgy

(mJ)

External Gate Resistor, RG(ext) (Ω)

Conditions:TVJ = 25°CIS = 20 AVDD = 600 VVGS = -5/+20 VL = 130 µH

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

7Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Figure 20. Reverse Bias Safe Operating Area (RBSOA)

Typical Performance

Figure 19. Forward Bias Safe Operating Area (FBSOA)

Figure 21. Continuous Drain Current Derating vs. Case Temperature

Figure 22. Maximum Power Dissipation Derating vs. Case Temperature

0

5

10

15

20

25

30

35

40

-50 -25 0 25 50 75 100 125 150

Dra

in-S

ourc

e D

C Cu

rren

t, I D

S(D

C) (A

)

Case Temperature, TC (°C)

Conditions:TVJ ≤ 150 °C

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200

Drai

n-So

urce

Cur

rent

, IDS

(A)

Drain-Source Voltage, VDS (V)

ChipModule

Conditions:TVJ = 150 °C RG(ext) = 2.0 ΩLStray-Module = 30 nH

0

20

40

60

80

100

120

140

160

180

200

-50 -25 0 25 50 75 100 125 150

FET

Pow

er D

issi

patio

n, P

D(W

)

Case Temperature, TC (°C)

Conditions:TVJ ≤ 150 °C

0.01

0.10

1.00

10.00

100.00

0.1 1 10 100 1000

Dra

in-S

ourc

e Cu

rren

t, I D

S(A

)

Drain-Source Voltage, VDS (V)

100 µs

1 ms

10 µs

Conditions:TC = 25 °CD = 0, Parameter: tp

100 ms

Limited by RDS On

0

5

10

15

20

25

30

35

40

0 25 50 75 100 125 150 175 200

Out

put C

urre

nt, I

Out

(Arm

s)

Switching Frequency, FS (kHz)

VDS = 800 VTC = 90 °CTVJ = 150 °CMF = 1RG-EXT = 2 Ω

Figure 23. Typical Output Current Capability vs. Switching Frequency (Inverter Application)

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

8Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Figure 25. dv/dt and di/dt vs. Source Current

Timing Characteristics

Figure 24. Timing vs. Source Current

Figure 26. Timing vs. Junction Temperature Figure 27. dv/dt and di/dt vs. Source Current

tdoff

tftdon

tr

0

4

8

12

16

20

24

28

0 25 50 75 100 125 150 175

Tim

e (n

s)

Junction Temperature, TVJ (°C)

Conditions:IS = 20 A, VDD = 600VRG(ext) = 2.0 Ω, VGS = -5/+20 V

dv/dtOFF

dv/dtON

di/dtOFF

di/dtON

0

10

20

30

40

50

60

70

80

90

0 25 50 75 100 125 150 175

di/d

t (A/

ns) a

nd d

v/dt

(V/n

s)

Junction Temperature, TVJ (°C)

Conditions:IS = 20 ARG(ext) = 2.0 ΩVGS = -5/+20 V

tdoff

tf

tdon

tr

0

4

8

12

16

20

24

28

0 5 10 15 20 25 30 35 40 45

Tim

e (n

s)

Source Current, IS (A)

Conditions:TVJ = 25°CVDD = 600 VRG(ext) = 2.0 ΩVGS = -5/+20 V

Figure 28. Timing vs. External Gate Resistance Figure 29. dv/dt and di/dt vs. External Gate Resistance

tdoff

tf

tdon

tr

0

10

20

30

40

50

60

70

0 2.5 5 7.5 10 12.5 15 17.5 20

Tim

e (n

s)

External Gate Resistor, RG(ext) (Ω)

Conditions:TVJ = 25°CIS = 20 AVDD = 600VVGS = -5/+20 V

dv/dtOFF

dv/dtON

di/dtOFFdi/dtON0

10

20

30

40

50

60

70

80

90

0 2.5 5 7.5 10 12.5 15 17.5 20

di/d

t (A/

ns) a

nd d

v/dt

(V/n

s)

External Gate Resistor, RG(ext) (Ω)

Conditions:TVJ = 25°CIS = 20 AVDD = 600VVGS = -5/+20 V

dv/dtOFF

dv/dtON

di/dtOFF

di/dtON

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

di/d

t (A/

ns) a

nd d

v/dt

(V/n

s)

Source Current, IS (A)

Conditions:TVJ = 25°CVDD = 600 VRG(ext) = 2.0 ΩVGS = -5/+20 V

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

9Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Figure 31. Turn-on Transient Definitions

Definitions

Figure 30. Turn-off Transient Definitions

Figure 32. Reverse Recovery Definitions (Note 1) Figure 33. VGS Transient Definitions

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

10Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Schematic and Pin Out

Package Dimensions (mm)

CAS120M12BM2HA1940-A019

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

V+

Mid

G1K1

G2K2

G5K5

Mid

NTC1

G6K6 NTC2

G3K3

Mid

G4K4

V-

V+

V-

25, 26 15, 16

1 5 92 6 10

23, 24 21, 22 19, 20

17

3 7 114 8 12 18

13, 1427, 28

-t°

-t°

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

11Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Recommendations for PCB Mounting Stand-offs

In order to mount the PCB onto the module, it is recommended to use four PCB mounting stand-offs by usingself-tapping screws. Following is the recommended self-tapping screw with its torque requirements:

> Ejot DELTA PT WN 5451 K25x8 : Mmax = 0.4Nm ± 10%

Installation of self-tapping screws can be done both by hand or by using an electric screw driver. For an electricscrew driver the recommended maximum speed is 300 RPM.

(Note: Do not use pneumatic screw driver to install self-tapping screws).

The recommended effective length of screw threads entering the PCB mounting stand-offs should be in between4mm to 6.5mm range.

(Note: Self-tapping screws must be inserted straight into the PCB mounting stand-offs)

PCB Mounting Stand-offs (Marked Red)

Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.

12Rev. 2, 2020-12-04 CCS020M12CM2 4600 Silicon Dr., Durham, NC 27703

Notes

• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

• The SiC MOSFET module switches at speeds beyond what is customarily associated with IGBT-based modules. Therefore, special precautions are required to realize optimal performance. The interconnection between the gate driver and module housing needs to be as short as possible. This will afford optimal switching time and avoid the potential for device oscillation. Also, great care is required to insure minimum inductance between the module and DC link capacitors to avoid excessive VDS overshoot.